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Sir Michael Victor Berry, FRS (born 14 March 1941), is a mathematical physicist at the 
University of Bristol, England. He was elected a fellow of the Royal Society of London in 1982 
and knighted in 1996. From 2006 he has been editor of the journal, Proceedings of the Royal 
Society. He is famous for the Berry phase, a phenomenon observed e.g. in quantum mechanics 
and optics. He specializes in semi-classical physics (asymptotic physics, quantum chaos), applied 
to wave phenomena in quantum mechanics and other areas such as optics. He is also currently 
affiliated with the Institute for Quantum Studies at Chapman University in California. 
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1. What is the Berry phase? 

In classical and quantum mechanics, the geometric phase, Pancharatnam–Berry phase 
(named after S. Pancharatnam and Sir Michael Berry), Pancharatnam phase or most commonly 
Berry phase, is a phase difference acquired over the course of a cycle, when a system is 
subjected to cyclic adiabatic processes, which results from the geometrical properties of the 
parameter space of the Hamiltonian. The phenomenon was first discovered in 1956, and 
rediscovered in 1984. It can be seen in the Aharonov–Bohm effect and in the conical intersection 
of potential energy surfaces. In the case of the Aharonov–Bohm effect, the adiabatic parameter is 
the magnetic field enclosed by two interference paths, and it is cyclic in the sense that these two 
paths form a loop. In the case of the conical intersection, the adiabatic parameters are the 
molecular coordinates. Apart from quantum mechanics, it arises in a variety of other wave 



systems, such as classical optics. As a rule of thumb, it can occur whenever there are at least two 
parameters characterizing a wave in the vicinity of some sort of singularity or hole in the 
topology; two parameters are required because either the set of nonsingular states will not be 
simply connected, or there will be nonzero holonomy. 
http://en.wikipedia.org/wiki/Geometric_phase 
 
2. General formula for phase factor 
M.V. Berry, Quantum Phase Factors Accompanying Adiabatic Changes, Proc. R. London A392, 

45-57 (1984). 
 

Let the Hamiltonian Ĥ  be changed by varying parameter R [R = (x, y, z)] on which it 
depends. Then the excursion of the system between times t = 0 and t = T can be pictured as 

transport round a closed path R(t) in parameter space, with Hamiltonian ))((ˆ tH R  and such that 

)0()( RR T . The path is called a circuit and denoted by C. For the adiabatic approximation to 

apply, T must be large. 

The state vector ))(t  of the system evolves according to Schrödinger equation given by 
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At any instant, the natural basis consists of the eigenstates )(Rn  (assumed discrete) of )(ˆ RH   

for )(tRR  , that satisfy 
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with energies ))(( tEn R . The eigenvalue equation implies no relation between the phases of the 

eigenstates )(Rn  at different R. 

Adiabatically, a system prepared in one of these states ))0((Rn  will evolve with  

Ĥ  and so be in the state ))(( tRn  at t 
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where )(tn  is a geometric phase, and the dynamical phase factor )(tn  is defined by 
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Plugging the solution form into the this Schrödinger equation, we get 
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or 
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Taking the inner product with ))(( tn R  we get 
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Since 1))(())(( tntn RR , we have 
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))(( tn R  depends on t because there is some parameter )(tR  in the Hamiltonian that changes 

with time. 
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3. Expression of )(Cn  



We calculate the geometric phase )(Cn  as follows. 

For 1nn  (normalization), we have 
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For 0mn   ( mn  ) (orthogonality) 
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The rotation of the vector nn 0A  is given by 
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where we use the closure relation and the relations 
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Then we obtain 
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where we use the relations 
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with i = x, y, and z. We note that 
 

nH
z

mnH
y

mnH
x

m

mH
z

nmH
y

nmH
x

n

zyx

mnnm

ˆˆˆ

ˆˆˆ





















eee

PP  

 
where 
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Then we get 
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So we have 
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since 0])Re[ nn . Using the Stokes’ theorem, we get 
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The notation for nV  is the same used by Berry in the original paper (1984). 

 
4. Spin in Magnetic Field (the adiabatic approximation)  

A particle with the angular momentum Ĵ  interacts with a magnetic field B via the  
Hamiltonian: 
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where Jg  is the Lande-g factor. Note that 
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where )(Bm  is the eigenstate of zĴ  with the eigenvalue )(Bm . 

For any fixed value of B, we have 
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Schrodinger equation: 
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where ))0((Bm  is the eigenstate of ))0((ˆ tH B .  
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Plugging the solution form into the this Schrodinger equation, we get 
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Taking the inner product with ))(( tm B  we get 
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Note that )(tm  is real, since 
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The geometrical character of the Berry phase emerges when the variation of the instantaneous 
energy eigenstates with time is restated as their variation with field; 
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This expresses the phase as an integral over field values; 
 











)()(Im

)])()(Im())()([Re(

)()()(

BBB

BBBBB

BBB

B

BB

B

mmd

mmimmdi

mmdiCm

 (1) 

 
Note that 
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Stokes’ theorem applied to Eq.(1) gives, in an abbreviated notation. 
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where 
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da denotes area element in B space and exclusion in the summation is justified by 

)()( BB Bnn   being imaginary. The off-diagonal elements )()( BB Bmn   are obtained as 

follows. Since 
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But the )(Bn  is an orthogonal set, so for mn  , we have 
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Here we use the commutation relation 
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We can put this in a form that does not depend on choice of the 3-axis to lie along B: 
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This singularity is spherically symmetric. The Berry phase is given by 
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where )(C  is the solid angle subtended by C as seen from the origin in field space . 

 

)()
1

(
1

2
2

3
Cd

B
dB

B
d BB    eeBa  

 
 
((Note)) Vector analysis: Gauss’ law 
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where )(B  is the Dirac delta function. 
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5. Example: spin ½ under the magnetic field which undergoes a precession 

adiabatically 
 

 
The magnetic field is given by 
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The spin Hamiltonian is given by 
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where σ̂  is the Pauli spin operator. The eigenstates are given by 
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The energy eigenstate: 
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)(tn  is the eigenstate of )(ˆ tH  with the energy eigenvalue )(tBE B . )(tn  is the eigenstate 

of )(ˆ tH  with the energy eigenvalue )(tBE B .  

 

We note that we change the parameters:    and    in 
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except for the minus sign, when    and    (parity operation). 

In the spherical co-ordinate, 
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The solid angle 
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The final state after one rotation where 0)( BTB   is then given by 
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We see that the dynamical phase factor depends on the period T of the rotation, but the geometrical phase 
depends only on the special geometry of the problem. In this case it depends on the opening angle q of the 
cone that the magnetic field traces out. 
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APPENDIX 
 
Derivation of Green’s function 
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where r̂'  nn  and dr is over the volume integral. Then we have 
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Using the Gauss's law, we have 
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Clear"Gobal`";

Needs"VectorAnalysis`"
SetCoordinatesCartesianx, y, z
Cartesianx, y, z

r1  x, y, z; r  r1.r1

x2  y2  z2

Grad1

r
  Simplify

 x

x2  y2  z232
, 

y

x2  y2  z232
, 

z

x2  y2  z232


Laplacian1

r
  Simplify

0


