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We consider the Yukawa or screened Coulomb potential (short-range order). This potential
was proposed by Yukawa as a model for the nucleon -nucleon interaction. Here, we discuss the
scattering of particle by the Yukawa potential by using the Born approximation. The scattering
amplitude in the first order Born approximation ( /") is real. According to the optical theorem the
forward scattering amplitude has an imaginary part proportional to total cross section. In order to

overcome such a difficulty, it is natural to try calculating the second order Born term ( ). Using

the Mathematica, we will get the exact expression for f* and will confirm that the optical

theorem is valid for the Yukawa potential up to the order of Born second-order approximation. We
also discuss the partial shift at low energy limit. Note that this article is a part of the lecture notes
of Phys.422 (Quantum Mechanics II). You can find all the mathematics on the theory of Born
approximation in my lecture note on Physics 422 (Quantum Mechanics II), Chapter 13.

http://bingweb.binghamton.edu/~suzuki/QuantumMechanics2.html

For the first time, I encountered the problem of scattering from the Yukawa potential in a book
of quantum mechanics problems and solutions, edited by Masao Kotani and Hiroomi Umezawa
(Shokabo, 1968, in Japanese), when I was a undergraduate student. I remembered that I struggled
to solve this problem since the calculation of the second Born approximation includes the Cauchy
theorem, Jordan’s lemma, and complicated integrals.

Note that the present article does not include any topics which are something new. I just collect
interesting topics related to the scattering from the Yukawa potential, from many textbooks of

scattering, which were published long time ago.

1. Hideki Yukawa and the meson theory



Hideki Yukawa ()11 518, Yukawa Hideki, 23 January 1907 — 8 September 1981) was a

Japanese theoretical physicist and the first Japanese Nobel laureate for his prediction of the pi
meson, or pion.

https://en.wikipedia.org/wiki/Hideki Yukawa

((Meson theory)) The Story of Spin (S. Tomonaga)
The meson theory of Yukawa was briefly explained by Prof. S. Tomonaga in his book.

Yukawa arrived at the idea that there should exist a yet-to-be discovered charged boson, the
heavy quantum, and that this charged particle shuttles between the neutron and proton. He
concluded that if this particle has a mass about 100 times as large as that of the electron, then the
effective range of the nuclear force is on the order of 10" cm (=1 fm). From the analogy that the
force between charged particles is mediated by the electromagnetic field, he thought that the
nuclear force is mediated by an unknown field which might be called the nuclear force field. When
he adopted the Klein-Gordon equation as the equation of this field, then instead of the Coulomb

potential e’ /7 for the electromagnetic field, g’e™* /r appeared, and from the de Broglie-

Einstein relation, in place of the zero-mass boson (photon), which is the quantized electromagnetic



field, he obtained a boson of mass w#/c for the nuclear force field. As e’ /r is the potential for

the Coulomb force, he thought, and calculated the boson mass by putting 10"'* cm for the force
range 1/ u, obtaining 100 times the electron mass that I (“Tomonaga’) mentioned above. Thus,
this boson is lighter than the proton but heavier that the electron and much heavier than the photon.
He therefore, name this particle the heavy quantum as opposed to the light quantum.

((Note)) Serway et al. Modern Physics
The mass of pion is roughly estimated from the Heisenberg’s principle of uncertainty (Serway
et al.)
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Fig.1 Feynman diagram representing a proton interacting with a neutron via the strong
force. The pion mediates the strong force. The blue arrow shows the direction of
increasing time.

Now consider the pion exchange between a proton and a neutron that transmits the nuclear
force according to Yukawa. We can reason that the energy AE needed to create a pion of mass

m_ is given by Einstein’s equation AE = m_c”. Again, the very existence of the pion would violate

conservation of energy if it lasted for a time greater than At = ——, where AE is the energy of

the pion and A¢ is the time it takes the pion to travel from one nucleon to the other. Therefore,



h h

At=——= =
2AE  2m_c

(1

Because the pion cannot travel faster than the speed of light, the maximum distance d it can travel
in a time is ¢At. Using Eq.(1) and d = cAt, we find this maximum distance to be

d= h .
2m_c

)

We know that the range of the nuclear force is approximately 1 fm = 10> m. Using this value for
d in Eq.(2).we calculate the rest energy of the pion to be

m_c? 222100 MeV
2d

Va

This corresponds to a mass of 100 MeV/c? (approximately 250 times the mass of the electron), a
value in reasonable agreement with the observed pion mass.

