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Here we discuss the quantum mechanics on the interaction of electrons in atom with the
electromagnetic field. The electromagnetic field as well as electrons, are quantized. As a result of
the interaction of electrons with photon (quantization of the electromagnetic field), the
phenomena of the absorption and emission of photon occur. The emission of photon consists of
stimulated emission and spontaneous emission. The spontaneous emission can be derived only if
the electromagnetic field is quantized. The A and B co-efficients are introduced by Einstein.
Although the electromagnetic field is treated classically, the concept of spontaneous emission as
well as the absorption and stimulated emission can be well explained qualitatively. Here we
show how to calculate the transition rates for the spontaneous emission, stimulated emission, and
absorption using the Fermi’s golden rule and the Wigner-Eckart theorem. Both the stimulated
emission, and absorption are proportional to the number of photon, while the spontaneous
emission is independent of the number of photon. The polarization vector of the photon during
the transition depends on the selection rule for the matrix element of transition rate. These results
are related to the angular momentum conservation, the RHC photon has a spin angular
momentum (+ 7 ) and the LHC photon has a spin angular momentum (—7%)

The interaction of electrons with an electromagnetic field can be treated by means of time
dependent perturbation theory, since the elctromagnetic interaction is comparatively weak, as is

2
shown by the smallness of the fine-structure constant « :%zé. This smallness of this
number is of the fundamental importance in quantum electrodynamics.

1. The interaction of atoms with radiation (quantum mechanics)
The Hamiltonian of the classical radiation field ( p : momentum operator of the system, Quantum

mechanical operator) is given by
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where (= -e is the charge of electron (e>0) and ¢= 0.
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We use the Coulomb gauge V- A = 0. Then we have the perturbations such that
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where we use the vector potential A for the classical case.
In quantum mechanics, the interaction of atoms with radiation is given by
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The creation operator and the annihilation operator are defined by
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Here we calculate the transition probability for the absorption and emission of photon by
electron. Using the Fermi’s golden rule for the sinusoidal time-dependent perturbation, we get
the transition rate as
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for the emission, where |I> and | f> are the final state and initial state of the atomic system. The

first term is the stimulated emission and the second term is the spontaneous emission.

((Note)) Planck’s radiation law
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We consider the atomic system having two atomic energy levels. The ground state |1> with

the energy level E; and the excited state |2> with the energy level E; (>E;). If the populations of

the excited state and ground state are denoted by N, and N;, respectively, we have the
equilibrium condition
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where hw=E, -E,, and w,, and W,

emis

are the transition probabilities for the absorption (from

|1> to |2>) and the emission (from |2> to |1> ). From the above discussion, we have
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The proof for this equation can be given as follows. Since p = EV
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Then we get
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In APPENDIX, this derivation of the Planck’s law will be compared with the derivation by
Einstein (1917).

2. Electric dipole approximation
We use the electric dipole approximation. In this approximation we assume

(1) e ~1 since k-r = 27”r0 <<1

Gy (f|Bfi)=ima{ £]7]i).

where A is the wavelength of the light and r is the spacial spread of electron wavefunction,
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and |I> are the final and initial states of the atomic system. E; =ho=hoy

((Note)) Proof of (f |p|i) = ime( f |]i).
In electric dipole transition, the matrix element <f | 13|I> is the decisive quantity that must be

evaluated. This can be related to the matrix element of the position operator F, if the unperturbed
Hamiltonian is of the form
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and if V (#) commutes with 7. Under these conditions, we have
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So we obtain the transition rate, within the electric dipole approximation, for the emission and
absorption of a photon of the energy %, , by electrons in the atom
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The first term corresponds to the stimulated emission (proportional to N, ) and the second term

corresponds to the spontaneous emission (N, ; =0).

v Emission
=

Fig.  Stimulated emission process and spontaneous emission. E; = E;, —7i®.

We also have
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Fig.  Absorption process. E; = E, —hiw.
The transition rate for the absorption and stimulated emission is given bt
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The selection rule is determined from the matrix element
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for both cases,

R=(f[fi)=(f[x|i)e, +(f|y]i)e, +(f
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G Spontaneous emission rate
The rate of emission of a photon from an atom is not zero even in the absence of an external

radiation field (N, ; = 0). This corresponds to the spontaneous emission of a photon. The emitted

photon (with a fixed polarization) having a momentum between p and p +dp in the solid angle
dQ1is given by
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where the dispersion is given by @ = ck . Using the Fermi golden rule, the transition probability
per unit time to a particular final state of the atom is given by

dwe = %ZK f [\7+(k,s)| i>‘2 pdQO(E, —E, +hw) (spontaneous emission)

Then we have
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where the fine-structure constant is defined by



and
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We use the property of the Dirac function
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Fig. Two polarization vectors (e;, and e;) perpendicular to the wave vector k. The vector
R =(f|f[i) is denoted by a red arrow. R ={f|#[i) =|R|(sin@cosg,sinOsin ¢,cos0).

