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A magnetic monopole is a hypothetical elementary particle in particle physics that is 

an isolated magnet with only one magnetic pole (a north pole without a south pole or 
vice-versa). In more technical terms, a magnetic monopole would have a net "magnetic 
charge". Modern interest in the concept stems from particle theories, notably the grand 
unified and superstring theories, which predict their existence. Magnetism in bar magnets 
and electromagnets does not arise from magnetic monopoles, and in fact there is no 
conclusive experimental evidence that magnetic monopoles exist at all in the universe. 
Some condensed matter systems contain effective (non-isolated) magnetic monopole 
quasi-particles, or contain phenomena that are mathematically analogous to magnetic 
monopoles.  
http://en.wikipedia.org/wiki/Magnetic_monopole 
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In Maxwell’s equation magnetic charges do not appear. We have  
 

0 B . 
 
No magnetic charges have been confirmed to exist. Quantum mechanics does not require 
that magnetic charges exist, but it unambiguously requires the quantization of magnetic 
monopoles and predicts the unit of magnetic charge if they should ever be found. 
 
We assume that the magnetic monopoles exist and that a magnetic monopole is located at 
the origin. 
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The vector potential A is defined as 
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The vector potential has only a A component, since r
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Note that 
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When 0 rAA , we have 
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This value is singular on the negative z axis at  = . If we consider A just a device for 
obtaining B, then we can construct a pair of vector potentials 
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which together yield the correct B everywhere. A1 can be used everywhere except inside 
a cone defined by    around the z axis, and A2 can be used everywhere except 
inside a cone defined by    around the positive z axis. In the overlap region 
(   ) either A1 or A2 can be used. The two potentials lead to the same magnetic 
field and therefore related to each other by a gauge transformation. 
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Note that 
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Thus we have 
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The wave function of a charged particle depends on the particular gauge used.in the 
overlap region we have 
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Here we assume that q = -e (e>0) is the charge of the particles. 
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The wave function must be single-valued. As we increase the azimuthal angle   from 0 

to 2, the wave function must return to its original value. 
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The magnetic charge must be quantized in units of 
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Note that the quantum magnetic flux is 
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((Kittel)) 
 
Suppose a magnetic monopole of strength eM is situated just below the center of a 
superconducting ring. The magnetic flux through the ring is 
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