2. Yukawa potential
Yukawa potential (also called a screened Coulomb potential) is of the form:

V(r)= Ee”” .

ur

where V, = constant and attractive for positive ¥ and repulsive for negative V. The range of the
potential is given by a=1/ x. For a Coulomb potential, we see that 1z — 0 and the concept of a

range has no meaning since the range becomes infinite. For convenience, here we make a plot of
V'/V, as a function of kr, where k is the wave number of a particle and x/k is changed as a

parameter;
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Fig.2 Plot of the Yukawa potential as a function of the distance . For convenience, we

make a plot of V'/V, as a function of kr, where k is the wave number of a particle,
the parameter u/k is changed between 0.5 and 4.5, A(u/k)=0.5. V, = constant.
The range of the potential is given by 1/ . For a Coulomb potential, we see that

4 — 0 and the concept of a range has no meaning since the range becomes infinite.

3. Scattering amplitude (the first order Born approximation)




Fig.3 Elastic scattering. |k| = |k '| =k.q=k'-k. ¢g=2k sin% .

We now calculate the first-order Born approximation for the scattering amplitude (Yukawa

potential),
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Evidently, the optical theorem is not valid only for the first order approximation since



Im[f(l)] = 0’ Ot = _I [f(l)(o)

So, we have to calculate the Born second order in order to check the validity of the optical theorem

((Note)) Calculation of /" (detail)
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Here we note that
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Using the formula of the Laplace transformation, we get
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In the limit of £ — oo, we have
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((Mathematica)) Calculation of the integral

3 Sin[e]
g> = H
(#? +2k* (1-Cos[e]))?

Integrate([g3, {5, 6, m},
Assumptions -» {u >0, k>0}]
2

ak? 2. s

4. Rutherford scattering
Here we derive the differential cross section for the Rutherford scattering. There is a Coulomb
interaction between the a-particle (Zie = +2e charge; e > 0) and the nucleus with positive charge

(+Z2e). In the expression of the differential cross section

do B s 1
dQ 16x° (W’ +¢°)*’

p
we put —=Z,7.e*, we get
u

do®
dQ

1
W+

2m
= (lezez)z(?)2

In the limit of £ — 0,



doV 1 2m 1
o 16 G e
sin® =
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- 2
16" o 40
where
2712
q=2ksing, Ezhk .
2 2m

This is just the famous Rutherford scattering of the alpha particle (+Z1e) by a Coulomb potential
of charge +Ze. Note that this differential cross section using quantum mechanics is in complete

agreement with that obtained from a classical analysis of Coulomb scattering.

10
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Fig.4 Rutherford scattering. Hyperbolic trajectory. 7, —r, =2a. The target nucleus with
Ze is located at the focal point Fi. The alpha particle is at the point P on the

hyperbolaae =+/a” + b* . See further detail in
http://bingweb.binghamton.edu/~suzuki/QuantumMechanicsll/13-

2_Rutherford scattering.pdf

S. Second-order Born approximation for the Yukawa potential

We now study the second-order Born approximation for the Yukawa potential’

1

2
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with

(k'|VG,(E, +ig)V|K) =jdk"<k'|I?|k"><k"|éo(Ek +ig)| k") (k"|V|K),
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where ¢ is a positive small constant. We now calculate the integral M (Dalitz integral) defined

by

1 1 1
K+ Q-K) 1’ +(Q-k) Q' -~k —ie

M:de

We use the formula (Feynman integral representation)
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fo 11
[az+b(1-2)]" ab

0

b

In general;

_1\! 1 m=1¢1 _ \n-1
1 _ (m+n-1)! " (-1 dt (Feynman, 1949)
a"b"  (m-D)(n-D!y[at+bA-0)]""

((Mathematica))

Clear["Global ="];
1

gl= 5
(az +b (1-12))?

Integrate[gl, {z, 0, 1},
Assumptions -» Assumptions -» {u >0, >0, k> 0}]

1
ab

Zm—l (1 _ Z) n-1

gll = -
(az +b(1—z))'“+“,

Integrate[gll, {z, 9, 1},
Assumptions -» Assumptions » {a >0, b> 9, m> 0}]

[ S Tb ™" Gamma |[m] Gamma |[n|

Gamma [m+n|

Here we also use the notations

a=u'+Q-k", b=y +(Q-k)

and
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az+b(1-z) =[1’ +(Q-k )z +[4’ +(Q-k)*](1-2)
=15 +(Q° -2Q - k'+k"™)z+(Q* -2Q -k +k*)(1-z2)
=1 +k” z+k*(1-2)+Q* —2Q [k'z+k(1-2)]
=1+ +Q*—2Q [k'z+k(1-2)]

where

q=k'-k,

k|=|k|=k, k'k =k’cos@
Thus, we have

az+b(1-2)=[Q-k'z—k(1-2) + 1 +k*> —[k 'z +k(1-2)]’
=[Q-k'z-k(1-2)] + 1’ +k’ - ¢’
=(Q-g’+7’

