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((Overview))

We consider quantum superpositions of possible alternative classical trajectories, a
history being a path in configuration space, taken between fixed points (a and b). The
basic idea of the Feynman path integral is a perspective on the fundamental quantum
mechanical principle of complex linear superposition of such entire spacetime histories.
In the quantum world, instead of there being just one classical ‘reality’, represented by
one such trajectory (one history), there is a great complex superposition of all these
‘alternative realities’ (superposed alternative histories). Accordingly, each history is to be
assigned a complex weighting factor, which we refer to as an amplitude, if the total is
normalized to modulus unity, so the squared modulus of an amplitude gives us a
probability. The magic role of the Lagrangian is that it tells us what amplitude is to be
assigned to each such history. If we know the Lagrangian L, then we can obtain the action
S, for that history (the action being just the integral of L for that classical history along
the path). The complex amplitude to be assigned to that particular history is then given by
the deceptively simple formula amplitude
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The total amplitude to get from a to b is the sum of these.

((Path integral))
What is the path integral in quantum mechanics?

The path integral formulation of quantum mechanics is a description of quantum
theory which generalizes the action principle of classical mechanics. It replaces the
classical notion of a single, unique trajectory for a system with a sum, or functional
integral, over an infinity of possible trajectories to compute a quantum amplitude. The
basic idea of the path integral formulation can be traced back to Norbert Wiener, who
introduced the Wiener integral for solving problems in diffusion and Brownian motion.
This idea was extended to the use of the Lagrangian in quantum mechanics by P. A. M.
Dirac in his 1933 paper. The complete method was developed in 1948 by Richard
Feynman. This formulation has proven crucial to the subsequent development of
theoretical physics, because it is manifestly symmetric between time and space. Unlike
previous methods, the path-integral allows a physicist to easily change coordinates
between very different canonical descriptions of the same quantum system.

((The idea of the path integral by Richard P. Feynman))



R.P. Feynman, The development of the space-time view of quantum

electrodynamics (Nobel Lecture, December 11, 1965).
http://www.nobelprize.org/nobel prizes/physics/laureates/1965/feynman-
lecture.html

Feynman explained how to get the idea of the path integral in his talk of the Nobel
Lecture. The detail is as follows. The sentence is a little revised because of typo.

I went to a beer party in the Nassau Tavern in Princeton. There was a gentleman,
newly arrived from Europe (Herbert Jehle) who came and sat next to me. Europeans are
much more serious than we are in America because they think that a good place to
discuss intellectual matters is a beer party. So, he sat by me and asked, «what are you
doing» and so on, and I said, «I’m drinking beer.» Then I realized that he wanted to know
what work I was doing and I told him I was struggling with this problem, and I simply
turned to him and said, ((listen, do you know any way of doing quantum mechanics,
starting with action - where the action integral comes into the quantum mechanics?»
«No», he said, «but Dirac has a paper in which the Lagrangian, at least, comes into
quantum mechanics. I will show it to you tomorrow»

Next day we went to the Princeton Library, they have little rooms on the side to
discuss things, and he showed me this paper. What Dirac said was the following: There is
in quantum mechanics a very important quantity which carries the wave function from
one time to another, besides the differential equation but equivalent to it, a kind of a
kernel, which we might call K(x',x),which carries the wave function y(x) known at

time ¢, to the wave function w(x') at time, ¢+ ¢ . Dirac points out that this function K

was analogous to the quantity in classical mechanics that you would calculate if you took
the exponential of ig/#, multiplied by the Lagrangian L(x,x) imagining that these two

positions x, x’ corresponded ¢ and 7+¢. In other words, K(x' ,x)is analogous to

explis L(—,x)],
h &

K(x',x)zexp[iiL(E,x)]. (1)
/] g

Professor Jehle showed me this, I read it, he explained it to me, and I said, «what does he
mean, they are analogous; what does that mean, analogous? What is the use of that?» He
said, «you Americans ! You always want to find a use for everything!» I said, that I
thought that Dirac must mean that they were equal. «No», he explained, «he doesn’t
mean they are equal.» «Well», I said, «let’s see what happens if we make them equal.»

So I simply put them equal, taking the simplest example where the Lagrangian is

%M)’C2 —V(x), but soon found I had to put a constant of proportionality 4 in, suitably

adjusted. When 1 substituted exp(ieL / 7) for K to get

p(x.t+e)=[4 exp[i%L(L;x 0w (x, £)dx )



and just calculated things out by Taylor series expansion, out came the Schrédinger
equation. So, I turned to Professor Jehle, not really understanding, and said, «well, you
see Professor Dirac meant that they were proportional.» Professor Jehle’s eyes were
bugging out-he had taken out a little notebook and was rapidly copying it down from the
blackboard, and said, «no, no, this is an important discovery. You Americans are always
trying to find out how something can be used. That’s a good way to discover things!» So,
I thought I was finding out what Dirac meant, but, as a matter of fact, had made the
discovery that what Dirac thought was analogous, was, in fact, equal. I had then, at least,
the connection between the Lagrangian and quantum mechanics, but still with wave
functions and infinitesimal times.

It must have been a day or so later when 1 was lying in bed thinking about these
things, that I imagined what would happen if I wanted to calculate the wave function at a
finite interval later. I would put one of these factors exp(iL /%) in here, and that would
give me the wave functions the next moment, ¢+ & and then I could substitute that back
into (2) to get another factor of exp(ieL/#)and give me the wave function the next
moment, ¢ + 2¢& and so on and so on. In that way I found myself thinking of a large
number of integrals, one after the other in sequence. In the integrand was the product of
the exponentials, which, of course, was the exponential of the sum of terms like &L /7.
Now, L is the Lagrangian and ¢ is like the time interval dz, so that if you took a sum of
such terms, that’s exactly like an integral. That’s like Riemann’s formula for the integral

'[ Ldt , you just take the value at each point and add them together. We are to take the

limit as € — 0, of course. Therefore, the connection between the wave function of one
instant and the wave function of another instant a finite time later could be obtained by an
infinite number of integrals, (because ¢ goes to zero, of course) of exponential (iS/#)

where S is the action expression (3),
S = j L, x)dt . 3)

At last, I had succeeded in representing quantum mechanics directly in terms of the
action §. This led later on to the idea of the amplitude for a path; that for each possible
way that the particle can go from one point to another in space-time, there’s an
amplitude. That amplitude is an exponential of i/% times the action for the path.
Amplitudes from various paths superpose by addition. This then is another, a third way,
of describing quantum mechanics, which looks quite different than that of Schrédinger or
Heisenberg, but which is equivalent to them.

1. Introduction
The time evolution of the quantum state in the Schrédinger picture is given by

lw (@) =U@O|w (@),

or



(x|w @) = (x[O @My ) = [dx (x|T @, x) x| w @),

in the | x) representation, where K(x, #; x°, 1°) is referred to the propagator (kernel) and

given by
K(x,t;x,t') = (x|U(t, 1) ) = (x| exp[—%ﬁl(t —1')]x").

Note that here we assume that the Hamiltonian A is independent of time ¢. Then we get
the form

(x|w(0) = [ ax' K (e 1550 ) (x| ()

For the free particle, the propagator is described by

S — / m im(x —x")’
K(x,t;x',t") = 27zih(t—t')exp[ 2h(t—1') 1.

(which will be derived later)

((Note))
Propagator as a transition amplitude

K(x,t;x',t') = <x|exp[—%ﬁ(t — 1]

= <x| exp(—%ﬁt) exp(% Ht' )| x'>

= <x,t x',t’>
Here we define
X, t> = exp(%lflt)| x> , <x,t = <x| exp(—%l:lt) .

We note that

<x,t

a> = <x|exp(—%ﬁt)|a> = exp(—%Eat)<x|a> ,
where

I:I|a>=E

a).

a



((Heisenberg picture))
The physical meaning of the ket

X, t> :
The operator in the Heisenberg's picture is given by

X, = exp(% Hi)} exp(—%ﬁt) ,

Xyl t> = exp(i Hi)? exp(—i Hi) exp(i Flt)| x>
h h h
= exp(% Iflt))2| x>

= exp(% PAIt)x| x>

= xexp(%ﬁlt)| x> =X x,t>

This means that

x,t> is the eigenket of the Heisenberg operator x,, with the eigenvalue

X.
We note that
i~
[vs(0)) = exp(——Hblyy).
Then we get

(xls 0) = (xlexp(— Filys,) = (el ).

This implies that

x,t> =

x1), [x)=[x);-
where S means Schrodinger picture and H means Heisenberg picture.

2. Propagator
We are now ready to evaluate the transition amplitude for a finite time interval

K(x,t;x',t’):<x,t

x' ,t'>



where

At = % (in the limit of N — o)

to At

\

HHH‘»t
t

We next insert complete sets of position states (closure relation)

where #p = ' in this figure.

K(x,t;x',t')z(x,t

= Idxl.[dxz.....[dx,vz.[dx,v1J.<x|exp(—%lflAt)|le>

x' ,t'>

X <x2 | exp(—%ﬁlAt)| X, ><x1 | exp(—% IEIAt)| x'>

This expression says that the amplitude is the integral of the amplitude of all N-legged
paths.

((Note))

(x',2"), (x5 1), (X5, 25), (X3, 15), (X4, 24),

----- (Xygotng)s (O zoty3)s (X oty n)s (Xy sty ), (X,1)
with

=t <t <t <t; <t,<.... <ty <ty, <ty , <t=t,



At

to t1 to t3 tN-1 tN=t
%0 X1 X2 X3 XN-1 XN = x
We define
" L
X=X, r'=t,,
X=Xy, t=t,.

We need to calculate the propagator for one sub-interval
(x| exp[—%ﬁAtﬂxH) ,

wherei=1,2, ..., N, and

~2

a=L1v),
2m

Then we have

(x| eXp(—%FI AD|x.,) = [dp, (x| p.){p, IeXp(—éAtFI )| %)

= [dp (x| p) o1~ At )+ O(80))

Jap, (5| p) 1~ A ) oAy

_ c i P I
_J.dpi<xi|pi>[<pi|l hAt(2m)|xH>+<pi| hAtV(x)

X )]+ 0((AN)
= [dp (x| PPl = AT )+ = AV ) )1+ O(A)

= Ja, (5| p) P 1~ A v 0



where pi (i=1, 2,3, ..., N), or

. . A2
<xi |6Xp(—%HAt)| xi71> ~ J.dpi<xi |pi><pi |xi—1>[1 _%At(i_;n +V(x)]
1 . .
= %J.dpi exp[% pi(x —x )l - % AtE(p;,x, )]

~ ﬁ J. dp, exp [i pi(x; —x,_)]exp [_% AtE(p;,x;_)]

h
~L.|.d ex [1{ MAt—E( X A
27 P; €Xp 7 pi Al PisXiy

1 i X, —X,_
=~ %J.dp, eXp[— {p, M - E(piaxi—l)}At]

h At

where

2

E(p,x ,1)— —Vx).

