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We consider the Yukawa or screened Coulomb potential (short-range order). This potential 

was proposed by Yukawa as a model for the nucleon -nucleon interaction. Here, we discuss the 

scattering of particle by the Yukawa potential by using the Born approximation. The scattering 

amplitude in the first order Born approximation (
(1)f ) is real. According to the optical theorem the 

forward scattering amplitude has an imaginary part proportional to total cross section. In order to 

overcome such a difficulty, it is natural to try calculating the second order Born term (
(2)f ). Using 

the Mathematica, we will get the exact expression for 
(2)f  and will confirm that the optical 

theorem is valid for the Yukawa potential up to the order of Born second-order approximation. We 

also discuss the partial shift at low energy limit. Note that this article is a part of the lecture notes 

of Phys.422 (Quantum Mechanics II). You can find all the mathematics on the theory of Born 

approximation in my lecture note on Physics 422 (Quantum Mechanics II), Chapter 13. 

http://bingweb.binghamton.edu/~suzuki/QuantumMechanics2.html 

For the first time, I encountered the problem of scattering from the Yukawa potential in a book 

of quantum mechanics problems and solutions, edited by Masao Kotani and Hiroomi Umezawa 

(Shokabo, 1968, in Japanese), when I was a undergraduate student. I remembered that I struggled 

to solve this problem since the calculation of the second Born approximation includes the Cauchy 

theorem, Jordan’s lemma, and complicated integrals. 

Note that the present article does not include any topics which are something new. I just collect 

interesting topics related to the scattering from the Yukawa potential, from many textbooks of 

scattering,  which were published long time ago. 

 

1. Hideki Yukawa and the meson theory 
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Hideki Yukawa (湯川 秀樹, Yukawa Hideki, 23 January 1907 – 8 September 1981) was a 

Japanese theoretical physicist and the first Japanese Nobel laureate for his prediction of the pi 

meson, or pion. 

https://en.wikipedia.org/wiki/Hideki_Yukawa 

 

 

 

((Meson theory)) The Story of Spin (S. Tomonaga)  

The meson theory of Yukawa was briefly explained by Prof. S. Tomonaga in his book. 

 

Yukawa arrived at the idea that there should exist a yet-to-be discovered charged boson, the 

heavy quantum, and that this charged particle shuttles between the neutron and proton. He 

concluded that if this particle has a mass about 100 times as large as that of the electron, then the 

effective range of the nuclear force is on the order of 10-13 cm (=1 fm). From the analogy that the 

force between charged particles is mediated by the electromagnetic field, he thought that the 

nuclear force is mediated by an unknown field which might be called the nuclear force field. When 

he adopted the Klein-Gordon equation as the equation of this field, then instead of the Coulomb 

potential 2 /e r  for the electromagnetic field, 
2 /rg e r

 appeared, and from the de Broglie-

Einstein relation, in place of the zero-mass boson (photon), which is the quantized electromagnetic 
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field, he obtained a boson of mass / cℏ  for the nuclear force field. As 2 /e r  is the potential for 

the Coulomb force, he thought, and calculated the boson mass by putting 10-13 cm for the force 

range 1/  , obtaining 100 times the electron mass that I (“Tomonaga”) mentioned above. Thus, 

this boson is lighter than the proton but heavier that the electron and much heavier than the photon. 

He therefore, name this particle the heavy quantum as opposed to the light quantum. 

 

((Note)) Serway et al. Modern Physics 

The mass of pion is roughly estimated from the Heisenberg’s principle of uncertainty (Serway 

et al.) 

 

 
 

Fig.1 Feynman diagram representing a proton interacting with a neutron via the strong 

force. The pion mediates the strong force. The blue arrow shows the direction of 

increasing time. 