Suppose that k is directed along the z axis. Two polarization vectors denoted the vectors e; and e,
are perpendicular to the z axis. Then we have
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The transition rate associated the emission of the photons is

where
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The electromagnetic energy (per unit time) emitted arising from the spontaneous emission,
can be obtained as

or
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We note that the Einstein co-efficient A for the spontaneous emission is given by

0 4(003 A2
Wi=A=2 ( f leF]i)
4. Larmor’s power formula (classical theory)

Classically, any charged particle radiates when accelerated and that the total radiated power
is proportional to the square of the acceleration. The Larmor’s power formula for an accelerating
charge is given by

P_2e2 o 287,

=—V =— erg/s
3c? 3¢? (crgs)

where a =Va is the acceleration. This equation is the basis of the derivations of radiation from a
short dipole antenna

(@) Model of simple harmonics (Feynman)

Suppose we have an oscillating system (classical). Let us see what happens if the
displacement X of the charge is oscillating so that the acceleration a is given by

2 2
a=-w, X=-wm, X,cos(a,t),
where

X = X, cos(apt).

. . 2r .
The average of the acceleration squared over a period time T =— is calculated as
@
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(b) Model of circular motion
The centripetal acceleration a is given by

a=aw,r.
where r is a radius of the circle. Then P is obtained as
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2e w, [
3¢’

P=

which has the same expression derived from that based on the quantum mechanics.

5. The transition rate for stimulated emission and absorption
The transition rate is determined by the matrix element defined by
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The polarization vector & can be expressed by
e=(g-e*)e +(e-e*)e +(g-¢, e,

where we use the unit vectors defined by,
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Here we note that



e =0, e_-e*=1
We also have the expression for the scalar product
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6. Calculation of the matrix element using the Wigner-Eckert theorem

Suppose that
(r[f) = (r[nI'm’) = R, (DY, (6,9),
(r[i)=(r[nlm) =R, (r)Y,"(6,9)

Then we have the matrix element as
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We now evaluate the matrix element
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The selection rule for the electric dipole moment is determined
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where g= 1, 0, -1. This matrix can be rewritten in the form (the Wigner-Eckart theorem),
(n''m'[T"|nim)

where Tq(” is the spherical tensor of rank-1,
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(a) Wigner-Eckart theorem
According to the Wigner-Eckart theorem, we have the selection rule

(n',I',m'fT

(b) The parity

>¢Ofor m'=m+q and for I'=1+1,1,
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AL E=-T", (odd parity)
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nim) = (1)’ |nlm)

n'I'm) = (=1"|n'm). Vs
Thus only the transition is allowed only for
I'-l = odd integer

In the case of electric dipole transitions, the final and initial states must have different parities.
As a result, the electric dipole transitions like 1S — 2S, 2p — 3p, and so on are forbidden, while

the transitions like 1S — 2p, 2p — 3s, and so on are allowed.

((Conclusion))

(n,I,m[R+iyn,l,m)=0  for m=m+1,
(n,I,mg=ig|n,l,m)=0  for m=m-1,
(n, I, m[R=ig|n,1,m) = 0.

7. Selection rule for the transition

The matrix element:

I _ —& Flgy
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(a) For the right-hand circularly polarized wave,

(RHC photon)
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The selection ruleis ~ M'=m+1.

(b) For the left-hand circularly polarized wave
E=e_ (LHC photon)
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The selection rule is M'=m-—1.
(©) For the linearly polarized wave
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The selection rule is 'mMm'=m .

8. Transition from the 2p state to the 1s state for the hydrogen atom
For the 1s state,
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Then we have the integrals
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We evaluate

3 2

e ao, 1 x .
Wi =(2) 272(;)2 472-5 ;J.dr‘//loo (Ne-Ty,, (r)
aw,’ 2"
= o2 3T

where the factor 2 denotes the two possible polarizationstates.



where

The we can evaluate the lifetime as

1 i
Tapots = oe = 1.59531 x 107 s.

fi

9. Calculation using Mathematica
Clear["Global %"];Z=1;

exp *:=exp /- {Complex[re , im ] = Complex[re, -im]}

rwave[n , 7 , r ] :=

3 Zr 3
1/ (((n+2)1) (27 a2 ean n772Z272 r"4/(n-7-1)1

LaguerreL[-1+n-7,1+27, (2Zr) / (an)]];

y[n ,72,m,r ,6., ¢]:=
SphericalHarmonicY[/, m, &, #] rwave[n, 7, I'];

¥[1,0,0, r, 6, ¢]