Then we have

K(x,t;x',t')=<, ' '>
i Ja [ v [ A2 [P [ o

Xexp[%;{pi@%f”)—(ﬁ—;iﬂf(xi1))}At]

We note that

2

At
h]

dp, i, (x-x,) p’ dp, i
e af 28 Zfp X il B WA= | L “SIp(x. — —
[5, sexolp, S = [ expl{py(xy — )~

h At
m imAt x; )cl1
= e
Voo P Car )]

((Mathematica))



1 b 2
Clear["Global ' +"]; £l = —— Exp[— px - i

2 h h 2mh
Integrate[fl, {p, -, ©}] //
Simplify[#, {A#>0, m>0, Im[At] <0}] &

At] ;

Then we have

K(x,z‘;x',z"):}vim.[cz’)cl.[cz’)c2 ....... J’defl( ~ YV’
I ~h m X, —X,
ALY (L (E TN iy
Xexp[h ,~§=1{2( Y )" =V (x)}]

Notice that as N — oo and therefore At — 0, the argument of the exponent becomes the
standard definition of a Riemann integral

i K mox —x; i
lim — Aty {— (=0 P (x, ) =— | dil(x, %),
fim ;{2( A hj (x,%)

where L is the Lagrangian (which is described by the difference between the kinetic
energy and the potential energy). Mathematically, we had better to use

i N .
n j il (x, ) =— j dt, L(x(t,), %(t,)



Ll

O ' o o t
L(x, %) =%m(§c)2 -V (x).

It is convenient to express the remaining infinite number of position integrals using the
shorthand notation

1 m
ID[X(I‘)] =11v1£r010'[dx1'[dx2 ....... .[defl( V2
Thus we have

K(x,t;x',t') = <x,t

. = [ DLx(@)]exp - SIXO}.

where
S[x(t)] = jdtL(x,fc) .

The unit of S'is [erg sec].

10



When two points at (¢, xi) and (¢, xr) are fixed as shown the figure below, for
convenience, we use

S[x()]= j dtL(x,X).

X2

X1

4 5

This expression is known as Feynman’s path integral (configuration space path integral).
S[x(#)] is the value of the action evaluated for a particular path taken by the particle. If
one wants to know the quantum mechanical amplitude for a point particle at x’, at time #
to reach a position x, at time ¢, one integrates over all possible paths connecting the points
with a weight factor given by the classical action for each path. This formulation is
completely equivalent to the usual formulation of quantum mechanics.

The expression for K(x,t;x',¢'") =< Lt X', '> may be written, in some loose sense, as

P P o )

(all) path h

iS
—exp( )+exp( ’m’hz)+---+exp(ﬂ)+--

11



where the sum is to be taken over an innumerably infinite sets of paths.

y i

e e e e

T T
s T

(a) Classical case

Suppose that 7 — 0 (classical case), the weight factor exp[iS/%] oscillates very
violently. So there is a tendency for cancellation among various contribution from
neighboring paths. The classical path (in the limit of 2 — 0) is the path of least action,
for which the action is an extremum. The constructive interference occurs in a very
narrow strip containing the classical path. This is nothing but the derivation of Euler-
Lagrange equation from the classical action. Thus the classical trajectory dominates the
path integral in the small 7 limit.

In the classical approximation (S >> )

<xN =X,ly = t|x0 =x',t, = t'> ="smooth function" exp(l%’) . (1)

But at an atomic level, S may be compared with 7, and then all trajectory must be added
in <xN =Xt =z‘|)c0 =x',t, =t'> in detail. No particular trajectory is of overwhelming

importance, and of course Eq.(1) is not necessarily a good approximation.

12



(b) Quantum case.
What about the case for the finite value of S/#% (corresponding to the quantum case)?
The phase exp[iS/h] does not vary very much as we deviate slightly from the classical

path. As a result, as long as we stay near the classical path, constructive interference
between neighboring paths is possible. The path integral is an infinite-slit experiment.
Because one cannot specify which path the particle choose, even when one knows what
the initial and final positions are. The trajectory can deviate from the classical trajectory
if the difference in the action is roughly within 7.

((REFERENCE))

R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (extended edition)
Dover 2005.

(Note))

We can use the Baker-Campbell-Hausdorff theorem for the derivation of the
Feynman path integral. We have a Hamiltonian

A

H=T+V
where T is the kinetic energy and V(%) is the potential energy. We consider
exp(—%I:IAt) = exp[—% (T +7)A]

=exp(P+0)

where
. i A i~
P=——TAs, ———VAt
h 0 h
We use the Baker-Campbell-Hausdorff theorem
~ A O (O N N | NP
eXp(P)eXP(Q)=eXp{P+Q+E[P,Q]+E[P,[P,Q]]—E[Q,[P,Q]]+---}
with
A A i A A
[P,0]= (—%)Z(At)z[T V]

[2,[P,0]] =(—%>3(Ar>3[f,[fﬁ]]

13



A A A i A
[O.[P,0]]= (—%)3(At)3[V,[T V1l
In the limit of Az —> 0, we get

exp(—é I:IAt) = exp(l3 + Q)

= exp(P)exp(Q)

= exp(—i TAf) exp(—i V At)
h h
Using this, we get the matrix element

< ‘exp(——HAt)‘x/+l> <_/‘exp(—ifAt)exp(—iI}At)‘x_/+l>

=(x, \exp(——p )y exp—— LZEITY
or
m 1/2 i m(x —x )2
exp(— At exp{—[——L LV (x,,)]At
(x;|exp(= Fan)|x, ) = [WAJ R v (L)
3. Free particle propagator

In this case, there is no potential energy.

N

m N2 [ m X —Xii1y2
exp[— At E — (= ,
27zfll'At) p[h P {2 ( At )]

K(x,6x',1") = lim [ [ ... [ dxy

or

K(x,t;x',t')=]lvi£)130.[dxl.[dx2 ....... jdxm

m —m
(27zhiAt)N/2 eXp[2hiAt {(r, =x')Y +(x, —x) +(x; =%, + .+ (x—x,_,)°}]

We need to calculate the integrals,

00

m 2 "2 Y
flz(M) .[de1 ON {(x1 x4 (x, —x))7]

1 m 12 g

14



m (i —-m )
expl——— (x. — x
Siag) Pl (n = x)T]

g = h(
i ! m > -m )
= d - »
fz '[Ogl Xy ,—672' (hiAt) eXp[—6hiAt ()C3 % ) ]

m —-m .
S Ol (%) ]

g = A

i(’64_95')2]

[ 1 m 12
= dx. = —
f} .[ng X4 ,—872' (hiAt) exp[ Y

. m 12 _m(x —x )2
KCeutoxd 1) = lim(—— )2 exp[ =X X ),
( ) N—>oo( 2nthAt) p[ 2thAt ]

or

K(x,t;x',t") = (L)l/z exp[M

2nhi(t — 1) 2hi(t—1) 1,

where we use? — #'= NAf in the last part.

((Mathematica))
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Free particle propagator;

e=At

Clear["Global "] ;
exp * := exp /. {Complex[re , im ] :» Complex[re, -im]};
hl= ((x1-x')?+ (x2-x1)?) // Expand;

2nihe -—g -m
£0[x1 ] := (—) Exp[ h1];
- m 21 he

fl = Integrate[f0[x1], {x1, -», ®©}] //

m
Simplify[#, Im[— > 0] &
eh

im (x2-x’) 2

e den _im
eh
2~
2nrihe\ 3 -m 2
gl = £1 (—) Exp[ (x3 - x2) ] // Simplify;
m 2ihe
(=) m
£2 =j gldx2 // Simplify[#, Im[— > o] &
- eh
jm(x3—x’)2
e 6ehn
\/67 1ieh
m
2nrihe\-3 -m 2
g2 = £2 (—) Exp[ (x4 - x3) ] // Simplify;
m 2ihe
(=) m
£3 =j g2 dx3 // Simplify[#, Im[— > o] &
eh

-

im (x4-x7) 2

e 8eh _im
eh
2N 27w
2nihe --; -m s
g3 = £3 (—) Ex [ (x5 - x4) ]// Simplify;
m 2ihe
(=) m
£4 =j g3dx4 // Simplify[#, Im[— > o] &
—o eh
jm(xS—x’)z
e 10en

10 77 ien
m



4. Gaussian path integral

The simplest path integral corresponds to the vase where the dynamical variables
appear at the most up to quadratic order in the Lagrangian (the free particle, simple
harmonics are examples of such systems). Then the probability amplitude associated with
the transition from the points (x,7;) to (x,,¢,) is the sum over all paths with the action

as a phase angle, namely,
K(‘xf’tf;‘xi’ti) = exp[%Scl]F(tfﬂti) )

where S, is the classical action associated with each path,
Iy
S, = [dtL(x,%,,0).
ti

with the Lagrangian L(x,x,?) described by the Gaussian form,
L(x,%,t) = a(t)x” + b(t)xx + c(t)x” +d()x + e(t)x + f(¢)

If the Lagrangian has no explicit time dependence, then we get
F(t,t,)=F(t,-t).

For simplicity, we use this theorem without proof.
i
K(x,,tp5%,t)= exp[ng]F(tf —t1).

((Proof)) R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals.

Let x,(¢) be the classical path between the specified end points. This is the path which is
an extremum for the action S. We can represent x(f) in terms of x,(#) and a new
function y(?);

x(t) = x, () + y(0)

where y(7)=y(t,)=0. At each time 7 the variables x(¢) and y(¢) differ by the

constant x ,(¢#) (Of course, this is a different constant for each value of 7). Thus, clearly,

dx, = dy,

17



x(t)

Xc!(ti) 'y ------------

D

ti_1 t; tist live

Fig. x(¢)=x,(t)+y(). x,(¢) 1is constant for ¢ <t<t +Ar=t, , which is

i+1°

independent of the path, while  x(z)and y(z) are also constant for
t<t<t+At=t,

i+1°

dx(¢,) =dy(t;) which depends on the choice of path.

but depends on the path chosen. So that we have

for each specific point ¢ in the subdivision of time. In general, we may say that
Dx(t) = Dy(t).

The integral for the action can be written as

S[ty.t1= fL[X(t),x(t)),t]dt,

with

We expand L(x,x,t) in a Taylor expansion around x

cl?

x,, . This series terminates after
the second term because of the Gaussian form of Lagrangian. Then

18



. . oL, oL N OL, L O
Lx’x’t :L xc’xc ,t +_x +— N +— + .
( ) ( 1>l ) O | el y ox | Xer Y 2 axz Y Gxax a ?

)|

XepsXer

From here we obtain the action

SIty 1= S,lt 1, ]+jdr<— N y+—|xl )

O°L R o°L . +82L
T o

+— jdt(

yz) |xcl,fccl
aL oL .
=S,[t,., ]+jdt( Syl D)

+ j difa(0)7* +b(t)yy +c(t)y*]

The integration by parts and use of the Lagrange equation makes the second term on the
right-hand side vanish. So, we are left with

STt ot1= S, [t .1+ [dila(®) 3 + b()yy +c(t)y’].
Then we can write
STe(e)] = S,lt .1+ [[a(0)3” + b()jy + ()" Jdt

The integral over paths does not depend on the classical path, so the kernel can be written
as

where

y=0

F(t, 1) = j exp i j [a(t)3” +b()3y +c(6)y Yt} Dy(e).