 

Now consider the pion exchange between a proton and a neutron that transmits the nuclear 

force according to Yukawa. We can reason that the energy E  needed to create a pion of mass 

m  is given by Einstein’s equation 2E m c  . Again, the very existence of the pion would violate 

conservation of energy if it lasted for a time greater than 
2

t
E



ℏ

≃ , where E   is the energy of 

the pion and t  is the time it takes the pion to travel from one nucleon to the other. Therefore, 
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2
2 2

t
E m c

  

ℏ ℏ

. (1) 

 

Because the pion cannot travel faster than the speed of light, the maximum distance d it can travel 

in a time is c t . Using Eq.(1) and d c t  , we find this maximum distance to be 

 

2
d

m c


ℏ

. (2) 

 

We know that the range of the nuclear force is approximately 1 fm = 10-15 m. Using this value for 

d in Eq.(2).we calculate the rest energy of the pion to be 

 

2 100 MeV
2

c
m c

d
  

ℏ
  

 

This corresponds to a mass of 100 MeV/c2 (approximately 250 times the mass of the electron), a 

value in reasonable agreement with the observed pion mass. 

 

2. Yukawa potential 

Yukawa potential (also called a screened Coulomb potential) is of the form:  

 

0( ) rV
V r e

r




 . 

 

where 0
V  = constant and attractive for positive 0

V  and repulsive for negative 0
V . The range of the 

potential is given by a=1/  . For a Coulomb potential, we see that 0   and the concept of a 

range has no meaning since the range becomes infinite. For convenience, here we make a plot of 

0
/V V  as a function of kr , where k is the wave number of a particle and / k  is changed as a 

parameter; 

 

0

( ) 1

( )

kr
k

V r
e

V
kr

k






 , 
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Fig.2 Plot of the Yukawa potential as a function of the distance r. For convenience, we 

make a plot of 0
/V V  as a function of kr , where k is the wave number of a particle, 

the parameter / k  is changed between 0.5 and 4.5, ( / ) 0.5k  . 0
V  = constant. 

The range of the potential is given by 1/  . For a Coulomb potential, we see that 

0   and the concept of a range has no meaning since the range becomes infinite.  

 

3. Scattering amplitude (the first order Born approximation) 
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Fig.3 Elastic scattering. ' k k k . ' q k k . 2 sin
2

q k


 . 

 

We now calculate the first-order Born approximation for the scattering amplitude (Yukawa 

potential), 
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ℏ

  

 

or 

 

(1)

2 2

1

4
f

q


 

 


, 

 

where 

 

0( ) rV
V r e

r




 , ' q k k , 2 sin

2
q k


   

 

with 

 

0

2 2

2
4 ( )

mV
 




ℏ
  

 

Evidently, the optical theorem is not valid only for the first order approximation since 
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(1)Im[ ] 0f  ,  (1)4
Im[ (0)] 0

tot
f

k


     

 

So, we have to calculate the Born second order in order to check the validity of the optical theorem. 

((Note)) Calculation of 
(1)f  (detail) 
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Here we note that 
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Using the formula of the Laplace transformation, we get 
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k k

 

 

The differential cross section: 

 

(1) 2 2
2

(1) 20

2 2 2 2 2 2 2 2

2 1 1
( )

( ) 16 ( )

mVd
f

d q q

  
   

  
  ℏ
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In the limit of k   , we have 

 

2
(1)

2

1 1

16 k E





  . 

 

((Mathematica)) Calculation of the integral 

 

 

 

4. Rutherford scattering 

Here we derive the differential cross section for the Rutherford scattering. There is a Coulomb 

interaction between the -particle (Z1e = +2e charge; 0e  ) and the nucleus with positive charge 

(+Z2e). In the expression of the differential cross section 

 

(1) 2 2

2 2 2 2

1

16 ( )

d

d q

  
 


 

, 

 

we put 
20

1 2

V
Z Z e


 , we get 

 

(1)
2 2 2

1 2 2 2 2 2

2 1
( ) ( )

( )

d m
Z Z e

d q





 ℏ

. 