For convenience, we use the parameters.
g=k'z+k(l-z)=qz+k,
=k -gt
g’ =[kz+k'(l-2)]- [kz+k'(1-2)]

=k’z?+k"(1-2)* +2k -k'z(1-2)
=k*[22° =2z +1+2z(1-z)cos ]

=k*[1-2z(1-2)+2z(1- z)(1-2sin’ g)]

= k*[1-42z(1 - z)sin’ g]
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g+t =1+ k.

So that, M can be rewritten as

1 1
4[(Q—g)2 +7°) Q' K’ ~ig

=jdzde

p 1
l j [(Q- g)+r]Q -k* -

and
= [d:L(g.v).
with
Lg.7) = [dQ o
[(Q-g)’ +7°T[Q* -k’ —ie]
J(g,r)z'[dQ 2 zl 2 g2 ’
[(Q-g) +77][Q" —k" —ig]
and

1 0
M=——->1J(g,
27 0T &7).

First, we need to calculate J(g,7). Suppose that the vector g is directed along the Q. axis. When

the angle between the vector Q and g is y, we have a scalar product as

15



Qx

Fig.5 3D Q space. The vector g is directed along the O, axis. The angle between Q and

gis y.

The scalar product:

Q-g=0gcosy

Q-2 =Q*-2Q-g+g’ =Q’-20gcos y +¢’

16



1

J(g.7)= -([Q dQ-([ 2rsinzdx [0> —20gcos y +g° +7T°1[Q° —k* —ie]

T ) 0 Q2
-([ . [07—20gcos y+g° +77 1[0 —k* —ig]

0°dQ I 27sin yd y
O’ -k —iel [0’ -20gcos y+ g’ +7°]

We define the function F(Q) as

2zsin yd y

F(Q):'([Qz+g2+72_2Qgcos;(

7 g+ +2g0+ 0’
g0 g+ -280+0’

((Mathematica))

2 Sin[x]
g2 - ;

Q2+g2+t2—2QgCos[x]J
Integrate[g2, {x, 0, x},

Assumptions » {Q >0, g>0, T >0}]

~Log | 4g0
mLog _1— 20 2.2

gQ

So that, we get
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0’dQ
o -k’ —z'gF(Q)

0°dQ T g2+rz+2gQ+Q2)]

J(g,7)

2 K ie g0 gl +1-280+0

0
72]3 QdQ In( g +7°+2g0+0’
O’ -k’ —ie g+r -280+0°

!
!

We note that the integrand of this integral is an even function of Q. This integral can be rewritten

as
1T 0do
J(gr)== | =——"77—F
(g,7) e (OF
Using the form of F(Q); F(Q) .[ 7 27[ sin ydx , J(g,7) can be obtained as
0O+ > —2Q0gcos y

Jg.r) = .[ 0’dO .’f 27sin yd y
! Q' -k —ie Q2+g2+rz—2Qgcos;(

Y 0%dQ
) ”! snxdx L (O K —ie)(O—gcos g) +g°sin 4 +7°]

18



Qy
L
Q2
Fig.6 Complex plane of 2D-Q space. There are two single poles at O =0, and Q =0,

inside the contour C (counterclockwise). Two single poles (O =0, and 0=0,)

outside the contour C.

Using the Jordan’s lemma (the absolute value of the integrand reduces to zero in the limit of

|Q| — o in the complex O-plane), we extend the region of the integral over the upper half of

complex plane. Using the Cauchy theorem, we get

| ]3 Q’dQ
(O =k —ie)(Q—gcos y)’ + g’ sin® y+77]
=<f> 0’dQ
T (O =k —ie)[(Q-gcos y)’ + g’ sin’ y +7°]
Q’dQ

:gcg(Q—Ql)(Q—Qz)(Q—Qg)(Q—Qn
=27i[Res(Q =0,)+Res(Q=0,)]
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, 0*(0-0)
R = = 1
es(@=0)= lim (Q-0)0-0,)0-0,)0-0,)

= lim 0

-0 (Q-0, Q-0 )(0-0,)
_ o’

(Ql _Qz)(Ql _Q3)(Q1 _Q4)
s 1
T2 K tgi+r’—2gcosy
s 1
T2 Ktk —2gcosy

where

g+t =+,

, 0'(0-0)
KO 00000000 0)