»=0

19



It is defined that F(¢,,t,) is the integral over all paths from y =0 back to y =0 during
the interval (¢, —1,).

REFERENCES
S.Rajasekar and R. Velusamy, Quantum Mechanics II, Advanced Topics (CRC Press,
2015).

((Note))
If the Lagrangian is given by the simple form

L(x,%,t) = a(t)x* + b(t)xx + c(t)x*
then F(z,,7;) can be expressed by
F(t;,t)=K(x,=0,,;x,=0,).

4. Evaluation of F'(¢,,7,) for the free particle
We now calculate F'(¢, =1,t, =t') for the free particles, where the Lagrangian is

given by the form,
: I .,
L(x,x,t)= me .

Then we have

=0 Lt

f
rrm .,
F(t,,t)= | exp{—|—’dt'Dy(t
@)= | p{hlzy 1Dy ()
Replacing the variable y by x, we get
x=0 l-’/m
_ brm.,
F(t,t)= | expl j S X dryDx(0)

x=0

In this case, formally F(z,,7,) is equal to the propagator K(x, =0,7,;x, =0,7,),

20



F(ty.t)=K(x, =0,;x=01)
= lim jdxl.[dxz ....... J'dx,\,,1

N—>o

m N/2 -
Cain P

t'_t,‘ t_t'
where we put x;, =x'=0, and x, =x=0, and Ar= ! =

We now evaluate the following integral;

F(t;.1) = lim [ [ dxy......[ ey,

o) expl

Y Sy 1 =)+ () e (R =)+ x]

We note that

2 2 2 2 2
f=x" 4+, —x) +(x;—x) +. (X, =Xy ,) +Xy,
=2(x 4 e 2y ) = 200X, + XXy e F Xy Xy )

Using the matrix, f'can be rewritten as

f=X"AX =(Un)" AUn=n"U*AUn=n"(U*A0)n,

with
X, 2 -1 0 0 0o . O
X, -1 2 -1 0 O
. o -1 2 -1 0
X=| . |, A= 0 0 -1 2 -1
. . . . 2 -1
Xy, . . . . N

We solve the eigenvalue problems to determine the eigenvalues and the unitary operator,
such that

21
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7+ 00 —x)" + (05 —x,) o+ (O —Xy,) + Xy 1]



A 0 0 0 0
04 0 0 0
0 0 4 0 0

Urai={0 0 0 1, 0,
0 0 0 0 )

where /4, is the eigenvalue of 4. Then we have

A4 0 0 O 0Y n
0 4, 0 O 0| n,
0 0 4 O 0
f:(771 nomom - . 771\/71)0 0 0 4 0
0 0 0 0 . . A N\
N-1 )
Zziﬁi
i=1
The Jacobian determinant is obtained as
O(X}, Xy ey Xy y) detU =1.
Oy sy 5e-s )

Then we have the integral
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F(t,,t,)=F(t,1")

= hm.[dnljdnz ....... jan 1(272% T

)N/Z

IELNT 2rhiAt |27hiAt | 27hiAt
27hiAt mﬂ1

m )N/z )y (N-1)/2 1

mi,

= Qaina w—um Fy

~\ 2hid(det A) 27ztht(detA)

where

detd= A4 Ay =N

(Mathematica)) Example (N = 6).
The matrix 4 (5x 5): N—-1=5

2 1 0 0 O
-1 2 1 0 0
A= -1 2 1 0
0 0 -1 2 1
0 0 0 -1 2

The eigenvalues of 4:
A =243, 4,=3,4,=2, 4, =1, A,=2-43.
The unitary operator

U=

23

P[—{@?l +ﬁ“2772 ot Ay Ty, }]

2hiAt



| o

2 \;’E

S o o &
i =)
S o o
<Sto o ©

S O O O

1

i

> An

S8

Il
D
<

24
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Clear["Global *"];

2 -1 0 0 O
-1 2 -1 0 O
Al=( 0 -1 2 -1 O
0O 0 -1 2 -1
0O 0 0 -1 2

.
’

eql = Eigensystem[Al]

{{24‘\/?/ 3/ 2/ 1/ 2_\/5}/ {{1/ _\/?/ 2/ _’\/?/ 1}/
{_1/ 1/ O/ _1/ 1}/ {1/ O/ _1/ O/ 1}/

(-1, -1, 0,1, 1}, {1, V3, 2, V3, 1}}}

x1 = Normalize[eql[[2, 1]]] // Simplify

RS B T e S
23 2737 27 243
X2 = -Normalize[eql[[2, 2]]] // Simplify

1 1 1 1
{5/ _5/ O/ 5/ _5}

25



x3 = Normalize[eql[[2, 3]]] // Simplify
1 1 1

{—r Or - T Or —}

s

x4 = Normalize[eql[[2, 4]]] // Simplify
1 1 1 1

{__r - A Or ~ 7 _}
2 2 2 2

x5 = Normalize[eql[[2, 5]]] // Simplify

(L1, L, 1 1,
o3 2 V5 2 2

UT = {x1, x2, x3, x4, x5}; U= Transpose[UT] ;
UH = UT;
U // MatrixForm

11 1 1 1
2V3 2 W3 2 23
1.1 gy 11

2 2 2 2
N
V3 e 73
I R S

2 2 2 2
1.1 11 1
232 A3 2 243
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UH.U// Simplify; UH.U // MatrixForm

1 0 00O
01 000
0 01 0O
00 010
0 0 001
nl
n2
n=|(n3|;
n4
n5

sl =UH.A1.U// Simplify; sl // MatrixForm

2++/3 00 0 0
0 300 0
0 02 0 0
0 00 1 0
0 000 2-vV3

fl = Transpose[n] .sl.n // FullSimplify

{{(2-+\/§» n124—377224—27732+-n42—-(—2—%&(5) USZ}}

Det[Al]
6

Kl=eql[[1l, 1]] eql[[1, 2]] eql[[1, 3]] eql[[1, 4]]
eql[[1, 5]] // Simplify

6. Calculation of the average <1,// A

v)
In order to understand the above discussion, for the sake of clarity, we discuss the

fundamental mathematics in detail.

6.1 The average <1//| 21|1//> under the original basis {|b,->}
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We consider the two bases {|b,.>,

a,.> }, where the new basis {|a,.>} is related to the

original basis {} |b,~> through a unitary operator U,

‘aj>=0 U*

b))

a].> ’ <b]_ ‘ - <af

with  U'U =1. a,.> is the eigenket of the Hermitian operator A with the eigenvalue

Aa)=aa).
Note that
(b]a,)=(b10b,)=(]0]a;).
or

In other word, the matrix element of U is independent of the kind of basis (this is very

important property). We also note that

bj> =a.0, (diagonal matrix)

Here we define the Column matrices for the state |W> of the system,
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B a,
B a,
B=| o=| (matrix form)
ﬁl’l al’l
with
f=blv).  a-{aly).

We now consider the average over the state |l//> under the original basis {|b1-> }-

A

(4)=(v]4ly)

:;<W|bi><bi|‘a‘bj><bi|'//>
=;<bz—|'//>* (&1 4]b,)(b]w)

= Zﬂi*Aijﬂi
i,
All Al2 * * ‘ Aln IBI
A21 A22 ot An ﬂZ
=5 B B))
Anl An2 oo Ann ﬂn
=B AB

(matrix form), using the closure relation. The relation between P and a is obtained as

follow.
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=2{aln,)8,
=; bU"|b,) B,
or
a=UB (matrix form)
since (a,| = (b,|U".

6.2  The average (| 4|y) under the new basis {|a,)}

Next, we now consider the average under the new basis {|al.> }-

=2 lv) (@] 4|a,)(a,]v)
:ial_*al&l]al
) a 0 0
0 a, 0 || a,
:(al a, an)
0 0 a, \a,

_ 2
—Zaf|0‘z—|
i

6.3  The calculation of the average using Mathematica

(i) Find eigenvalue and eigenkets of matrix 4 by using Mathematica
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Eigensystem[A]

which leads to the eigenvalues a, and eigenkets,

a,.>. The eigenkets ahould be

normalized using the program Normalize. When the system is degenerate ( the same
eigenvalues but different states), further we need to use the program Orthogonize for all

eigenkets obtained by doing the process of Eigensystem[A]

(ii) Determine the unitary matrix U

Unitary matrix U is defined as

<b1|a1> <b1|a2> S <b1

bla) Bla) . . . (b]a)
U=
<bn a1> <bn a2> . <bn an>
=(u, w, u,)
where
(br]a)
(b2 )
u = <b3 | ai> (matrix form of eigenkets)

Thus, we have

a=UP, p=Ua (matrix form)
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where

and

Note that

B*Ap =(0'U"AUa) = (¢ Aa)

where

a 0 0

0 a, 0
U'AU=

0 O a

6.4 Example-1 (3x3 matrix)

(diagonal matrix)

Here we discuss a typical example, 4 is 3x3 matrix.

32



f= 2(1812 + /822 + /832 - BB, = BB Bb)

=B Ap
B
=(8" B BI)A| B,
P
B
:(/81 5, /83)A 5
P
Where f,, f,, and f, are real,
B
B=|5. | B =(4" £ B)=(A B B)=F
P
2 -1 -1
A=-1 2 -1].
-1 -1 2

Eigenvalue problem of matrix 4 (we solve the problem using Mathematica. The system

is degenerate)

A =ag, Ad, =a,¢,, A, =ap;.

where the eigenvalues and eigenkets are as follows,
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N
+ o+

<

el il
s % -y

under the basis {| b, >} . The unitary matrix can be obtained as

U = ¢2

(4 4 ¢)

—I% -2 -5
g e e
lfﬁ o lfﬁ

|5 -1~k

S o O
S on O

on O O
I

U'AU

1,

U'U=

34

Thus, we have



f=B"AB
=0 (U'AU)a

a 0 0\«
:(al* a, a;) 0 a 0] q
0 0 a)\a

2 2 2
= a|af +a)ef +a|ar)

=3a,” +3a,” +0a;’

6.5 Example-2 4x4 matrix

We also discuu the second example; A4 is 4x4 matrix.

f= /812 + 2/822 + 2/832 + 1842 - 2181/82 - 2182/83 - 2183/81

=B AP
B
NN P
= 2 3 4 A
(B B B B 5
B,
B
b,
= Pl 3 4 A
(B B B B) 5
B,
Where f,, S,, f; and f, are real,
B
b= B8 BB B)=(B B B B)-F
B,
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-1 2 -1 0
0 -1 2 -1}
0 0 -1 1

Eigenvalue problem of matrix A (using Mathematica)
A¢1 = a1¢1 ’ A¢2 = a2¢2 >
A¢3 = a3¢3 > A¢4 = a4¢4

The eigenvalues and eigenkets are obtained as follows,

1
2242
1 1
_ 1+_
2 2
a1:2+\/§, ¢ = 2 ,
l 1+L
2\ 2
1
212 +2
1
2
1
2
a,=2, ¢, = e
2
1
2

36



— N =N =]~

I
<

The unitary matrix:

U:(¢1 ¢2 ¢3 ¢4)

— | N
Lﬁ
1_2
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¢1+
U+: ¢2:rr
¢,
¢,
Lt fr
222 2V V2 2V V2 a2i 2
1 _1 21 1
_ 2 2 2 2
1 / L1 /1_L 21 /1_L _1 /HL
2 V22N 2 2\ 2 2 2
1 1 1 1
2 2 2 2
2442 0 0 0
U'u=1 U*AU = 2 00
’ 0 0 2-v2 o]
0O 0 0 0
.t r rhp.t1
2z 2 2V V2 2
A _1 1+L 11 1_L Lifa
5o B Ve 2\ 2 2\ V2 2|«
A L T B o T
B 2\ 2 2 2\ V2 2|le
1 1 1 1 1
_ —_ I 1+_ —
222 20 2V V2 2

or
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% LY P S LI TP
5, 5 LT N
P

1 1+La —la 1 I—La +la
,84 ) \/5 1 B 2 ) \/5 3 B 4
1 1

Thus, we have

S =B"ApB
=0 " (U'AU)a
2442 0 0 0
* * * * O 2 O 0
=(a1 a, o, a4)

0 0 2-2 0
0O 0 0 0

2 2 2 2
=a|a| +a)|a,] +a|a| +a,|ey

= 2+V2)e} +2a,2 +(2—2)al +0a,?