 

In the limit of 0  , 
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(1)
2 4 2

1 2 2 2
4

2 4

1 2

2
4

1 2 1
( ) ( )

16
sin

2

( ) 1

16
sin

2

d m
Z Z e

d k

Z Z e

E











ℏ

 

 

where 

 

2 sin
2

q k


 ,  
2 2

2

k
E

m

ℏ

. 

 

This is just the famous Rutherford scattering of the alpha particle (+Z1e) by a Coulomb potential 

of charge +Z2e. Note that this differential cross section using quantum mechanics is in complete 

agreement with that obtained from a classical analysis of Coulomb scattering. 
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Fig.4 Rutherford scattering. Hyperbolic trajectory. arr 221  . The target nucleus with 

Ze  is located at the focal point F1. The alpha particle is at the point P on the 

hyperbola 22 baae  . See further detail in 

http://bingweb.binghamton.edu/~suzuki/QuantumMechanicsII/13-

2_Rutherford_scattering.pdf 

 

5. Second-order Born approximation for the Yukawa potential 

We now study the second-order Born approximation for the Yukawa potential’ 
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1 2 ˆˆ ˆ(2 ) ' ( )
4

m
f VG E i V 


  

k
k k

ℏ
 



 

12 

 

 

with 
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ℏ
 

 

where   is a positive small constant. We now calculate the integral M (Dalitz integral) defined 

by 

 

2 2 2 2 2 2

1 1 1

( ') ( )
M d

i  


      Q
Q k Q k Q k

. 

 

We use the formula (Feynman integral representation) 
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1

2

0

1 1

[ (1 )]
dz

az b z ab


  , 

 

In general; 

 

1 1 1

0

1 ( 1)! (1 )

( 1)!( 1)! [ (1 )]

m n

m n m n

m n t t
dt

a b m n at b t

 



  


       (Feynman, 1949) 

 

((Mathematica)) 

 

 

Here we also use the notations 

 

2 2( ')a   Q k , 
2 2( )b   Q k  

 

and 
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2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2

(1 ) [ ( ') ] [ ( ) ](1 )

( 2 ' ' ) ( 2 )(1 )

' (1 ) 2 [ ' (1 )]

2 [ ' (1 )]

az b z z z

z z

z z z z

k z z

 







        

         

        

      

Q k Q k

Q Q k k Q Q k k

k k Q Q k k

Q Q k k

 

 

where 

 

' q k k ,  

 

' k k k ,  2' cosk  k k   

 

Thus, we have 

 

2 2 2 2

2 2 2 2

2 2

(1 ) [ ' (1 )] [ ' (1 )]

[ ' (1 )]

( )

az b z z z k z z

z z k







          

      

  

Q k k k k

Q k k g

Q g

 

 

For convenience, we use the parameters. 

 

' (1 )z z z    g k k q k , 

 

2 2 2 2k g    . 

 

2

2 2 2 2

2 2

2 2

2 2

[ '(1 )] [ '(1 )]

' (1 ) 2 ' (1 )

[2 2 1 2 (1 ) cos ]

[1 2 (1 ) 2 (1 )(1 2sin )]
2

[1 4 (1 )sin ]
2

g z z z z

z z z z

k z z z z

k z z z z

k z z






     

     

    

     

  

k k k k

k k k k
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2 2 2 2k   g . 

 

So that, M can be rewritten as 

 

1

2 2 2 2 2

0

1

2 2 2 2 2

0

1 1

4[( ) ]

1 1

[( ) ]

M dz d
i

dz d
i

 

 


   


   

 

 

Q
Q g Q k

Q
Q g Q k

 

 

and 

 

1

0

( , )M dzL  g τ , 

 

with 

 

2 2 2 2 2

1
( , )

[( ) ] [ ]
L d

k i


 


   g Q
Q g Q

, 

 

2 2 2 2

1
( , )

[( ) ][ ]
J d

k i


 


   g Q
Q g Q

, 

 

and 

 

1
( , )

2
M J 

 


 


g . 