= lim 0

-0 (Q-9NQ-9)N0-0,)
_ 0’

(Q3 _Ql)(Q3 - Qz)(Q3 _Q4)
B (g cos y +ia)’
- 2ia(gcos y+ia+k)(gcos y +ia—k)

B (g cos y +ia)’
2ia[(g cos y +ia)’ — k)]

and

k* 1
Re =) =—
$0=0)) 2k (k—gcos y)* +g°sin” y+1°
k 1

) k> +g* +1> —2kgcos y
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Where we define o as

a=+g’sin® y+1°

We now calculate

J(g.7)=27%sin yd [Res(Q = 0,) +Res(Q = 0,)

O N

=J +

~

where

J,=27x’i|sin yd y[Res(Q = 0,)]

. (gcos y +ia)’

=27

sin yd y

Oy Oy

2ial(gcos y +ia)* —k*]

(gcos y +ia)’

= 2”sin d
7[;[ Zxa[(gcos;(ntia)z—kz]

For simplicity, we choose a variable,

X=gcos y+ia=gcos y+iJg’sin® y+1’

and
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2 .
de=[_gsin y+i g:ll"l}z(COSZz 1dx
___SNE G G e+ gcos £l
_ igsin y (gcos y+ia)dy
igsin y
a

xdy

sin;(d;(=ﬁ@

ig x
Then we have

—g+it

adx  x*
J1: ? .[ . 2 2
igx a(x”—k%)

g+it

. 2 g+t
i xdx

g—gﬂ'rxz_kz
2g x—k x+k

—g+it

)dx

_ﬁln(ir—k+g)(ir+k+g)
2g (it—k—-g)it+k—-g)

We also calculate the integral J,

J, =27’ |sin yd y[Res(Q = 0,)]

k 1
=27 |sin yd y—
raxy k*+g>+1> —2kgcos y

sin yd y

S5}

ce—y ot—N o1y

Il
=
3

k> +g* +1> —2kgcos y
_7z_f"z'ln(k+g)2+r2
2¢ (k-g)+7’
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Thus, we have

J=J+J,
_ 7' rtk+)ir—k-g) (ir—k+g)ir+k+g)

2g (it+k-g)it-k+g) (it—k—-g)it+k—g)
_ﬂ_z)iln(ir+k+g)

g (it+k—-g)
M is defined by
M——LiJ( r)——ﬁ—2 !
2wor P r k*—g* =7t +2itk’

The scattering amplitude in the second order Born approximation is

1
f@=§$3%uﬁMw

0

1
1 2 2 dz
- 2 '[ 2 2 .
2 o T(k” =g~ —7" +2itk)
1 ) zj‘ dz
327° o T(— 4 +2itk)

where

g2+72:k2+ﬂ2,

and
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=gk -
=1’ +4k sinzgz(l—z) ,

=1’ +q°z(1-z)

Using the separation of the real part and imaginary part of the integrand

1 (=2 =2itk)
(=’ +2itk) (' +47°k)
. 175 —2ik

_l’_
(it +47°KY) (Ut +470°K)

(a)  Imaginary part Im[ /]

We have the imaginary part,

1 { —2kd
Im[f(z)]z— 212 z.[ - zZ

|
167: { +4rzk2
|
167z ;[y +4y2k2+4k2q22(1 z)
\/y +EqP A’k + kg
«/u +iq  + 4’k — kg
“Te kgy| 't + kg7 + 417K

or

\/y P+ 410k + kg
m{ 7= LA \//1 2 + 447K —kg
27" g Jut + G + 415K
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where the integral is calculated by Mathematica

ln(\/ﬂ4 +kEq* + 4’k + kg
dz \/u4 +kq" + 47k —kq

1
I = =
" '([ﬂ4+4ﬂ2k2 +4k*q*z(1-2) 2kq\/y4+k2q2 +4u°k’
Note that in the limit of ¢ — 0, we get

. 1 1
i I, LA+

leading to the relation

A2 1
2k 2 2 °
6" 4k’ +pu

Im[ /' (0)] = "

((Mathematica)) Calculation of 7,
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Clear["Global +"];
Calculation of Integral of the real part

eq=1/(u"4+4k"2 (u"2+q*2z (1-2)))

1
ut - ak? [qz (1-2) z_uzj;.