7. Equivalence with Schrodinger equation
The Schrodinger equation is given by

., 0 ~
ih—|y(0) = H|y ©)).
ot
For an infinitesimal time interval ¢, we can write

() ~|w(0) =—i§ﬁ|w(0>>,

from the definition of the derivative, or
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(x|y (@)~ (x|w (0)) == (x| A (0))
h
ic. h* o*

= _;[_ﬁﬁ +V ()N x|w(0))

or

(3.2 =y (r0) == (x| ]y ()
ie. h* 0’

= _?[_Eﬁ +V () (x,0)

in the |x> representation.

We now show that the path integral also predicts this behavior for the wave function.
To this end, we start with

(rly @) = [ 'K xe220)x]w 0),

or
v(x, &)= de'K(x,g;x',O)l//(x',O),
where
K(x,&x',0) = 27;7'1;25 exp[%gL(x ;x' 2z ;x')]
)]
Then we get

p(e) = |5 avexpl 2 =Ty e0).

We now define
X'—-x=n.

Then we have
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m imn
&)= |2 [d
w(x,e) thj; nexpl—

The dominant contribution comes from the small limit of 7. Using the Taylor expansion
in the limit of 7 — 0

_ie n
- Vix+ 2)]w(x +1,0).

&V (x +%) — eV (%),

oy (x,0)  n° Oy (x.0)

+n,0) ~ ,0)+
w(x+n,0) =y (x,0)+n o T o

b

we get

)= |5 [dn ey (Ml (0 +n DT S0

~ jdn oty (10 VD T VD) Ty

1=V ’;n’z 9 (x0)

Thus, we have

W (x,6)—p (x,0) = —’f[—g’— ; VW (x0),

which is the same as that derived from the Schrdédinger equation. The path integral
formalism leads to the Schrodinger equation for infinitesimal intervals. Since any finite
interval can be thought of a series of successive infinitesimal intervals the equivalence
would still be true.

((Note))

im 27he " R imn®_ ihe(2mhe)"”’
Id”eXp( 77) [ j - Jrdnen 2775):7[ m j

m

((Mathematica))
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Clear["Global "];

Integral[n ] :=

i

m n?
Integrate[nn Exp[ ], {n, -, 00}] //
2he

m
Simplify[#, Im[— > 0] &;
€h

K1l = Table[{n, Integral[n]}, {n, 0, 4}];
Kl // TableForm

0 V25
_im
\ €h
1 0
2 V27t
(_]l_In ) 3/2
eh
3 0
4 3Varn
(_M ) 5/2
eh
8. Motion of free particle; Feynman path integral

The Lagrangian of the free particle is given by

=",
2

Lagrange equation for the classical path;

d oL, oL
5(5)2(5)=0,
or
x=a,
or
x=at+b.

This line passes through (7, x"), (¢, x);
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X —x'= oy t,—-1),
t—t
X1
A
(tx)
(t',x)
Then we have
X, :x,+x—x' @t -1),

and

which is independent of #;. Consequently, we have

’ mex—x', m x—x' m (x—x')’
S, =|L(t)dt, =— dt, = — dt, =————,
o= [ Ly = [ Cm o =S C = dn ==

'

and
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((Approach from the classical limit))

To find 4, we use the fact that as t —¢'— 0, K must tend to o(x —x'),

w1 1
o(x—x')= &{% ()2 exp[ A2 ]
. 1 (x—x')’ .
= lim exp[—
o—0 27[0- p[ 20‘2 ]
where

S A

\/5 5
f(x,x',0)= ! exp[— (=)’ ] (Gaussian distribution)

sy \/ﬂ@' p 20_2 : '

So we get

A /2hi(t —1)
m 9
Ao 1 _ m
(zAH)'? 2mhi(t —1")’

or
Note that
m
F (=t = ’— .
freep—artlcle( ) 2TChl(t _ t')
((Mathematics))
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Feynman path integral for free particle

Clear["Global "];
X[t ] := +A1l t + B1;
sl=x[ti] - x1==0;
s2 = X[tf] - xf ==0;

s3 = Solve[{sl, s2}, {Al, B1}]

HAla—_XFJFXi 51 _tix-F—t'in]]

3

foti % tf-ti JJ

x1=x[tl] /. s3[1] // FullSimplify

t1 xf-tixf-tlxi+tfxi
tf - ti

D[x1, t1] // Simplify

xf - xi
tf - ti
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Lagrangian

1
L1 = 5" (D[x1, t1])? | // FullSimplify

m (xf - xi)?
2 (tf - ti)?

Action S
sl = Integrate[L1, {t1, ti, tf}] //
FullSimplify

m (xf - xi)?
2 (tf-ti)

s2 =
sl//. {tf-> (T+ti), xFoxi+X, xi->0} //
FullSimplify

m X2
2T

((Evaluation of S/7))
From the above discussion, S can be evaluated as

2
g_m@Ay)y mA)Ax _mv, P h

Ax =—Ax,
2 At 2 At 2 2 24
or
S_mv AP YA
ho 2h 2 h 2

where p is the momentum,
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p=hk.

Suppose that m is the mass of electron and the velocity v is equal to ¢/137. We make a

plot of % (radian) as a function of Ax (cm).

((Mathematica))
NIST Physics constant : cgs units

Clear["Global *"];

rulel = {c »2.99792x 10", 1> 1.054571628 1077,
me - 9.10938215 10} ;

me c
Kl=—— /. rulel
2h

1.2948x10%°

K1/137

9.4511x 10’

S/h (rad)
1010 L

108 L
106 L
104 L

100 ¢

‘ ‘ ‘ Ax (cm)
1078 1076 1074 0.01 | 100

Fig. %(radian) as a function of Ax (cm), where v =¢/137. m is the mass of electron.

9. Evaluation of S for the 1D system (example 8-1, Towmsend, 2™ edition)
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D I

|
_ a The AL shifts
Incident one wave from

Wave .
the other, which

determines the

interference,

Sy
AT

(a) B I

We consider the Young’s double slit;

mx*  mx 1 1h 7h
= =——X=—pX=——X=—2X.
2(At) 2t 2 24 A

The phase difference between two paths is evaluated as

1
Ax == kAx =2 Ax,
2 A

AS _1p
h h

1
2

If e is comparable to 7z, the interference effect can be observed. Such a condition is

satisfied when
Ax=A.
((Note))
In classical physics, the phase difference is given by

27
Ap=—Ax.
¢ A

10.  What is the Lagrangian for photon?

((Landau-Lifshitz))
For a particle, we have the Hamilton equations

oH . OH
- V=F=—o

or op
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In view of the analogy, we can immediately write the corresponding equation for rays:

_Ow
or’

k= v:fzgg
ok
In vacuum, @ = ck, so that k=0, v =cn (n is a unit vector along the direction of
propagation); in other words, in vacuum the rays are straight lines, along which the light
travels with velocity c.
Pursuing the analogy, we can establish for geometrical optics a principle analogous to
the principle of least action in mechanics. However, it cannot be written in Hamiltonian

form as o '[ Ldt =0, since it turns out to be impossible to introduce, for rays, a function

analogous to the Lagrangian of a particle. Since the Lagrangian of a particle is related to
the Hamiltonian A by the equation

L=p-""-H,
P o

replacing the Hamiltonian H by the angular frequency @ and the momentum by the wave
vector k, we should have to write for the Lagrangian in optics, k-g—z)—a). But this

expression is equal to zero, since @ = ck .But this expression is also clear directly from
the consideration that the propagation of rays is analogous to the motion of particles with
Zero mass.

As is well, in the case where the energy is constant, the principle of least action for
particles can also be written in the form of the so-called principle of Maupertuis:

58 =5 p-dl=0

where the integration extends over the trajectory of the particle between two of its points.
In this expression the momentum is assumed to be a function of the energy and the
coordinates. The analogous principle for rays is called Fermat’s principle. In this case, we
can write by analogy:

Sy = [k-dl =0
In vacuum, & =£n, and we obtain (dl-n =dI :
c

5]41:0

which corresponds to rectilinear propagation of the rays.
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((REFERENCE))
L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon, 1996).

((Note))

From a view-point of the phaser diagram for the interference, photons are one of the
best examples. I will use this example for the explanation of photon propagator. It seems
to me that theorists hesitate to use the word of photon. Why is that? It is hard to find the

expression of the action S for photon, even if the path integral is expressed by exp(% px);

plane-wave form. The Lagrangian form of photon is not simple compared to that of
particle (such as electron).

11. Single slit experiment

In order to understand the path integral method, let us go back to the Young’s double
slit experiment. We obtain an interference pattern, independent of whether we use a light
source, or particle (electron) source. This can, of course, be explained by saying that there
is a probability amplitude associated with each path. Note that a path integral approach
offers a road to quantum mechanics for systems that are not readily accessible via
Hamiltonian mechanics (Merzbacher, 1998). In his book, Feynman discussed the
principle of least action for particles (Feynman, 1964).