 

First, we need to calculate ( , )J g . Suppose that the vector g is directed along the z
Q  axis. When 

the angle between the vector Q and g is , we have a scalar product as 
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Fig.5 3D Q space. The vector g is directed along the Qz axis. The angle between Q and 

g is  . 

 

The scalar product: 

 

cosQg  Q g  

 

2 2 2 2 2( ) 2 2 cosQg        Q g Q Q g g Q g   
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2

2 2 2 2 2

0 0

2

2 2 2 2 2

0 0

2

2 2 2 2 2

0 0

1
( , ) 2 sin

[ 2 cos ][ ]

2 sin
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Q Qg g Q k i

Q
d dQ

Q Qg g Q k i

Q dQ d
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g

 

 

We define the function ( )F Q  as 

2 2 2

0

2 2 2

2 2 2

2 sin
( )

2 cos

2
ln( )

2

d
F Q

Q g Qg

g gQ Q

gQ g gQ Q

   
 

 



  

  


  


 

 

((Mathematica)) 

 

 

 

So that, we get 
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2
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g

 

 

We note that the integrand of this integral is an even function of Q. This integral can be rewritten 

as 

 

2

2 2

1
( , ) ( )

2

Q dQ
J F Q

Q k i









 g . 

 

Using the form of ( )F Q ;
2 2 2

0

2 sin
( )

2 cos

d
F Q

Q g Qg

   
 


   , ( , )J g  can be obtained as 
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Q dQ
d

Q k i Q g g





  


  

  
   










    


    

 

 

g
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Fig.6 Complex plane of 2D-Q space. There are two single poles at 1
Q Q  and 3

Q Q  

inside the contour C (counterclockwise). Two single poles ( 2
Q Q  and 4

Q Q ) 

outside the contour C. 

 

Using the Jordan’s lemma (the absolute value of the integrand reduces to zero in the limit of 

Q    in the complex Q-plane), we extend the region of the integral over the upper half of 

complex plane. Using the Cauchy theorem, we get 
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where 
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Where we define  as 

 

2 2 2
sing      

 

We now calculate 
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For simplicity, we choose a variable, 

 

2 2 2
cos cos sinx g i g i g           

 

and 

 



 

22 

 

2
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g

ig
g i d

g

ig
xd
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Then we have 
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We also calculate the integral 3
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Thus, we have 

 

1 3
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M is defined by 
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g . 

 

The scattering amplitude in the second order Born approximation is 
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where 
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Using the separation of the real part and imaginary part of the integrand 
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(a) Imaginary part 
(2)Im[ ]f   

We have the imaginary part, 
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where the integral is calculated by Mathematica 
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Note that in the limit of 0q  , we get 
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leading to the relation 
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((Mathematica)) Calculation of IM
I  
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(b) Real part 
(2)Re[ ]f  

Next, we calculate the real part, 
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dz
f

k
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q z z k k q z z


 

   

 
   





    




 

 

where the solution of this integral is also obtained using the Mathematica 
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q k q
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and 

 

3 2 20

1 1
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4
R

q
I

k 



. 

 

Thus, we have 
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1 1
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2

( 4 ) ( 4 )
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2
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q k q
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We also have simpler expression as 
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1 1
Re[ ]
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  (see the note for this derivation) 

 

We note that 
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4 2 2 2 20

1
lim Arctan[ ]

4 4 4q

q

q k k

 

  


 
 

 

Using this relation, we have 

 

(2) 2

2 2 2

1 1
Re[ (0)]

32 4
f

k
 

 



,  

 

at 0q  . 

 

((Mathematica)) Calculation of R
I . 
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((Note)) Simplification of the expression of 
(2)Re[ ]f  

We now simplify the expression of 
(2)Re[ ]f  using simple trigonometry. 
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( 4 ) ( 4 )
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where we use  and  as 
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3

( 4 ) ( 4 )
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2
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 , 

 

2 2 4 2 2 2

3

( 4 ) ( 4 )
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2

k q q k q  



   

 . 

