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1. What is the Berry phase?

In classical and quantum mechanics, the geometric phase, Pancharatham-Berry phase
(named after S. Pancharatnam and Sir Michael Berry), Pancharatnam phase or most commonly
Berry phase, is a phase difference acquired over the course of a cycle, when a system is
subjected to cyclic adiabatic processes, which results from the geometrical properties of the
parameter space of the Hamiltonian. The phenomenon was first discovered in 1956, and
rediscovered in 1984. It can be seen in the Aharonov—Bohm effect and in the conical intersection
of potential energy surfaces. In the case of the Aharonov—Bohm effect, the adiabatic parameter is
the magnetic field enclosed by two interference paths, and it is cyclic in the sense that these two
paths form a loop. In the case of the conical intersection, the adiabatic parameters are the
molecular coordinates. Apart from quantum mechanics, it arises in a variety of other wave



systems, such as classical optics. As a rule of thumb, it can occur whenever there are at least two
parameters characterizing a wave in the vicinity of some sort of singularity or hole in the
topology; two parameters are required because either the set of nonsingular states will not be
simply connected, or there will be nonzero holonomy.
http://en.wikipedia.org/wiki/Geometric_phase

2. General formula for phase factor
M.V. Berry, Quantum Phase Factors Accompanying Adiabatic Changes, Proc. R. London A392,
45-57 (1984).

Let the Hamiltonian H be changed by varying parameter R [R = (X, Y, z)] on which it
depends. Then the excursion of the system between times t = 0 and t = T can be pictured as

transport round a closed path R(t) in parameter space, with Hamiltonian H (R(t)) and such that
R(T)=R(0). The path is called a circuit and denoted by C. For the adiabatic approximation to
apply, T must be large.

The state vector |W(t))> of the system evolves according to Schrodinger equation given by

ih%h// (®) = Ay (1)) = HR®)|w (1))

At any instant, the natural basis consists of the eigenstates |n(R)> (assumed discrete) of H(R)
for R = R(1), that satisfy

H(R(®)|N(R(1) = E,(RO)N(R(D)),

with energies E (R(t)). The eigenvalue equation implies no relation between the phases of the
eigenstates |n(R)> at different R.
Adiabatically, a system prepared in one of these states |n(R(0))> will evolve with

H and so be in the state |n(R(t))> att

() = exp[—%jEn(R(t'))dt']exp[iyn(t>]|n(R(t)>>

= expli6, (O]expliz, OIN(R()))

where y, (t) is a geometric phase, and the dynamical phase factor €. (t) is defined by



6,(t) = —%iEn(R(t'))dt'. 6,(t) = —%En (t)
Plugging the solution form into the this Schrodinger equation, we get
ih[%l N(R()) - % E, (R(1)|n(R(1))) +i7, (On(R1))] = E,(RO)N(R(1))
or
[NCR@)) +i7, ON(R(E)) = 0.
Taking the inner product with (N(R(t))| we get
(N(R)[A(R())) +i7,(E)(NRM®)|N(R()) =0,
Since (N(R(1))|n(R(t))) =1, we have
7a(D) = i(N(RO)[N(R(L)))

|n(R(t))> depends on t because there is some parameter R(t) in the Hamiltonian that changes

with time.
[N(R®)) =|V n(R(D) R(D)
so that
72O =i(n(RM)|V ,n(R(D) - R(D)

and thus
72(®) =i [(N(R®)|V N(R()))-dR

3. Expression of y,(C)



We calculate the geometric phase y,(C) as follows.

For <n| n) =1 (normalization), we have
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The rotation of the vector A4, = <n |Vn> is given by



Vx A, =Vx(n|Vn)
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Then we obtain
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where we use the relations

<m|a'n>=<m|ailf||n> <n|a'm>=<n|6ilfl|m>
I En - Em ’ I Em - En
with i =X, Yy, and z. We note that
e, e, e,

0 A 0 A 0 A
P =0 lm) (o} i) (o] i)

0 5 0 » 0 5
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where
=(nVH[m), Py, =(m[VH|n).
Then we get
v nm mn
x A= mz E, —E)
_ o (nvH > (m[VH]n)
2 e

So we have



7,(C)=ifdR - 4,
= iit;dR -(n|Vn)
=ifdR - [Re((n)|Vn)) +iTm((n|Vn))]
=—Im§dR - (n|Vn)

since Re[<n)|Vn>] = 0. Using the Stokes’ theorem, we get

7,(C) = —Im§da‘[v ><<n|Vn>]
=—j;da-Vn

where da denotes are elements in R space

V. (R)= Imz <n(R)|VR|:I (R)| m(R)> X <m(R)|VR|:| (R)| n(R)>
’ - (E,(R)-E,(R)Y

The notation for ¥, is the same used by Berry in the original paper (1984).