Is it possible to say intuitively that

L=T=cp,

where 7 is the kinetic energy of photon, ¢ is the velocity of light, and p is the
momentum.? The momentum p is expressed by

2rh
:hk:—’
P p)

where A is the wave length of photon. Then the action S can be evaluated as
Sszdz‘:'[cpdt:cpAt:pr

where p is assumed to be constant and Ax = cAt. Then we have
exp(% S) = exp(% px) = exp(ikx)

The phase of change in wave function for photon is
A@ =kAx

where £ is the wave number.
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Imagine the slit divided into many narrow zones, width Ay (= 6 = a/N). Treat each as
a secondary source of light contributing electric field amplitude AE to the field at P.

to point P

o
o

L
o

eSS

<

e
o

A=Nasinﬁ-

We consider a linear array of N coherent point oscillators, which are each identical,
even to their polarization. For the moment, we consider the oscillators to have no intrinsic
phase difference. The rays shown are all almost parallel, meeting at some very distant
point P. If the spatial extent of the array is comparatively small, the separate wave
amplitudes arriving at P will be essentially equal, having traveled nearly equal distances,
that is

E,(n)=E\(r)=...=E,(ry)=E\(r) :%

The sum of the interfering spherical wavelets yields an electric field at P, given by the
real part of

E = Re[EO(r)ei(le*wt) +E0(r)ei(krf(ul) +o+ Eo(r)ei(kr‘vfwt)]

= Re[E,(r)e" ™[I+ 4 #5744 o* v
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((Note))
When the distances 71 and 7> from sources 1 and 2 to the field point P are large compared

with the separation o, then these two rays from the sources to the point P are nearly

parallel. The path difference > — 7 is essentially equal to Jsiné.
Here we note that the phase difference between adjacent zone is

k(r,— 1) =@ =kSsin@ = k(%sin 0)

k(r,—n)=¢
k(r,—nr)=¢
k(ry —ry )=¢

where £ is the wavenumber, & = 2% It follows that

k(rz _”1) =Q
k(r,—n)=2¢
k(r, =1) =3¢

Thus the field at the point P may be written as
E =Re[E,(r)e"" ™[I +e” + & +...+ "]
We now calculate the complex number given by

Z=14+e"+e?"+.. .+
1—e™
B 1—e"
iN(p/Z(eiN(p/2 _e—iN(p/2)
ei(p/Z(ei(p/2 _e—i(p/2)
. N
sm(—(o)
:ei(N71)¢/2—2

in(?
s1n(2)

e

If we define D to be the distance from the center of the line of oscillators to the point P,
that is
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D:%(N—l)k5Sin9+kl’i :%(N—l)(z)+kr1

1
k(D—-n)= E(N—l)(o
Then we have the form for E as

sm( )
E =Re[E,(r)e"" " ——=— ——2 _]=Re[Ee™]

sin( (0)

The intensity distribution within the diffraction pattern due to N coherent, identical,
distant point sources in a linear array is equal to

sin ( ) sin’ (f) sin’ (f)

I1=1, =1, 3 =1, F; =
sin ( ) sin (ﬁ) (2)

in the limit of N—oo, where

sin’ (%) = (%j

I, =c—§°[Eo(r>f

CéE, Cé¢,
[m :[ONZ ZTO[NEO(F)]Z ZTOEOZ

P =No=Nkdsinl = kasinf
@=kosind

where a = No. We make a plot of the relative intensity /I, as a function of £.
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J sin 5
By
2
Note that
sin? s
. (2)

I/Im
0.06 -

0.05 -

o
-4 -2 0 2 4 Al

The numerator undergoes rapid fluctuations, while the denominator varies relatively
slowly. The combined expression gives rise to a series of sharp principal peaks separated

by small subsidiary maxima. The principal minimum occurs in directions in direction €n
such that

54



£=k—2asin0=mﬂ

asin@, = l2m7: =i2mﬂ =mA
k 2r

12. Phasor diagram

(i) The system with two paths
The phasor diagram can be used for the calculation of the double slilts (Young)

interference. We consider the sum of the vectors given by OS and ST . The magnitudes
of these vectors is the same. The angle between OS and ST is ¢ (the phase difference).

Q

2

]

Y
\

X

o] 5
Fig. Phasor diagram for the double slit.
In this figure, 00 =0S =QT =R . ZSOM = /STM = ¢/2 . Then we have
OT =20M = 2@005? = 2Acos§ .
The resultant intensity is proportional to (ﬁ)z ,

I o (ﬁ)z =44° cos’ % =2A4°(1+cosg).

Note that the radius R is related to OS (= A) through a relation
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A= 2Rsin£.
2

When 4 = 1 (in the present case), we have the intensity / as

2 9

I =4cos” —
2

The intensity has a maximum (/ =4) at ¢ =2/m and a minimum (/ = 0) at
¢=2m(n+1/2).

(ii) The system with 6 paths.

Q

=

r

o] s

Fig. The resultant amplitude of N = 6 equally spaced sources with net successive phase
difference ¢. f=N ¢ =6 ¢.

(iii)  The system with 36 paths (comparable to single slit)
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”

Fig. The resultant amplitude of N = 36 equally spaced sources with net successive
phase difference ¢.

o]

(iv)  Single slit in the limit of N—o0

We now consider the system with a very large N. We may imagine dividing the slit
into N narrow strips. In the limit of large N, there is an infinite number of infinitesimally
narrow strips. Then the curve trail of phasors become an arc of a circle, with arc length
equal to the length Eo. The center C of this arc is found by constructing perpendiculars at
OandT.

The radius of arc is given by

57



E, =R =R(Nop).

in the limit of large N, where R is the side of the isosceles triangular lattice with the
vertex angle ¢, and fis given by

P =N@=kasin@,

with the value £ being kept constant. Then the amplitude E, of the resultant electric field
at P is equal to the chord OT , which is equal to

B

sin—

E, :2Rsin£:2ﬂsin£:Eo 2
2 g2 B
2

Then the intensity / for the single slits with finite width a is given by

sin'f2
B
2

[ :[ﬂ‘l(

where /i is the intensity in the straight-ahead direction where = 0.

The phase difference ¢ is given by £ = kasinf = 27z%sin 0 =2mpsin@ . We make a

plot of //I, as a function of €, where p = a/A is changed as a parameter.

A(degrees)

Fig. The relative intensity in single-slit diffraction for various values of the ratio p =
a/A. The wider the slit is the narrower is the central diffraction maximum.

13.  Gravity: Feynman path integral
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((Calculation from the classical limit))
=" mgx ,

d oL
E(a_) (—)

X=-g,

X, :—gtl2 + At + B,
2

Initial conditions:
x1=x and =t

x=-5r 4+ 4t+B.
2
and x =x"and =1

x'= —%t’2+At'+B ,

A and B are determined from the above two equations.

(=)t =)t — 1)+ 2x]+ 2(t — 1,)x"
- 2t—1')

b

dy,  g(t—1)(t+1=21)+2(x—x")
Ydn 2t—1") '

Then we get the expression of the Lagrangian
L(x,,x,,1) :%)‘ﬁz —mgx, .

The Hamilton’s principle function is
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t
8. (6, t,x', 1) = [ L(x,,%,,)d
)

_omgi -1 —12(x—x)? +12g(1 —1')* (x + x')
B 24(t 1)

K(x,t;x',1") = Aexp[% S, (et x,1)].

((Classical limit))

When x — x' and ¢t — #'+7", we have

1
S, (et x't) =——mg2T3 —-x'gmT ,

24
and
K(x.tx 1) = Aexp(———mg?r® — X 7m8T
e P ™ 7
ix'mgT
= A exp(— & )
where
i
A = Aexp(— mg’T?
1 p( 24h g T)
((Mathematica))
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-1
Clear["Global +"];eql=x=— gt? +At +B;
2

-1
eq2 = x0 ==—2 gtO2 +A t0 +B;

rulel = Solve[{eql, eq2}, {A, B}] // Flatten;

-1
xl = (— gtl2 +Atl +B) /. rulel // FullSimplify
2
-(t0-tl) (g (t-t0) (t-tl)+2x)+2 (t-tl) %0

)
2 (t-t0)

vl =D[x1, t1] // Simplify

g(t-t0) (E+t0-2tl1) +2 (x-x0)
2 (t-t0)
m
Ll =— v12—mgx1 // FullSimplify
2
712 m((g (t-t0) (t+t0-2tl) +2 (x-x0))* -
8 (t-t0)
4g (t-t0) (- (t0-tl) (g (£-t0) (t-tl) +2x) +2 (t-tl) x0))
t
K1 = J L1dtl // FullSimplify
t0

m(g? (t-t0)?-12 (x-x0)2+12g (£t -t0)? (x+x0))
- 24 (t-t0)

rulel = {x»>x0, t->t0+T}; K2 =K1 /. rulel // Simplify

—i gmT (gT2+24XO)

24

Simple harmonics: Feynman path integral

14.
((Classical limit))
=" —lma)ozxz,
2 2
4oL L
dt ox’  ox’
. 2
X=-w,x,
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x, = Acos(awyt,) + Bsin(wyt,) .
Initial conditions:
x1=x and H=¢
x =Acoswyt+ Bsinwyt,
and
x=x"and ¢t =t
X'= Acosw t'+Bsinw,t'.
A and B are determined from the above two equations.

_ x'sin[a,(t —t,)]— xsin[a, (t'-1,)]
- sin[e,(t —1")]

1 s

dx, _ —x'w, cos[a,(t —t,)]+ xa@, cos[@, (¢'~,)]
boay sin[a, (t —1')] '

Then we get the expression of the Lagrangian

. m . » 1 2.2
L(x,,x,,t,)=—X ——mao, x
1271271 2 1 2 0 1

2
mao,

 2sin’[ay (1 — 1]

+x” cos[2am, (t —t,)] + x° cos[a, (t'-,)])

[—2xx'cos[w, (¢ + t'-2t))

The Hamilton’s principle function is

t
S, (6,6, ) = [ L(x, %)y
,

_ mao,
2sin(aw,(t —t")

[(x* +x"” )cos(a,(t—t")) —2xx']
K(x,t;x',t") = Aexp[% S, (et x',t)],

or
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ima,
2hsin[w,(t —1")]

K(x,t;x',t") = Aexp[ {(x* +x?)cos(m,(t — 1) — 2xx'}].

In the limit of # —#'— 0, we have

ima,
2hsin{w,(t —1')}

K(x,t,x',t") = Aexp[ (x—x")°].