fl = Integrate[eq, {z, 0, 1},
Assumptions » {1 >0, q >0, k> 0}]

rk t:|—.;:;,-’:1—I<:2 ;qz—-fl ;,-2'}

Lo , .
g L -k q—.\\-';;‘j' k2 EC|2 4 2 |

2kaq./ut+ Kk (q* + 412

Limit of the real partatq -0
at Limit of part q real the = @

Limit[f1l, q » @]
1

4k? 2.0

(b)  Real part Re[/”]

Next, we calculate the real part,

1 1 1dz
Re[f®]=—— a2 [—H %
/] 3277 'u-([r(,u“+4r2k2)
d

1 0 Iz
- 2‘1'[4/12.“ 2 2 4 272 2 2
327 o g z(A-2) [ +4uk +4k*g z(1-2)]

where the solution of this integral is also obtained using the Mathematica
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d.

I =i z
! oM+ G z(1=2) [t + 4’k + 4k g z(1-2)]

k 2 4 2 4 202 4 2
S S PN )+ + (G + 44r)
G p K (G + 4 2u
k 2 4 A 4 2,0 2 4 2
- Arctan K@+ 40 =g 1 + 44
2u
and
11mIR=i ! 5

Thus, we have

1 1
Rel /)= u'2’
327 GueN (G + 4
k(g +440) + 1 + K2 (g +440°)

2.8

k(@ +4p7) — g\’ + k(¢ +4p0)
tan y ]

7]

x[Arctan

—Arc

We also have simpler expression as

(see the note for this derivation)

We note that
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liml Arctan| a 1= #
=0 g \/y4 +a4k* 48 \/yz + 4k

Using this relation, we have

1
,u2 +4k*’

Re[/ (0] =55 A

at ¢=0.

((Mathematica)) Calculation of /,.
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Clear["Global +"];

Calculation of the integral for real part

(‘\/u"2+q"22 (1-2)
(k™4 +4k"2 (u"2+q~22 (1-2))));

fl = Integrate[eq, {z, 6, 1},
Assumptions » {u >0, q> 0, k> 0}]

k(a?+4u?) -q. ut K (a® - 447
_ArcTan — : — ' - ] .
L 2 L

ArcTan-

k(a®+4u®) +q. K (a*+4u%) ||
2 JI.AI.B ] _.-":llll

(qu® Ju*+K* (q* <4 u?) )

I
Y 5o

Limit value of integral IR at g—0

Limit[f1, g > 0]
1

4k? 3.5

((Note)) Simplification of the expression of Re[ f*]

We now simplify the expression of Re[ f**'] using simple trigonometry.
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k(q® +418°)+ gy 1 +K2 (g% +44)

A = Arctan 3
2u
k(qg* +4u°)—qu* +k°(q° +4u°
_ Arctan (g~ +4u) q\/u3 (g~ +4u)
2p
:a—ﬂ

where we use « and S as

k(g +413) + g ' +K>(¢* +44)
2.0 ’

tano =

_ k(g +4) — g it + (g + 4
2.7 '

tan

We note that

tan o —tan
l+tanartan 8

tan(a — f) =

Then, we get

‘[anoz—‘[an,8:13\/;z4 +k*(q° +4u7)
U
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k(g® +418° )+ gy 1 + K2 (g% +44%)
2408

k(q* +417)— g ' + K2 (g% +44)

2408

I+tanatan S =1+

]

X[ ]

K g 4 (g g R A )
U

=1+ 41 s (" +8q° 1 +164) —(q° 1" + ¢*K* +4k*q* )]
7,

1 4R (g 1 ) ]
4u

1 2
— [+ K (g D)L
7 4u

Thus, we have

At + K (g + 4
tan(a — f) = £ 5

LN G R YO B RTE A I
ﬂ4[u (g~ +4u7)] 4.7

a4

2,2
[ + k(" + 4=

b

or

qu it + k(g +4u’)

o — [ = Arctan| -
[t 4K (g +4p )] =2

1.

6. Optical theorem

The scattering amplitude up to the second order, is

f :f(l) +f(2).
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At g = 0, we get the scattering amplitude as

A 1 A1
fO=——p—=-,
47" u 4

and

Q>zl_22 2,U 2+iiﬁ“2( 2k 2}
2r° w +4k 16 W +4k
B A u+2ik
3277 y2+4k2)
A1
327 u-2ik

If the Born approximation is to be reliable, we must certainly have the condition

For the forward scattering (¢ = 0), we gave

A’ 1
‘f(z)‘_3272'2 ,uz+4k2 _i L

T A saeew

4z

<.

When k> u (high energy)

A
IENCT:

<.
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The condition steadily improved as k increases. When k£ < i (low energy, k = 0),

o _a
‘f(”‘ —g <.