_r
e a

a%2/n
¥y[2,1,1,r, e, ¢]

N S -
e 22’ rsin[o]

8a*2\/n




¥[2,1,0,r, 6, ¢]

r
e 2arCos[O]

4852 \2n

¥[2,1,-1,r, 6, ¢]

T _
e 2a '’ rsin[o]

8a®2-/n

fl=
r’Sin[e] ¥[1, 0,0, r, o, ¢]*
(ex rSin[e] Cos[¢] + ey rSin[e] Sin[¢] + ezr Cos[O])
¥[2,1,1,r, 6, ¢1 // Simplify

3 .
e 2at r* Ssin[e]? (ezCos[6] + Sin[6] (exCos[¢] +eySin[s]))

g8atn

2 =
r’sin[e] ¥[1, 0,0, r, 6, ¢]*
(ex rSin[e] Cos[¢] + ey rSin[e] Sin[¢] + ezr Cos[O])
¥[2,1,0,r, 6, ¢] //Simplify



! 23 r Cos[6] Sin (6]
e ] r oS [6 IN[o6
4/2 a*rn

(ezCos[O] +Sin[6] (exCos[¢] +eySin[¢]))

f3 =
r’sin[e] ¥[1, 0,0, r, e, ¢1*
(ex rSin[e] Cos[¢] + ey rSin[e] Sin[¢] + ezr Cos[O])
¥v[2,1, -1, r, e, ¢1 // Simplify

(oS}
-

e 2a '’ r*sin[e]? (ezCos[6] + Sin[6] (exCos[¢] +eySin[¢]))
g8atn

hl =
Integrate[Integrate[Integrate[fl, {¢, O, 27}],
{6, 0, m}1, {r, 0, ©}] // FullSimplify[#, a>0] &

128

—%a (ex+ 1ey)

h2 =
Integrate[Integrate[lIntegrate[f2, {¢, O, 2x}], {6, O, =m}],
{r, 0, »}] // FullSimplify[#, a>0] &



128
EZg'JE_aez
h3 =
Integrate[Integrate[Integrate[f3, {¢, 0, 27}],
{e, 0, n}1, {r, 0, ©}] // FullSimplify[#, a>0] &

128

%a(ex—ley)

hi1* hl + h2* h2 + h3* h3
3

32768 a° (ex® + ey® + ez?)
177 147

/7 Simplify

15

el Simplify

32768
177 147
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APPENDIX Einstein A-B co-efficient

Einstein coefficients (A and B) are mathematical quantities which are a measure of the
probability of absorption or emission of light by an atom or molecule. The Einstein A coefficient
is related to the rate of spontaneous emission of light and the Einstein B coefficients are related
to the absorption and stimulated emission of light.



Here we discuss the transition rate for the two-level system. The absorption and emission of
photons occur due to the transition between two levels. According to Einstein, we set up the rate
equations for N, and N,

E2 Spontaneous emission Stimulated emission

A

Absorption
dN, — —
T = A, N, —N,B,W(®w)+N,B,W(w)
dN — —

d'[2 =-A, N, +N,B,W(®)-N,B,W(w)

where N; and N, are the number of occupancy for the level 1 and level 2. Note that the spontaneous
emission is independent of W (@) . In the case of thermal equilibrium, we have

dn, _ dN,

dt dt

2

or
N,A, —N,B,W(@)+N,B, W(0)=0.

For thermal equilibrium with no external radiation introduced into the cavity

W(w) =W, (@)
with
VVT(a)) :NL'
—1B.—-B
N 12 21

2

The level populations N; and N, are related in thermal equilibrium by Boltzman’s law



N eE exp(phw), (= 1/kgT)
2
Then
Ay
WT (a)) = ﬂhA;I = BZl B S
Blze - Bz1 efho _ =21
B,

which is compared with the Planck’s law,

— heo® 1
Wr(@)= ¢’ e -1’
with
B12 = Bz1

A, ho'

B, =°C’
Wt (w) = iﬁ ,

BIZ

The energy density in thermal equilibrium between @ and @+ dw is given by Wr(w)dw. We
know that the Planck’s law for the radiative energy density is given by

1

ﬁ:W.

We note that A, can be evaluated from the quantum mechanics,

2

A A

ri>

, (derived from the quantum mechanics)

462(02 Kf

o daw?
RS ) == L

3c?

A,
We also note that

ha,’ o . .
Ay _ho, . (Einstein A-B coefficient relation

B, ¢’

where



AE=E,-E =ho=hv.
((Note)) The expression for W (v)

Since

W (@)dew =W (v)dv

we have
27W (w)dv =W (v)d v,
or

gzhv® 1

W) =272V () = —_
(v)=27W (@) S o

where

h 3
o' 2™ 1 sahy?
zc’ zc’ 2r ¢