To find 4, we use the fact that as ¢t —¢'— 0, K must tend to o(x —x"),

1 X—Xx
o(x— x)—hm(”A)l/ze xp[— ( pe )
Yy 1 (x—x")’ .
= 2o expl- 20° |
where
Y
\/5 D
f(x,x',0)= \/L exp[— (x al ) (Gaussian distribution).
In other words
1 1 ma,
A="—=57, ==
(mA) A 2ihsin{w,(t -t "y
So we get
2insin{w,(t —t')} 1 ma,
A= > A=—s5 = e '
ma, (A7) 2nhisin{w,(t —t')}

or
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Note that

Kr=06x=0,)= \/ 2nhisinnzaa))z(t Ty D FEn)
and

K(x,t,x',t")=F(t - t')exp[% S, (e, tx't")].
((Mathematica))

Clear["Global *"];
expr * := expr /. {Complex[a , b ] > Complex[a, -b]}

seql = x == ACos[w0 t] +BSin[w0 t];
seq2 = x0 == A Cos[w0 t0] +B Sin[w0 t0] ;

srulel = Solve[{seql, seq2}, {2, B}] // Simplify // Flatten;

x1 = A Cos[tlw0] + BSin[tl w0] /. srulel // Simplify;
vl =D[x1l, t1] // Simplify;

mo o2 M .2
Ll=— vl -— w0°x1° // Simplify;

2 2

t
J Lldtl // FullSimplify
t0

1 2 2
meo (-2 xx0+ (x°+x0°) Cos[(t-t0)w0]) Csc[(t-t0) wl]

If the initial state of a harmonic oscillator is given by the displaced ground state wave
function

ma

w(x,0) = exp[— 2h0 (x=x)°].
When
&= px,
with
_ (M,
P 7]

Then we have
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w(¢,0) = eXp[——(éZ &)1

and
(&0 = [KE 8 0w (& 0)de
= exp(- I exp[ - S o (2 1 £2) cot() 412
T 2 2
1
265 sin(a)ot)}]
% Tl ((E7 4+ £ cos(wyt) + i E2 sin(ayt)
—288,}]
_ l it (¢ £2 iyt 2, €M e
~ A > 5 {(&7e™ + &, ( —2 )
—288}]
=—7exp[— L {52 28,8e o — égo (1+672 “)}]
T 2
or

iyt
2

1 1 .
w(&1) =z expl- —5{52 —2g,c(cosayt —isinayt)
1 .
+E§02(1 +cos2myt —isin2aw,t)}]

1 1 . ont . 1 .
= WGXP[_E(SZ — &, cos a)oz‘)2 - 1(70 + &,&sin oyt — Zéoz sin2at)]

Finally, we have

lw(&.0 = i eXP[ (& =& cos(a))’]

((Mathematica))
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Clear["Global %"];

exp * := exp /. {Complex[re , im ] :» Complex[re, -im]};

KSH[& , t , £ ] ;=,, L Exp[ i ((£% + €12) cos[w0 t]-z,f,fl)];
- - - 27i Sin[w0 t] 2 Sin[wO t]

~ £0)2
00[E ] = "_1/4Exp[_%];

£1 = JmKSH[§, t, £1]1 90 [£1] dEL // FullSimplify[#, { Im[Cot[tw0]] > -1, wOt>0}] &

©

(£2+60%) Cottun]+i € (£+2i €0 Cse[tw])
e 2 (i+Cot [t w0]) 7/ -icscltwo]

741 -1 cot[two]

Ampl = £1* £1 // FullSimplify

o (£-80 Cos[t w0 )2

v

rulel = {w0->1, §0-51}; H1 = Ampl /. rulel;

Plot[Evaluate[Table[H1, {t, 0, 20, 2}], {&, -3, 3}1,
PlotStyle -» Table[{Thick, Hue[0.1i]}, {i, 0, 10}], AxesLabel » {"&", "Amplitude"}]

Amplitude

15.  Gaussian wave packet propagation (quantum mechanics)
(x|w @) = {(x|U@ ") w (")) = J' dx'(x[U (2,17 ) x'[w (1)) ,
K(x,t;x',8) = (x[U(t,1)] ') = (x| exp[—%]f](t —1')]x"),

or
(x|w @) = [ dx' K (x, 65,6 )x|w (1)

K(x, t; x°, t’) is referred to the propagator (kernel)

For the free particle, the propagator is given by
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Let’s give a proof for this in the momentum space.

H s the Hamiltonian of the free particle.

(x| ) = J;_ﬁ e,
Hlk) = E,|),
with
L 'Y
2m h
K(x,t;x',1') = <x|eXp[—%ﬁ(f—f'))| x)
k(x| )k expl- 1)) )
= Ja{al ) expl="E" -y
- j dkiexp[ik(x—x’)— ’Zl;: (t—19]
Note that
et - B ey
and
Iodk exp(—iak®) =\/% )
or
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((Quantum mechanical treatment))

Probability amplitude that a particle initially at x’ propagates to x in the interval #-¢’. This
expression is generalized to that for the three dimensions.

Co o m 3/2 im|r—r'|2
Kerer =1 o P

We now consider the wave function:

2

1 . x
<)C|l//(t = 0)> = ?exp(lkox - ﬁ) .

2ro o,

where the probability

1 2
P:K’CWU:O)W:@ eXP(_z);z

X

)

has the form of Gaussian distribution with the standard deviation o _. The Fourier
transform is given by

(K[y (¢ = 0)) = [ dx(ke|x){(x[y (¢ = 0))
1 1 . . x’
= \/\/ZGX Ny .[ dx exp(—ikx)exp(ik,x — 40X2)

1 1

" Waro, \on
= [gj \/a_xexp[—ax2 (k —ky)*]
VA

20,z exp[-o, (k- k,)’]

or

(k[y @ =0) = Eo-x exp[-20,” (k- k,)’]

— 1 1 _(k_ko)2
s T exp[ 1 -1
20,) 20

1 (k — ko)2
exp[—
N27mo, Pl 20k2

]
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which is the Gaussian distribution with the standard deviation o, = (2—J .
o

X

Then we get the wave function at time ¢,

<x|l//(t)> = Idx’K(x,t;x’,0)<x'|l//(0)>

. )2
= ! m J. dx'explik,x'—- al >+ im(x — x') ]
J 2ro. \ 27init 4o 2nt

X

_mx(x— 4ikyo )+ 2ik, tho,”

1 m 1
= 2N 7 exp[
V2ro, \ 270t (1 2im P 4mao . +2ith :
2
o, th

1 1 x(x—4ik,o )+ 2ik,’ h o’
= — exp[- —— ]
V270, \/Hlfhz (L
2mo, 2mo,
1 (- dikyo, )+ 20k, T 6 1y (1 - , L
m mo
- — exp[— . . —]
Weze, |, ith do 21+ M oo Ty
2mGX2 2mo, 2mo,
(x_hkoz‘)2 \ i .
_ 1 1 exp[— m _l,m(8k0mxax +H(x" -4k, o, )h)]
. 212 222
J27o, M aeas T smio 1+ 1)
2mo, dm o, dm o,
Since
1 3 1
; 222
1+ ith : 14 t’h :
2mo, dm’c,
the probability is obtained as
(x—@)z
2 1
(xlyr @) = Pl )
2
'\'272-0): 1+ D 4 20): (1+ 2 4)
dm o, mao,
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which has the form of Gaussian distribution with the standard deviation

*h*

o, 1+—
dmo

X

e

and has a peak at

m
The Fourier transform:

@me{ﬁwwwmm:i%pmmvwm>

x(x—4ikaz)+2ikzﬁa2
_ ! ! Idxexp[—ilcx— = "m ]
V27 \[V2zo, \/1+ i 4aj(1+2”h )
2mo, mo,
N2 a2
B W (N

20 20,

\/ml 4(1j2 2m

where

1 x(x — 4ik,o %) + 2ik,’ h o’
m

1
(v (0)) = —— exp[- . ].
%ﬁmnw+lm 400+ )

) X 2
2mo 2mo

x X

Then the probability is obtained as

2 1 (k—k,)*
(kly )] = V2ro, exp[— 20} 1.
where
1
v
Therefore
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(k)" =[(klw=0)).

(x>

0.1

Fig. Plot of Kx|t//(t)>‘2 as a function of x where the time 7 is changed as a parameter.

In summary, we have

1 LN
Kx|!//(l‘)>‘2 = exp[— = srea
— t*h’ 2 t'h
27[O-x\/1+4m20_4 2o-x (1+4m20_4)
and
> 1 (k- k,)’
(klw@)f = V2ro, expl 20, .

16.  Wave packet for simple harmonics (quamtum mechanics)
((L.I. Schiff p.67-68))
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(e ©) = (xlexp(— il (e = 0)
= [ (xlexp(— 0]l (e = 0))a
We define the kernel K (x,x',t) as
K1) = <x|exp(—%lflt)|x'>
=3 (el exp(—— E,0){n|)
= X e E9,(99)()

Note that

§=px,

_ [ma,
=y

Then we have

with

V(1) = X exp(—— E,0[ de 0] (W (), ().

We assume that

v =L expl-L px—ayl.
T 2
or
0,(8) = (&|n) =—=(x|n) ==, (),
K JB
or
1 1 ,
¢(§): 1/4 exp[__(":z—‘fo) ]7
T 2
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with
So = 1% -
We need to calculate the integral defined by

1= [ g, (< (x)
ﬂl/z

1/4
T

_ ﬁ /2 *
—jﬂﬂ ()

= [dx'g;(x")

exp[—%ﬂz(x'—a)z]

ﬂ1/4 exp[_l(é - 50)2]
V4 2

— i [dgm ) expl-1 (€ - &)

T

Here

2

1 &
0,(&)=7x2"nl) 2e 2 H(&).

Then we get
1 . g 1 2
I=—= Nz2'n) ? [déexp(-S) H (S expl-5 (- 4)']

Here we use the generating function:

00 Srl
exp(25¢ =) = 2 — H,(£).
n=0 Tt
Note that

&
2

52

el (-6 1= [de (@ exn- S expl— (-]

n=0 _p

Tdf exp(2s& —s)exp(—
=3 [dES @ exnlE ~ e+ &)

n=0 _op

The left-hand side is
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g exp(2ss =5 )expl-(&* =66 4 &1 =7 expls g, - =L

Thus we have

1/2 ()2 S ()” SN ! 2 1 2
7 exp(—%%% -> jwd%H,,@exp[—@ —G e+ 8]

or
1/2 Sgo i 2 1 2
7' exp(—=))" = [déH, (& expl-(& — ¢+ 2 &0
Then -
= R ) exp(- i)éo,
and
V(n)= Zexp(— EnQ"n) exp(—§—°>§0 0,(x).
Since
E, = hao,( +l)
n a)O n 2 ’
or
I I )
exp(—% Et)= exp(—aa)ot —inw,t),
and
W(E 1) =——=p(x,0),
JE
we get
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V(En= 20 ) exp(— )G ™Y x-S 010, (),

or

§2

w(ED) = L i @"nty" exp(—%)(éoef%’)" exp(—o)e * H, (©)

exp(—gi—;wo ——%)2%(5"670)”%(5)

Using the generating function
_ lwoz

- Lo | o o
Z;( V' H, (@) =expl= &7 + &e ]

n=0

we have the final form

52 52 . 1 5 ,
v&D=—7x exp(_%_T_Ew"t_Zé’ e XMy E e
2
=ﬁexp[—%—%_% t—%foz(COSZa)ot—isinZa)ot)

+ &,&(cosmyt —isinwyt)]
OR

&

1
y - 5502 cos2m,t + 2&,Ecosw,t]

|l//(§ t)l 1/2 exp[

or

|!//( pr exp[—(& — &, cosayt)’]

|1//(§, z‘)l2 represents a wave packet that oscillates without change of shape about & = 0
with amplitude &, and angular frequency .

17. Mathematica
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/ \;0’»'0'0/’ \
M’

Fig. The time dependence of |t//(g“ t)| 1 —exp[—(£-¢&, coswyt)’], where & =1

T =2r/w,. The peak shifts from & = 0att=0to§=0att=T/4,§=foatt=
172,5=- &, att=3T/4,and E=0att=T.
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18.  Neutron interferometry
A neutron beam is split into two beams by an interferometer. The relative phase of the
two beams is varied by rotating the interferometer around the AC of the incident beam.
(R. Colella, A.W. Overhauser, and S.A. Werner [Phys. Rev. Lett. 34, 1472 (1975)].
Suppose that the interferometry initially lies in a horizontal plane so that there are no
gravitational effects. We then rotate the plane formed by the two paths by angle 6 about
the segment AC. The segment BD is now higher than the segment AC by Asing.