By taking into account of the second order Im[ £*(0)], we confirm that the optical theorem is

valid such that

L (0] =2 ml £ )+ /2 (0]

=47”1m[f<”(0>]

A
Az 1 +4k*
— o0
where
oo A1

Carryrrrl

We note that the differential cross section is

d 2
5=

=[ £ +Re[ 1+ Im[ @]

= (/O +Re[ ) +(m[ £V’
f(l) — _/?“_:u 1

dr 1 +q°
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and

So that, we have the final form

f=f(1)+f(2)
a1
Ar 1> +q°
L2 1 Ar quu' + K (g + 4
+327rZ [\/ e = ctan| 1
q Wk (g +4u) ,u4+k2(q2+4,u2)—%

\/ﬂ +k*(q* +4u”) + kg
\/ﬂ + k2 (q* +447) — kg
Vit + (g + 4

7. Validity of the Born approximation (another approach); direct calculation

The validity for the Born approximation is satisfied under the condition

ikr

Idr—V(r) <<1,

2h2
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k
<<,

27rh2 r yr

We note that

1kr 'kr V
—e —47z.[drr L
rour rour

.[dr

= 47z—° .[ dre™ "

:47zﬂ !

u pu—ik

m4V01

. 2mV, 1
2xh* oy p—ik

e

<<1.

(a) Low energy limit (k << 1)

2m ¥V,

?—2 <<1 |ﬂ«| <<4r ,

U

(b)  High energy limit (k£ >> 1)

Ll 4] << 47z£,
n ok y7,

The inequality becomes easier to satisfy to satisfy as k increases, implying that the Born

approximation becomes much accurate at high incident particle energy.

((Note)) Scattering length a
The scattering length a is defined by
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2
as will be derived later, with = 4_7z = TVZO
A hu

. The condition for the scattering for the high energy

limit (as described above) is

4] << 47z£.
U

This condition can be rewritten as
ka>1.

The de Broglie wavelength A is related as the wave number as

A=—-.
k

So that, the condition is also expressed as

A
a>—.
27

The de Broglie wavelength A is much shorter than the scattering length a.

8. Partial phase shift
The Born approximation is a good approximation for the high energy incident particle, but is

not so for the low energy incident particle.

F(E.q)= Z (21 +1) fi(E)P(cos ).

1 1
fi(E) == j dzP(2) f (E,q),
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z=cosé,

l-cosf=—= ,
2k~ 4mE

m_ A1
A 1’ +q°
Au 1
4x 12 +2k>(1-cos6)
Au 1
4x 1P 12k (1-2)
_Au 1

10 2 (1-2)

For /=0 (s-wave)

foB) =+ [ E

_/u, I
dz
4mE
10+ 2 (1-z2)
—Au W 4mE
=B T -],
87 4mE h?
2 2
AL
327mE ,  8mE
h2
- L4
4F » , 8mE
+
h2

where

x|
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2,2

e p
8m

which has the expected branch point at £ =— . Thus, while the scattering amplitude /" has

no branch points, the partial amplitude does. This illustrates (which is, in fact, true of all partial
waves) that the left-hand branch cut is introduced into the partial-wave amplitude in the process

of making the projection (Taylor).

9. Phase shift analysis using the Heine expansion

Using the Heine expansion,

0

o D 21+1)Q,(x)P(cosb)

x—cosf@ iZ

we get the expansion of /" as

f(l)__2mV0 1
R 2 2. 20
H W +4k”sin )
_2mV, 1
Wu 1 +2k*(1-cos)
mV, 1
T 32 72 2
W pk l+ﬂ—2—cosﬁ
2k
_mV, 1
W’ uk® x—cosé
2
x:1+#—2
2k
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mV, 1
W uk® x—cosé

f(l) —_

0

> (21+1)Q,(x)B(cos )

m

Y
1k
=3 QU +1)£.(k)P(cos )

mV,

fz(k)=—m

0 (x).

10.  Problem and Solution (Sakurai and Napolitano)
I found a very interesting problem on the phase shift analysis of the scattering due to the
Yukawa potential, in famous textbook on quantum mechanics.
Problem 6-5
J.J. Sakurai and J. Napolitano

Modern Quantum mechanics, 3" edition (Cambridge, 2021)

((Problem))
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6.5 A spinless particle is scattered by a weak Yukawa potential

Voe 1"
V= < ,
r

where g > 0 but V can be positive or negative. It was shown in the text that the
first-order Born amplitude is given by

2mVy 1

(D
)= —— ;
SO = P —cost) + 17

(a) Using f“’iQ,‘- and assuming |§| << 1, obtain an expression for & in terms of a
Legendre function of the second kind.