 

We note that 

 

tan tan
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1 tan tan

 
 

 


 


. 

 

Then, we get 

 

4 2 2 2

3
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q
k q   


    , 
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2 2 4 2 2 2

3
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Thus, we have 
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, 

 

or 

 

4 2 2 2

2 2
4 2 2 2

( 4 )
Arctan[ ]

[ ( 4 )]
4

q k q

q
k q

  
 


 

 
 

  
. 

 

6. Optical theorem 

The scattering amplitude up to the second order, is 

 

(1) (2)f f f  . 
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At q = 0, we get the scattering amplitude as 

 

(1)

2

1 1

4 4
f

 


   
    , 

 

and 

 

2
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2
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If the Born approximation is to be reliable, we must certainly have the condition 

 

(2)

(1)
1

f

f
≪ . 

 

For the forward scattering (q = 0), we gave 

 

2

2(2) 2 2

(1) 2 2

1

32 4
1

8 4
4

f k

f k


   

  



 


≪ . 

 

When k ≫  (high energy) 

 

(2)

(1)
1

16

f

kf

 


 ≪ . 
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The condition steadily improved as k increases. When k ≪  (low energy, k = 0), 

 

(2)

(1)
1

8

f

f




 ≪ . 

 

By taking into account of the second order 
(2)Im[ (0)]f , we confirm that the optical theorem is 

valid such that 
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where   
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4 4
tot

k




 



. 

 

We note that the differential cross section is 
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2 2
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2 4 2 2 2
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1 1
Re[ ]
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and 
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So that, we have the final form 
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7. Validity of the Born approximation (another approach); direct calculation 

The validity for the Born approximation is satisfied under the condition 

 

2
( ) 1

2

ikrm e
d V r

r
 r

ℏ
, 
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We note that 
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0 0

2 2 2 2

1 2 1
4 1

2

V Vm m

ik k


    
 

 ℏ ℏ
. 

 

(a) Low energy limit ( k  ) 

 

0

2 2

2
1

Vm




ℏ
  4  , 

 

(b) High energy limit ( k  ) 

 

0

2

2
1

Vm

k


ℏ
  4

k
 


 , 

 

The inequality becomes easier to satisfy to satisfy as k increases, implying that the Born 

approximation becomes much accurate at high incident particle energy. 

 

((Note)) Scattering length a 

The scattering length a is defined by 
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a



 , 

 

as will be derived later, with 0

2 2

24 mV


 
 

ℏ
. The condition for the scattering for the high energy 

limit (as described above) is  

 

4
k

 


 . 

 

This condition can be rewritten as 

 

1ka≫ . 

 

The de Broglie wavelength   is related as the wave number as 

 

2

k


  . 

 

So that, the condition is also expressed as 

 

2
a




≫ . 

 

The de Broglie wavelength   is much shorter than the scattering length a. 

 

8. Partial phase shift 

The Born approximation is a good approximation for the high energy incident particle, but is 

not so for the low energy incident particle. 

 

0

( , ) (2 1) ( ) (cos )l l
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( ) ( ) ( , )

2
l lf E dzP z f E q



  , 
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For l = 0 (s-wave) 
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which has the expected branch point at 
2 2

8
E

m


 
ℏ

. Thus, while the scattering amplitude 
(1)f  has 

no branch points, the partial amplitude does. This illustrates (which is, in fact, true of all partial 

waves) that the left-hand branch cut is introduced into the partial-wave amplitude in the process 

of making the projection (Taylor). 

 

9. Phase shift analysis using the Heine expansion 

Using the Heine expansion, 
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we get the expansion of 
(1)f  as 
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(1) 0
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f k Q x
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ℏ

. 

 

10. Problem and Solution (Sakurai and Napolitano) 

I found a very interesting problem on the phase shift analysis of the scattering due to the 

Yukawa potential, in famous textbook on quantum mechanics. 