Interference region

B e _\l/_D
/I\ ‘
A
f2

{1

- N

I Detector

Neutron A
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Fig.

Experimental cobfiguration for neutron interefernce due to gravity. There
are two paths; path A-B-D and path A-C-D. ¢ is the rotation angle from

the z axis in the z-x plane.
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]
|_
=
3
o 1000
=<
o
-
|_
o
> 800
600+
] I ] 1 | ul
-30 -20 -10 0 10 20 30
b
Fig. Dependence of gravity-induced phase on angle of rotation ¢. From R.
Colella, A. W. Overhauser, and S. A. Werner, Phys.. Rev. Lett. 34 ( 1975)
1472.
((Note))

The action is obtained as

SCI(X,t,X',f') _ m[g2 (t—t')4 _12(){2—4_:;)_2:'_)128.0_tv)Z(x_l_x,)]

where x is the height Along the path BD, 1 —¢'=T7 = L ,and x=x"'=x, =/ sing. Along
v

the path AC, t—t'=T=l—1,and x=x'=x,=0
v

m(g’T* +12gT*2x,)
24T
m(g’T’ +24Tgx,)
- 24

S, (x),T)=~

From the previous discussion we have the propagator for the gravity
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K(x,t;x,,t) = Aexp(% S,)

i 2y ixomgT
=X —_m —_—
p( 24%h & h

= Al exp(_w)

)

For the path ABD and path ACD, we have
= exp[% S(ABD)]+ exp[% S(ACD)] = exp[% S(ACD)]{1+exp(iAf)} .

The phase difference between the path ABD and the path ACD is given by

_ S(ABD)-S(ACD) 1 1 m*gll

AG ——mgl,Tsing=—— L2sing,
7 7 i, ¢ 7 ¢
or
1 m’gll, . m’gll,A . .
AO =— L2 singg=——=22"ging =—¢gsin
2h 27h / 4rh’ ¢ ¢
A
or

where p is the momentum
p=mv.

The time T is related to /1 as

The intensity for the interference is
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2

|l//|2 =‘l+e

iAH‘

= 4cosz(%AH)

,,E8In¢

=4cos”( )

Q

U
Fig. The phasor diagram. The intensity corresponds to the length OT , where
0S=8T=1.
Note that
__mg Ll
2hv

where m is the mass of neutron. We consider the thermal neutron at the temperature

T =300 K. The energy of neutron is given by E = %mv2 = %kBT . The thermal energy is

E =38.778 meV.

The average velocity v is evaluated as
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3k, T

m

Y=

=2.72374x10° m/s.

The wavelength is

4=2"" 1450 A

my

So that, we have

8 _ 585931 (1/cm?)
2h

%

The intensity / is evaluated as
. o, mgll, .
I =4sin (W cos¢) =4sin”(1.42971 1, cos @)
v

We assume that the area /,/, = 6 cm®. We make a plot of the intensity I as a function of
the rotation angle ¢ (radian).

Intensity

W W

3

4

T

By —
—
SIS =
—
:1:_

o vacan)| | | | |

277
Fig.

Plot of the intensity (neutron interference due to gravity) as a function of
rotation angle ¢ (rad).

((Mathematica)) We use the cgs units for the calculation.
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Clear["Global +"];

rulel = {kB - 1.3806504 - 10™'°, g - 980.7,

A - 1.054571628 102, mn - 1.674927211 - 10°%*,
meV - 1.602176487 « 107*°} ;

3kBT
vl =

/. T—->300 /. rulel; vl // ScientificForm
mn

2.72374x10°

3kBT
/. T->300 /. rulel
2 meV
38.778
mn
g //. rulel
2 Avl

2.85931

84



Fl[al ] :=4 Sin[1.4296 a1 Cos[¢]]1%;
Q1 = Plot[F1[6], {9, ©, 2},
PlotStyle -» {Hue[0], Thick},
Ticks -» {Range[OQ, 2 w, /4], Range[O, 5, 1]}1];
Q2 =
Graphics|
{Text [Style["¢ (°)", Black, 15, Italic], {x, ©.3}],
Text [Style["Intensity", Black, 15, Italic],
{0.6, 4.3}]11}1;
Show[Q1l, Q2, PlotRange —» All]

19. Quantum-mechanical interference to detect a potential difference

Interference
region

A low-intensity beam of charged particles, each with charge ¢, is split into two parts.
each part then enters a very long metallic tube shown above. Suppose that the length of
the wave packet for each of the particles is sufficiently smaller than the length of the tube
so that for a certain time interval, say from # to #, the wave packet for the particle is
definitely within the tubes. During this time interval, a constant electric potential V7 is
applied to the upper tube and a constant electric potential V> is applied to the lower tube.
The rest of the time there is no voltage applied to the tubes. Here we consider how the
interference pattern depends on the voltages V7 and V.

Without the applied potentials, the amplitude to arrive at a particular point on the
detecting screen is
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Y=y, ty,.

The intnsity is proportional to
L=l +v| =]+ + v, v,

With the potential, the Lagrangian in the path is modified as
Ly,—>L=L,—qV.

Thus the wave functions are modified as

l. t l t
¥ =y expl j (~gV)dr]+y expl j (—qV,,)dt]

iq iqV,

v
=y, exp[- 5 S(t—1,)]+y, expl- 7 (1—1,)]
=y, exp[- lth‘ At]+y, CXP[—%AI‘]

where At =t—t¢,. The intensity of the screen is proportional to

I=lyf
2

v, eXp[—% At]+y, eXp[—%At]

2

iqlV, =V,
=y, + ¥, eXP[M At]
We assume that
AN

Then we have
ip 2 2 2 * i¢ * _ig
I=lp, +v,e°[ =lw[ +w. + @ vse? +pp,’e™)
When y, =y, =y, , we have

I= 2|W0|2 (1+cosp) = 4|l//0|2 coszg
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The intensity depends on the phase; / becomes maximum when ¢ =2n7 and minimum
at

¢=2(n +%)7z.

((Note)) Method with the use of gauge transformation
The proof for the expression can also be given using the concept of the Gauge

trasnformation. The vector potential A4 and scalar potential ¢ are related to the magnetic
field B and electric field E by

B=VxA,
104
E=——- ,
c Ot 4

The gauge transformation is defined by

A'=A4+Vy,
. 1oy
#= cot’

where y is an arbitrary function. The new wave function is related to the old wave
function through

w(r) = exp(;—q ).
C

Suppose that ¢'=0. Then y'(r) =y,(r) is the wave function of free particle. Then we
get

p=—"=,  y=c[dip.

The wave function y(r) is given by

87



V()= exp—L 2w, (r)
C
= exp(—— e[ i)y (r)

= exp(—- [y, 1)

When V is the electric potential and is independent of time ¢, we have
iq
w(r)= eXp[—;V(t — 1)1, (r)

This expression is exactly the same as that derived from the Feynman path integral.

20. Quantization of magnetic flux and Aharonov-Bohm effect
The classical Lagrangian L is defined by

L:lmvz—q¢+gv-A.
2 c

in the presence of a magnetic field. In the absence of the scalar potential (¢ =0), we get

L, :lmv2+gv-A:Lc(0)—Ev-A,
2 c c

where the charge g = -e (¢>0), A is the vector potential. The corresponding change in the
action of some definite path segment going from (r, .7, |) to (r,,?,) is then given by

SOmn-1)—>S"mn-1-= | dz[ﬂj A,
c’ \dt
This integral can be written as
e '[ dt[ﬂj.A:f '[A-dr,
¢’ \dt c,

where dr is the differential line element along the path segment.

Now we consider the Aharonov-Bohm (AB) effect. This effect can be usually
explained in terms of the gauge transformation. Here instead, we discuss the effect using
the Feynman’s path integral. In the best-known version, electrons are aimed so as to pass
through two regions that are free of electromagnetic field, but which are separated from
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each other by a long cylindrical solenoid (which contains magnetic field line), arriving at
a detector screen behind. At no stage do the electrons encounter any non-zero field B.

Fig.

Aharonov—Bohm effect

A

tctron be

Screen

—

Solenoid

Schematic diagram of the Aharonov-Bohm experiment. Electron beams are split
into two paths that go to either a collection of lines of magnetic flux (achieved by
means of a long solenoid). The beams are brought together at a screen, and the
resulting quantum interference pattern depends upon the magnetic flux strength-
despite the fact that the electrons only encounter a zero magnetic field. Path
denoted by red (counterclockwise). Path denoted by blue (clockwise)

&9



Reflector

Incident Electron bea

Screen

Reflector

Fig. Schematic diagram of the Aharonov-Bohm experiment. Incident electron beams
go into the two narrow slits (one beam denoted by blue arrow, and the other beam
denoted by red arrow). The diffraction pattern is observed on the screen. The
reflector plays a role of mirror for the optical experiment. The pathl: slit-1 — C1 —
S. The path 2: slit-2 — C2 —S.

Let y,, be the wave function when only slit 1 is open.

¥,5(r) =wl,o(r)GXP[—;—e [, dr A, (1)
c YPan 1

The line integral runs from the source through slit 1 to r (screen) through Ci. Similarly,
for the wave function when only slit 2 is open, we have

Va0 =V expl [ dr- A, @
c a.

th2

The line integral runs from the source through slit 2 to r (screen) through Co.
Superimposing Egs.(1) and (2), we obtain

dr - A(r)] + WZ,o(r)exp[—é—; [ dr-A@)].

ath?2

ie
we(r) = l/jl,O(r)eXp[_%.[P

athl
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The relative phase of the two terms is
'[Pathldr . A(r) B .[thzdr . A(r) - §dr ’ A(l") = j(v X A) : da ’

by using the Stokes’ theorem, where the closed path consists of pathl and path2 along the
same direction. The relative phase now can be expressed in terms of the flux of the
magnetic field through the closed path,

e e e e
AO=—¢A-dr=—|(VxA)-da=—|B -da=—o.
ch§ r chj( xA)-da chj ¢ ch

where the magnetic field B is given by
B=VxA.

The final form is obtained as
ie .
wy(r)=expl—— dr- A"y, (r)exp(=iA0) +y, ()],
hc Path?2

and @ is the magnetic flux inside the loop. It is required that
A =2nr.
Then we get the quantization of the magnetic flux,

O - n27zch ’
e

where 7 is a positive integer, n =0, 1,2,..... Note that

27ch
e

=4.1356675x 1077 Gauss cm?.

which is equal to 2@, where @, is the magnetic quantum flux,

o, =21 _ 5 067833758(46) x 107 Gauss cm?.  (NIST)

2e

We note that

ro=lp- 2 @
ch @, ch D,
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The intensity is

I=1,+ e’M)(l + ef’M)
=21,[1+cos(AB)]

=4cos’ (A_&j
2

=4cos’ 722
q)()

I,

4 5

X=¢/¢0

Suppose that the area for the region of magnetic field is 4 =1 mm*=102 cm?.