L
(E)=~— —dc¢'.
Q¢ 2£]§_§, _

(b) Use the expansion formula
I
3:5...(2[+1)

1 d+D1+2) 1
é-.’-l—l 2021+ 3) §E+3

+Dd+2)4+3)1+4) 1
2-4-2+3)20+5) ¢l

QMQ’J:I_

x

+} (1¢]=1)
to prove each assertion.
(i) &y is negative (positive) when the potential is repulsive (attractive).

(ii) When the de Broglie wavelength is much longer than the range of the
potential, &; is proportional to k*+!. Find the proportionality constant.

((Solution))

Yukawa potential

V(r)= Ee”” .
L

The first Born approximation

2mV, 1
2 22

gy =—
/0) R
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where

q=k-K,

g’ =k*>+ k" -2kk'cosé
=2k*(1—-cos)

where the angle between the vctors kand £ 1s 6. k'=k

(b)
The scattering amplitude f(€) can be expanded in terms of the phase shift J, as

£(0) =3I+ 1) (k) P.(cos ).
Note that

I= j d(cos O)P(cos8) f(6)

1 ©
= I d(cos H)Z 2I'+1) f,.(k)P(cos @) P.(cos 0)
—1 1'=0
with the use of formula

1
Id(cos )P (cosO)P.(cosl)=———0,,.
] 2[+1 7

Then, we get

2 2
1= QI ) f(kh)——35,,
g;( APt

2
=2f,(k)

Thus, we have
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=1 j d(cos 0)B(cos 0) (0)

1
=—jd(cosH)P(cosH)[ 2mVy j2k2(1—cosﬁ)+y2
__ ljd O (1)
’Uh k l+——z
,U2
=T k2 O+ 2kz)

where O (¢) is the Legendre function of the second kind and is defined by
1¢, P(2)
= [gz 222
0,(x) =7 j —

with

2

y7,

x=1+ )
2k?

We make a plot of Q,(x) as a function of x for x>1, where / is changed as a parameter. (numerical

integration is done by using the Mathematica).
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2

Fig.8 O (x) as a function of x. x=l+%. [=0,1,2,3,....

(b)
@

As is shown in the above figure, we have

0/ (x)>0 for x >1.

(i)  de Broglie wave length A = 277[ >> 1 (the range of potential)
Y7

or Z>>1

mV, o
—— 01+
uk Qi+

omhy ol
T unk? Q’(2k2)

oy, 1 (2"
whk® I+ g2

mV, 21! 20+1
== PEEE k
22 21+ )

Si(k) =~ )

or

mI/O 2l+ll! (E)ZlJrl __i 2l+ll! (E)ZlJrl
7 QU+ p 87 2+ u

Silk)=—

which is proportional to k> .
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Fig.9 O (x) as a function of / with x=1.5 and 2. x =1 +2ﬂ_k2 .

11.  The effective range: Phase shift (Capri)
The phase shift for / = 0 (s-wave) is given by
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sin g, _——kjd (r )[Smk(k”}
A

_ 2
—h—’:lk.[drrz V,e [smk(kr)}
ur r

2m kV, ¢ J‘drrz e [sm(kr)}
r

n”ou oy kr
2
_ A A
7k

where
2mV, 2mV, A
Y7, hu Arx
and
) —ur : 2 2
[ [sm(kr)} _ (1+ﬂ)
0 r kr 4k* e
Thus, we get

Note that



kcotd, = kC°S5

sin o,

and

C0s O, =4/l —sin 5

:\/1 ﬂkz (1—2"2)
0

4
K’
ﬂ+2 P u

=—l+l%ﬁ
a 2

where a is the scattering length and 7, is the effective range.

a=

poss oLges
ok (ﬂ ﬁ)

Note that our result of 7, is a little different from that reported by Capri. The parameter /3 is

dimensionless. For the low energy limit, the condition for the Born approximation is 4 < 4r,
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leading to a << — . For the high energy limit, the condition for the Born approximation is
U

4] << ark , leading to a < 1k :
7 7y

We note that the total cross section (the first order Born approximation) is given by

o AP 1
o =T
A u” +4k

In the limit of £ — 0, we have

2
o"(k=0)= LA dra’
4z u

2

using the scattering length a. Thus, the scattering length determines the low-energy scattering

cross section. We see that

Jolk)=S,(k)—1
26, (k) _1
2i
coto,(k)—1
2isin 9, (k)
cos 6, (k) —sin J, (k)
_ 2ising, (k)
 1—sin &, (k)
_ 2ka
i—ka

=e
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i

where sin[50(k)]=—k£:—ka . Thus, f,(k)has a single pole at k=— . This pole
U a

2.2

corresponds to a bound state of energy E, = — 5 and x :l. Since the bound state is of the

a

form exp(—«r)/r, its extension is a.
((Mathematica)) Calculation

1 E—H "

g4 sinfkr]?;

u kir
sl = Integrate[g4, {r, 0, =},
Assumptions -» {u >0, k> 0}]

[ 4 k2
Lﬂg_l— —

[

4k? .

