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“I mentioned my results to Niels Bohr, during a walk. That is nice, he said, that something new. I 
told him I was puzzled by the extremely simple form of the expression for the interaction at very 
large distances and he mumbled something about zero-point energy. That was all, but it put me 
on a new track.” (H.B.G. Casimir (private communication, March 1992). 
 
_____________________________________________________________________________ 
 

 
 
In quantum field theory, the Casimir effect and the Casimir–Polder force are physical forces 
arising from a quantized field. They are named after the Dutch physicist Hendrik Casimir. The 
typical example is of two uncharged metallic plates in a vacuum, placed a few nanometers apart. 
In a classical description, the lack of an external field also means that there is no field between 
the plates, and no force would be measured between them. When this field is instead studied 
using the QED vacuum of quantum electrodynamics, it is seen that the plates do affect the virtual 
photons which constitute the field, and generate a net force—either an attraction or a repulsion 
depending on the specific arrangement of the two plates. Although the Casimir effect can be 
expressed in terms of virtual particles interacting with the objects, it is best described and more 
easily calculated in terms of the zero-point energy of a quantized field in the intervening space 
between the objects. This force has been measured, and is a striking example of an effect 
captured formally by second quantization. However, the treatment of boundary conditions in 
these calculations has led to some controversy. In fact "Casimir's original goal was to compute 
the van der Waals force between polarizable molecules" of the metallic plates. Thus it can be 
interpreted without any reference to the zero-point energy (vacuum energy) of quantum fields  
http://en.wikipedia.org/wiki/Casimir_effect 



 

 
 
Hendrik Brugt Gerhard Casimir ForMemRS (July 15, 1909 – May 4, 2000) was a Dutch 
physicist best known for his research on the two-fluid model of superconductors (together with 
C. J. Gorter) in 1934 and the Casimir effect (together with D. Polder) in 1948. 
 
1 Electric field and magnetic field in the vacuum 

We start with the Maxwell’s equation in vacuum 
 

tc

tc














E
B

B
E

B

E

1

1

0

0

 

 
We assume that 
 

]
~

Re[

]
~

Re[

0

0

ti

ti

e

e












BB

EE
 

 

0
~

0
~

0

0





B

E
 

00

~~
BE

c

i
  

00

~~
EB

c
i


  



 



 
or 
 



 
or 
 


 
with 
 



 


 
We now 
 

 
Fig. B

th
 
From the
 

E)( 

E 2

2

2
2 1

tc 




~~
0

2
0

2  EE k

ck . Similar

tc 



B

B 2
2 1

~~
0

2
0

2  BB k

consider an 

Boundary con
he magnetic 

e boundary c

E)( 

E2  

0  

rly, we have 

 

0  

electromagn

ndition for 
field (green)

conditions w

EE 22 

netic wave in

the electric 
) (normal co

e have 

E (
1

tc







n the closed 

field (red) 
omponent co

B
2

1
)

c


cube with si

(tangential c
ontinuous). 

E
2

2

2 t


 

ide L. 

 

component continuous)) and 





























)sin()sin(

)cos(

)sin( 32

1

1
1

zkyk

xk

xk
EEx  

 



























)sin(

)cos(

)sin()sin( 3

2

21
2

zk

yk

ykxk
EEy  

 



























)cos(

)sin()sin()sin(

3

321
3 yk

zkykxk
EEz  

 
where 
 

xx n
L

kk


1 ,  yy n
L

kk


2 , zz n
a

kk


3  

 
(nx, ny, nz = 1, 2, 3, …) 

 
222),,( zyxzyx kkkcnnn   

 
Note that 
 

Ex = 0   for y = 0 and y = L planes and z = 0 and z = L planes. 
Ey = 0  for z = 0 and z = L planes and x = 0 and x = L planes. 
Ez = 0  for x = 0 and x = L planes and y = 0 and y = L planes. 
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number. c  is the cut-off angular frequency and is defined by 
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We use the Mathematica of this calculation. The zero-point energy is evaluated as 
 

...
1710720806405040720

3

]
)

2
(sinh

1
))

2
coth(2()

2
coth(4[

8

1

)
1

11

2

1
(

2

1

9

68

7

46

5

24

3

2

42

2

2
32

/2

2

2








a

x

a

x

a

x

ax

a

a

xa

x
xax

a

x
a

xa

exxdx

d

cL ax














 

 
In the large limit of a, we have 
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The vacuum fluctuations of the electromagnetic field cause two parallel conducting plates to 
move toward each other. 
((Example)) 
 

When a = 1 cm, Pz = 1.300 x 10-18 dyne/cm2. 

When a = 1 m, Pz = 1.300 x 10-2 dyne/cm2. 
When a = 1 Å,  Pz = 1.300 x 1014 dyne/cm2. 

 
5. Calculation of the zero-point energy for three dimensional system with sides LxLxL 
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of modes having their frequencies between  and +d. 
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We have the following formula; 
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6. Intuitive method for the derivation of Casimir effect. 
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Fig. Two conducting plates with the separation distance d. Each mode has a wavelength 
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We consider a pair of conducting plate separated by a distance d. This separation distance 

should be larger than a half of the wavelength for each mode; 
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We neglect the first term (volume energy). Then we have 
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The pressure P is given by 
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which should be equal to 
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Then  may be equal to 
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7. Experiment with atomic force microscopy (AFM) 

 
 
Fig. The measurement of Casimir effect using atomic force microscopy (AFM) [Simpson, 

2015]. 
 



Including the Lamoreaux’s ground-breaking experiment, a number of Casimir force 
measurements were made using variations on the atomic force microscope apparatus. A metal 
plate mounted on a piezoelectric translator interacts with a small metal sphere attached to a 
sensitive cantilever. As the two bodies are brought into proximity, the bending of the cantilever 
is detected by a laser beam reflected off the back of the cantilever, and observed as a change in 
the signal of a detector monitoring the difference in light intensity between the top and bottoms 
halves of the detector..  
 

 
 
The data were obtained by Roy et al. using the AFM. The Casimir force between the sphere and 
the plate is measured as a function of the separation distance. 
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