4. Spin in Magnetic Field (the adiabatic approximation)

A particle with the angular momentum J interacts with a magnetic field B via the
Hamiltonian:

HB)=-3tej.p,
h
where g, is the Lande-g factor. Note that
J,|m(B)) =m(B)m(B)),

where |m(B)> is the eigenstate of J , with the eigenvalue 7m(B) .

For any fixed value of B, we have
H(B)|m(B)) = E,(B)m(B))

Schrodinger equation:



2y 1) = RO ) = E,(BO)y )
with

|w(t=0)) =|m(B(t =0)))
where |m(B(0))) is the eigenstate of H(B(t =0)).

v () =|m(B()) exp[—% [ En(BA)dtlexpliy, (t)]

= |m(B(1)))expli@, (t)]exp[iy, (t)]

where
L Tt
n(®) == [ En(BO

Plugging the solution form into the this Schrodinger equation, we get

87m 9]

ih[§|m(3(t))>—%Em(B(t))|m(B(t))> |m(B(1)))i =] = E(B(D) m(B(t)))

or
m(B() = |m(B) 72
Taking the inner product with <m(B (t))| we get

i(m(B(1)|m(B(1))) = 87 9™ Bty |m(B(1))).

Since (M(B(t))|m(B(t))) =1, we have



m® _

p = i(m(B(t))|m(B(1)))

or
t

7u(® =1 [(M(BE)|M(B())dt

0

Note that (1) is real, since

(m(B(t)|m(B(1)) +(M(B(1)|m(B(1))) = Re[(m(B(t)|m(B(1)))] = 0

The geometrical character of the Berry phase emerges when the variation of the instantaneous
energy eigenstates with time is restated as their variation with field;

dB(t) 0

IM(B(1))) = —| (B(1))) = ot

| (B)) = B-|V ,m(B))

This expresses the phase as an integral over field values;

7n(C) =ifdB-(m(B)|V ,m(B))
=i §dB -[Re({m(B)|V zm(B)))+iIm((m(B)|V zm(B)))] (1)
= —Im§d3-<m(3)|v3m(3)>

Note that
(M(B)|V ym(B))+(V zm(B)|m(B)) = Re[(m(B)|V zm(B))] =
Stokes’ theorem applied to Eq.(1) gives, in an abbreviated notation.
7. (C)= —Imjda -V, x(M(B)|V ,m(B))

= —Imjda (v ,m(B)|n(B))x (n(B)|V,m(B))

n=m

:—ImJ.da .V, (B)

where



V,,(B) =Y (V,;m(B)|n(B))x(n(B)|V zm(B))

n<m

da denotes area element in B space and exclusion in the summation is justified by
<n(B)|VBn(B)> being imaginary. The off-diagonal elements <n(B)|VBm(B)> are obtained as

follows. Since
H(B)|m(B)) = E, (B)m(B)), (Eigenvalue problem)
we get
Ve H(B)m(B))+H(B)|Vem(B)) = V,E,(B)m(B))+E,(B)Vm(B))
But the |n(B)) is an orthogonal set, so for n = m, we have
(n(B)|VeH(B\m(B))+(n(B)|H (B)|V:m(B)) = (n(B)|V-E, (B)|m(B))+(n(B)|E,(B)|Vem(B))
or

(n(B)|VgH (B)m(B)) +E,(B)n(B)|V,m(B))

(n(B)|VE,(B)m(B))+E, (B)n(B)|V;m(B)).
Since

(n(B)|V4E,(B)m(B)) = VE,,(B)(n(B)|m(B)) =0
we get

N(B)|V ,H(B)m(B))

_{
(n(B)|V,,m(B)) = E.(B)-E,(B)