12.  Optical theorem (Capri)

The scattering amplitude for low energy s-waves may be written as

PRI
1=
1 i8¢ I8, _—id,
=ﬁe (e —e ™)
Lo s
=——2isino,e"”
2ik
_sind,
B ke—iéo
B sin o,
- kcos S, —iksin
3 1
~ kcots, —ik
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We note that

kcots, = —l+%r0k2,
a

where a is the scattering length and 7; is the effective range. Thus, we get

1

fo)=—
——+—r0k2—ik
a 2
a

1
1+iak —— ryak’
2
The optical theorem states that the total cross-section o is given by

o= 47” I £, (k)]

4 sind,
k ke

471G 3,
k k

On the other hand, the total cross section is given by

o= jd—adQ
dQ
= [/l do
=4z £ (k)

. 2
sin o,

kef 0,

=4r

= 1—7; sin’® 8,
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So, in this, the optical theorem is proved. We now use the expression of

a

Jo(k) =~

1+iak - 5 r,ak’
Thus, we have

o =21 £, )]
:4_7z a’k

k a —;roakz)2 +a’k’?

4ra’

1- ; rak®)’ +a’k’

On the other hands by direct calculation, we find that

o= jd—adQ
dQ
= [/l do
= dz|fy (k)|

4ra’

1- ; rak’)’ +a’k’

Thus, in this case, we also verify the optical theorem.

13.  Conclusion
There are so many excellent textbooks on the scattering due to the Yukawa potential. Before I
wrote the present article, I read these textbooks, which were mainly written before 1970’s. I tried

to calculate the scattering amplitude for the Yukawa potential up to the second-order Born
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approximation. I encountered several integrals which seemed to me to be so complicated. Thanks
to Mathematica, I succeeded in getting exact results within seconds. It was amazing to me. After
that, I checked the validity of my results by comparing with the results reported in the standard
textbooks (such as textbook by J.R. Taylor). The reporting of this article in part is motivated in

part by our success in obtaining the exact results by Mathematica.
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APPENDIX-1 The notations used in this article (summary)
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V(r)= Yo e (Yukawa potential)
ur

2
Y= Jmh, 1A A : (the first order Born approximation)

2
1
oV = A

4
A —— PSR Optical theorem
drr 1* +4K> Kk L] ©Op )

. 6
=2ksin—.
1 2

A’ B
3077 1P+ 4k

Re[/*(0)]=

2 2k
Im[ f?(0)] =———"—.
L O=55 PRTE

L A ! Arctan[ q,u\/,u4 g 4y)

2 2 2
27 q \/u4+k2(q2+4u2) u4+k2(q2+4u2)—qf

1.

Rel/¥]=

4 2, 2 2
ln(\/ﬂ +k* (g +4u°) +kq

Im[f(z)]— 1 ﬁ“z;uz \/,u4+k2(q2+4,u2)—kq
27 g @@ Ay
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APPENDIX-II Mathematical formula
1
P(x)=,F(-n,n+1; 1;5(1 - X))
LegendreP[n, x] for |x| <1 (Mathematica)

The Legendre function of the second kind is

T (v +1)
T(v+ E)(zz)v+1

0,(2)=

ZE(K-FI,K-F%;V-F%;ZZ)

using the hypergeometric function, where |z| >1, arg(z)<m,and v = -1,-2,-3,...

_1p W)
QI ()C) = EJIE for |)C| >1.
LegendreQ[n,x] for |x| <1 (Mathematica)
((Asymptotics))

Asymptotically for / — «,

0

P(cosb) = o

AU +%)0] +0(™)

2 1 T 32
= ———==—cos[(/ +5)0 _Z] +0(7"7)

N27lsin @

0 <@ < r and for argument of magnitude greater than 1,

B(———) = 1,(le)+ O

Vl-e
1 1+ e)%1 4
= —+0(")
\2rle (1-e)
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where Jy and [y are Bessel functions.
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