Problem 6-5 

J.J. Sakurai and J. Napolitano 

Modern Quantum mechanics, 3rd edition (Cambridge, 2021) 

 

((Problem)) 
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((Solution)) 

 

Yukawa potential 
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r

V
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 0)( . 

 

The first Born approximation 
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where 

 

'kkq  , 

 

)cos1(2
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2
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k
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where the angle between the vctors k and k’ is . kk '  

 

(b) 

The scattering amplitude )(f  can be expanded in terms of the phase shift l  as 
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Thus, we have 
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where ( )
l

Q   is the Legendre function of the second kind and is defined by 
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 , 

 

with 

 

2

2

2
1

k
x


 . 

 

We make a plot of ( )
l

Q x  as a function of x for x>1, where l is changed as a parameter. (numerical 

integration is done by using the Mathematica). 
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Fig.8 ( )
l

Q x  as a function of x. 
2

2
1x

k


  . l = 0, 1, 2, 3,…. 

 

(b) 

(i) 

As is shown in the above figure, we have 
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(ii) de Broglie wave length 
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which is proportional to 2 1lk  . 
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Fig.9 ( )
l

Q x  as a function of l with 1.5x   and 2. 
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11. The effective range: Phase shift (Capri) 

The phase shift for l = 0 (s-wave) is given by 
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Note that 
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where a is the scattering length and 0
r  is the effective range. 

 

4
a

 
 

   , 0

1 4
( )r 

 
  . 

 

Note that our result of 0r  is a little different from that reported by Capri. The parameter  is 

dimensionless. For the low energy limit, the condition for the Born approximation is 4 ≪ , 
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leading to 
1

a


≪ . For the high energy limit, the condition for the Born approximation is 

4
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 , leading to 
1 k

a
 

≪ . 

We note that the total cross section (the first order Born approximation) is given by 
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In the limit of 0k  , we have 
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using the scattering length a. Thus, the scattering length determines the low-energy scattering 

cross section. We see that 
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where  0sin[ ( )]k k ka





    . Thus, 0
( )f k has a single pole at 

i
k

a
 . This pole 

corresponds to a bound state of energy 
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2
bE
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ℏ

 and 
1

a
  . Since the bound state is of the 

form exp( ) /r r , its extension is a . 

 

((Mathematica)) Calculation 

 

 

 

12. Optical theorem (Capri) 

The scattering amplitude for low energy s-waves may be written as 
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We note that 
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where a is the scattering length and 0
r  is the effective range. Thus, we get 
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The optical theorem states that the total cross-section   is given by 
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On the other hand, the total cross section is given by 
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So, in this, the optical theorem is proved. We now use the expression of  
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On the other hands by direct calculation, we find that 
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Thus, in this case, we also verify the optical theorem. 

 

13. Conclusion 

There are so many excellent textbooks on the scattering due to the Yukawa potential. Before I 

wrote the present article, I read these textbooks, which were mainly written before 1970’s. I tried 

to calculate the scattering amplitude for the Yukawa potential up to the second-order Born 
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approximation. I encountered several integrals which seemed to me to be so complicated. Thanks 

to Mathematica, I succeeded in getting exact results within seconds. It was amazing to me. After 

that, I checked the validity of my results by comparing with the results reported in the standard 

textbooks (such as textbook by J.R. Taylor). The reporting of this article in part is motivated in 

part by our success in obtaining the exact results by Mathematica.  
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APPENDIX-II Mathematical formula 

 

2 1

1
( ) ( , 1;1; (1 ))

2
nP x F n n x      

 

LegendreP[n, x] for 1x   (Mathematica) 

 

The Legendre function of the second kind is 
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using the hypergeometric function, where  1z  , arg( )z  , and    -1, -2, -3,… 
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LegendreQ[n,x] for 1x     (Mathematica) 

 

((Asymptotics)) 
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0     and for argument of magnitude greater than 1, 
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where J0 and I0 are Bessel functions. 
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