Hence

V_(B)= Z[<m(3)|VBH (B)n(B))x <n(B)|YBH (B)\m(B))
m=n (Em(B)—En(B)]

where



H(B):_%j.gz_%#ﬁﬁj.em VB,q(B):_thﬂBj

Then we get

¢ ¢, €
(m(B)[J,[n(B)) (m(B)|J;[n(B)) (m(B)|Ji[n(B))
(n(B)J,|m(B)) (n(B)|J,|m(B)) (n(B)|J;|m(B))

(m(B)|J|n(B))x (n(B)|J|m(B)) =

(m(B)|J,|n(B)) = %{m(B)|j+ +J_|n(B))

_ %(m(B)|j+|n(B)> + %(m(B)|j| n(B))
(m(B)|J,|n(B)) = %(m(l’fﬂj+ ~J|n(B))

(m(B)|J,|n(B)) = Ain{m|n) =ng,, ,

(m(B)|J,[n(B)) =/(j—m)(j+n+D)(m|n+1)
= h\/(J - n)(J +n +1)5m,n+1
= h\/(J —m —1)(1 + m)é‘m,n+1

(m(B)|3 [n(8) =T+ )] —n+ Dmn-1)
= h\/(_] + n)(] —-n+ 1)é‘m,nfl
=hyJ(j+m+1)(j—m)S

m,n—1

So we get

[V (B)] = — 1 3 (MENBHNB)|3, mCB)) — (B, (B (B)| s mCB)
B*n*

m=n [m(B)_ n(B)]z



or

Imel(B) =0.
mV,,(B)= ooz Im Y | <m(3)|53|n(B)><n(B)I51|m(B)>—<m(Bz|J]|n(B)><n(B)I53|m(B)>
m#n [m(B)_n(B)]
or
ImV,,(B)=0.

ImV,,(B) =—— Im Z[<m(3)|j1|n(3)><n(3)|jz|m(3)>—<m(Bz|j2|n(B)><n(B)|jl|m(B)>
msn [m(B)_n(B)]

Since [M(B)—n(B)]* =1, we have

Im[V_,(B)] = e ——1Im > [(m(B)|J,|n(B))(n(B)|J,|m(B))

n=m=1

—(m(B)|3,|n(B))(n(B)|J,|m(B))]

| A
= ooz Im(m(B)3,J, 3,3 [ m())

1 iz 3
= 5oy Im(m(B)ind [ m(B))

_m(B)

Here we use the commutation relation
33,23, =ind,.
We can put this in a form that does not depend on choice of the 3-axis to lie along B:

m(B)

Im[V, (B)]= 5B

We note that is



V-VBé:—Mn&‘(B)

where

This singularity is spherically symmetric. The Berry phase is given by

mé?) B = Q(C)M(B = 0) = mQ(C)

7n(C)=~Im[da-V,(B)=-[da-

where Q(C) is the solid angle subtended by C as seen from the origin in field space .

1 1
jda-?B = IBde(eB S7€s) = de = Q(C)
((Note)) Vector analysis: Gauss’ law

de[vszé)]:de[vB -(VB%)] =Ida-VBl=—Ida-§:—4ﬂ

B
where
i3
We have
V- (V, L Vs’ L 4rsB)
B B

where 0(B) is the Dirac delta function.

T 2r
AQ = [sin@d6 [dg = 27(1 - cos0)
0

0



5. Example: spin % under the magnetic field which undergoes a precession
adiabatically

N

e

The magnetic field is given by

sinfdcos¢
B =B,| sinfsing¢
cosé

with

p=owt.

2/JBS~:
h

Spin magnetic moment: g, = — — U0 .



where

eh
Hg = —

= . (Bohr magneton)
2mc

The spin Hamiltonian is given by
H(t) =—4, - B(t) = 156 - B(t) = 11B(t)6 - n

where & is the Pauli spin operator. The eigenstates are given by

6 -n(t)|+n(t)) =++n(t)), 6 -n(t)—n(t)) = |- n(t))
where

. (0 1j . (0 —ij . 1 ()j

o, = R o, =|. R o, =

{1 0 liooo ©lo -1
CcOS— —sin—

n)=| 20 , -n®)=| %
e' sinE e COSE

The energy eigenstate:
H(O[+n(t) = 4B+ n(t)). H (O]~ n(t) = B -n(t))

|+ n(t)> is the eigenstate of H (t) with the energy eigenvalue E, = 1;B(t). |— n(t)> is the eigenstate

of H (t) with the energy eigenvalue E = —z;B(t).

We note that we change the parameters: @ — 7 —6 and ¢ > 7+ ¢ in

COS—
[+n)=| 2|,
e' sin—
2

Then we get



—sin—

_ _ 2
- n()) . o
e'’ cos—
2
cos (7 ; 9) - sinE | >
- =— =——n(t)
g!@+m) sinM e' cosg
2 2

except for the minus sign, when @ — 7 — 6 and ¢ — 7 + ¢ (parity operation).

In the spherical co-ordinate,

2 + n(t)

0 10 1
V|+ n(t)> =e, §|+ n(t)> +e, F%H n(t)> +e, rsind 04 >
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Then we get



1 ——sin—
<+n<t>W\+n<t>>=ee—(cos— ewsm_] 272
' e’ —cos—
2
re,——[cos? ewsinl] ’
’rsind 5 )| ie" sin—
isin® —
=e
? rsin®
where
(+n(®)|= (cosg e singj .
2 2
<_”(t)|v|_”(t)>:eel(—sing e_i"’cosg] 21 2
' 2 2) e _sinZ
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+e, 1 (—sing e"“’cosgj-w 0
rsiné 2 2 1€ COSE
icoszg
—e,— 2
rsiné

where
(-n@®)|= (— sin? e cosg)
2 2

7,(C) =i§(+n(®)|V|+n(t))-dr

2 isin® —
— 2 rsin (g
rsin @

= 2 rsin’ L4
2

=-—m(l1—cos8)



7 (C) =if(=n(®)|V|-n(t))-dr

. ,0

2z icos” —
=ije¢-e¢ — 2 rsin G ¢

7 rsind

= -2 cos’ 0
2

=—7(1+cos6)

The solid angle

9
QC) = .[27zsin6dt9 =27(1—cos0)
0

17 y
g, =——|E,t"Ydt'=FLEBT
= B0 =328,






The final state after one rotation where B(T) = B, is then given by

|w.(T)) = expli6, (T)]expliy, (T)] £ n(T))
= exp[—iz(1 F cos@]exp(Fi % B,T)|+n(0))
We see that the dynamical phase factor depends on the period T of the rotation, but the geometrical phase

depends only on the special geometry of the problem. In this case it depends on the opening angle q of the
cone that the magnetic field traces out.
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APPENDIX

Derivation of Green’s function
5 1
V' —=—-476(r),
r

where

r=(xY,2), r=yx>+y>+2>.

We consider a sphere with radius £ (& — 0)
jdrv-vl:jdmlzjda-vl:jda(n-vl)
r r r r

where

and



1
V-V (—) =0 except at the origin.
r

We now consider the volume integral over the whole volume (V - V') between the surface A and the
surface of sphere A' (volume V', radius & — 0) . We note that the outer surface and the inner surface are

connected to an appropriate cylinder.

11

AL

1
Since V -V(—) =0 over the whole volume V - V' we have
r

Using the Gauss's law, we get

J’drvvlz j drv? L
V-V r i r

= Ida(n -Vl)+ jda’(n'-Vl) =0
A r A r
or

{ da(n - v%) = —;[da'(n'-V%) = {da'(n : V%)



where n'=—n = —f and dr is over the volume integral. Then we have

jda(n .Vl) = J‘da(—%) = —47rg’ L —4r = —47[! dro(r)
A r r

2
&

Using the Gauss's law, we have

.[da(n : v%) = J dr(V - v%) = —4;:! drs(r)

or
1
AF =—47o(r).
or
Ay =—5(r)
4’ '
((Mathematica))

Clear["Gobal "] ;
Needs["VectorAnalysis "]
SetCoordinates[Cartesian[X, Y, z]]

Cartesian[Xx, Yy, Z]

rl={x,Yy, z}; r=vrl.rl
'\/x2+y2+22

Grad[}] /7 Simplify
r

X y z
)3/2’7 )3/2’7

(x2+y2+22 (x2+y2+z2 (x2+y2+22)3/2}

1
Laplacian[—] /7 Simplify
r

0]