[0)) 102%B

If B=0.3G,
If B=1mG,
If B=0.01 mG,

((Note))

@, 2.06783x107  2.06783

O/ D, =1.45x10".
O/ D, =48.
®/D,=0.48.

Equivalence between Aharonov Bohm effect and Feynman path integral



Lagrangian:

1
L=—mv*—qgp+Iv.A.
2 c

Canonical momentum:

P=6—L=mv+g .
ov

C

Vector potential and scalar potential:

B=VxA,
104
E=——-22_V¢,
c Ot ¢

The gauge transformation is defined by

A=A+Vy,
— g 10X
¢_¢ Cal”

where y is an arbitrary function. The new wave function of free particle (4°=0) yw '(r) is
related to the original wave function w/(r) through

i
w (1) = exp(-L ) (r).
hic
For the Aharonov-Bohm effect, we assume that
A'=0=A+Vy, x=—[A-dr.

So that the original wavefunction y/(r) is

w(r) = exp(——;q v
C

- exp(——;q Dv(r)
C

~y ) expCL [ -dr)
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with
y=- I A-dr,
w'(r) =exp(ik -r) = exp(i .[ k-dr). (free-particle wave function)
Thus, we have the original wavefunction as
w(r) = exp(i j k- dr)exp(;—qc j A-dr)
= exp(%]hk-dr+;—iJA-dr)
= exp[%(J‘hk-dH%IA-dr)]
= exp[%_[(p +%A) -dr
= expl 5]

The integral is over a certain path in the 3D real space. It is found that that S is the action and

given by
— _ q .
S = _[ P.dr= _[ (p+—A)-dr, (Feynman path integral)
c
where
P= oL =mv+ZA.
ov c

In conclusion, we show that the Aharonov-Bohm (AB) effect can be explained by the Feynman
path integral. In other words, the AB effect is equivalent to the Feynman path integral.

21.  Example-1: Feynman path integral

We consider the Gaussian position-space wave packet at # = 0, which is given by
2

1
<x| w(t= O)> = Tino exp(— 2%2) (Gaussian wave packet at 7 = 0).

The Gaussian position-space wave packet evolves in time as
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(x| () = [ dbe, K (x,£5,,0)(x, | (0))

1 m x,.  im(x—x,)’
= ——— | dx, exp[——2— + 0 1
s/27z'o'\/27zihtj‘ [ ey o M
. : CXP[—X—Z]
R TR
m m

where

: Y
K(x,t;xo,to:()):(L)l/zexp[M]

free propagator 2
27iht 2t (free propagator) (2)

(Note) You need to show all the procedures to get the final form of <x| l//(t> .
(a) Prove the expression for <x|l//(t> given by Eq.(1).
(b) Evaluate the probability given by ‘<x|y/(t>‘2 for finding the wave packet at the

position x and time ¢.

(a)

The Gaussian wave packet:

2

X
. Gaussian
= ). ( )

1
x|y(t=0)) = exp(—
< |'//( )> \/EO' p(
The free propagator:

] 2
K(X,l‘;xo,to :()) :(L)l/z exp[M

2riht 2ht J-

Then we have

<x| l//(t> = j dx,K (x,t; x0,0)<x0 | l//(0)>

1 m ' X, im(x—x,)
=—|—— | |dx,exp[-—5+ 0
«/2ﬁa(2mmj j o expl 207 2nt :

Here we have
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B )co2 N im(x—x,)’ _ )co2 N im(x” —2x0x+x02)

20° 2ht 20° 2hit
1 im imx zmx2
= (— —+ .
( 202 2ht) + ) Yo
= ax,” +bx, +c
b, b*—4ac
=a(x,+—) —
(% 2a) 4q
where
_ 1 im _ % o= imx*
207 2ht’ ht’ 2ht

Then we get the integral

00 0 2
jdxo explax,” +bx, +c]= .[dxo expla(x, + —) +c _b
- 2a 4a

b* % b
= exp(c — 4_61)'[0 dx, expla(x, + Z)z

T b?
= explc—-——)
—a 4a

Note that when Re(a) =

I dx, expla(x, + Idy exp(—y*) = \/7

with the replacement of variable as y =+ —a(x, + zi) and dy =dx,N—a . Thus we have
a

1 m T b?
V0= e 2\ —a €3
[_ imxj2
mx’ hit
+ ]

T 1
= €X
\/27z\/27ziht T imo” P on L _im,
2 2nt 207 2ht

or

96



_imxY’
mrw 2 ht 1

1 imo 2ht 1 im
2 ittt (—— 4 -
mht(2 2ht) (202 2ht)
me)
1 m exp[imx2 hit
= 5 - . 2
V2T ine = Qineo?y M plzimoy
2ht o*ht
]
) mx
hit
t o’ +l7it
2im m
( o’ht
2
mx
imx*  o’ht (htj
- ey Th
2hat  2im o4
m
or
ex (imxz_zmxz o’ )
P ome it
m
imx? o’
exp[ (1- —)]
2ht 02+@
m
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It is clear that at t = 0, <x|l//(t> is the original Gaussian wave packet.

(b)
(x|w(t) = J;— 1 — exp[—%( )
4 \/0'2 s 2(c* + )
m m*
l.l'ht !
1 1 o’x’ m
= - exp[— PP ]exp[ PR ]
”2”\/az+’m 2600+ "Ly et
m m m
 ht
1 1 o’x? i xt
= 1/4 exp[—- 22 ]e exp[—zz]
\EZs (04+h2t;J 2ot + 0 2ot + 0
m*
where
. 2,2 2,2
o’ +lh—t =.|o*+ h tz e’  with o= arctan(%).
m m mo
Then we have
2 1 1 o’x?
‘<X|l//(t>‘ = exp[_ 2.0 ]
27 242 ht
it (0" +75)
- m

The height of‘ |l//(t ‘ s —

The width is Ax = 1/

22.  Example-2: Feynman path integral
Suppose that the Gaussian wave packet is given by

2

, x
exp(ik,x — -

). (Gaussian)

1
lpte=0) =522

98



Here we discuss how such a Gaussian wave packet propagates along the x axis as the
time changes.

The free propagator:

; Ry
K(x, t Xo,to = 0) = (L)ln exp[M

2 7iht 2ht I

Then we have

(x|w(e) = [ de K (o, .x,,0)(x, |y (0))

1 m )" x,  im(x—x,)’
sz(zm'htj Jex, exp T

Here we have

B X, +im(x—x0)2 x, +im(x2 —2x,x+Xx,7)

207 o TR0 =T5 5 2t +ikoxo
1 im,. o, . mx imx*
=(- +——)x," +ilky——)x, +
( 202 2ht) o Filky ht) " 2m
=ax,” +bx, +c
b, b>—4ac
=a(x,+—) ———
(% 2a) 4da
where
1 im . mx imx*
a=-——5+—, b=ilk,——), c= .
20° 2ht it 2ht

Then we get the integral

00 0 2
Idxo exp[a)co2 +bx, +c]= Idxo expla(x, + i)2 +c— L
2a 4a

b* % b
= exp(c — E)J;) dx, expla(x, + Z)z

s b?
= explc——)
—-a 4da
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Note that when Re(a) =— 21 <0, the above integral can be calculated as

2
(o3

i b 1 % Vs
J;deo expla(x, + 2—a)2] = ﬁ'[ody exp(— %) = ’/—_a ,

with the replacement of variable as y =+/—a(x, + 23) and dy =dx,v—a . Thus we have
a

1 m V2 b’
S R

N2
mx
. _mx

2 (l 0 hl‘j |

1 \/ m Vs exp[imx N
N2z \ 2zt |1 imo® 20t 4 L _imy
2 2nt 20°  2ht
or
. 2
iky — "
<x| (l‘>— ! nr ex [imx2+( : htj ]
v N27 1 imor . Py 1 im
27iht(= — ) 455
2 2nt 20 2ht
2
2 @_ko
1 m exp[lmx ht |
= : .
V2 i into) ht o t=imar
o’ ht
2
mx
=k
_ exp[lmx2+ (ht Oj ]
2ht o2, it
2im(——- ™
2
mx_
imx’ Gzht(ht Oj
= exp[ + ——]
2nt 2im o, it
m
or
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. k,t it
. oo im(x =0 0 (o 1ty
X t) = €X —
< |W( > N p( 2h 2ht . Bt )
ot +—
m
1 1 ,
_ %
’272'( \ hztz Jl/4
o 2
m
imx m o m
X T )Pl P
o+ ot +7
m
where
. 2.2 2.2
2 +lh—t =.|c" + L tz e’  with ¢ = arctan(%).
m m m o
Then we have
fik t
: 11 o
(el () " [ eXP[‘W]-
o'+ 5 (" +—)
m m

This means the center of the Gaussian wave packet moves along the x axis at the constant
velocity.

2 1 1

i The height of [(x|w(¢) is
(i) ght of |(x|y/(t) T

o+

m
2.2

(i)  The width is Ace L gt B tz

o m
o hk,
(ii1))  The Group velocity is y, =—2.

m

23. Summary: Feynman path integral
The probability amplitude associated with the transition from the point (x,,z) to

(x,,¢,)1s the sum over all paths with the action as a phase angle, namely,
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Amplitude = Zexp(LS) ,
All . h
paths

where S is the action associated with each path. So we can write down
K(xf’tf;xl’tl) = <x/1‘5tf‘ ‘xl"t[>

L1y
1
= — | dtL
A%exp( " j )
paths

i
= Ft, =) expCSa)

where Scis the classical action associated with each path.
If the Lagrangian is given by the simple form

L(x,%,t) = a(t)x* + b(t)xx + c(t)x?,
then F(z,,7,) can be expressed by
F(t;,t,)=K(x, =0,t,;x,=0,1,).
24. Comment by Roger Penrose on Feynman path integral

Roger Penrose: Road to the Reality. A Complete Guide to the Law of the Universe
(Jonathan Cape London, 2004).

Here is a very interesting comment by Roger Penrose (Nobel laureate, 2020) on the
Feynman Path integral. The content is the same, but some sentences are appropriately
revised.

The Lagrangian is in many respects more appropriate than a Hamiltonian when we
are concerned with a relativistic theory. The standard Schrodinger/Hamiltonian
quantization procedures lie uncomfortably with the spacetime symmetry of relativity.
However, unlike the Hamiltonian, which is associated with a choice of time coordinate,
the Lagrangian can be taken to be a completely relativistically invariant entity.

The basic idea, like so many of the ideas underlying the formalism of quantum
theory, is one that goes back to Dirae, although the person who carried it through as a
basis for relativistic quantum theory was Feynman. Accordingly, it is commonly referred
to as the formulation in terms of Feynman path integrals or Feynman sum over histories.
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The basic idea is a different perspective on the fundamental quantum mechanical
principle of complex linear superposition. Here, we think of that principle as applied, not
just to specific quantum states, but to entire spacetime histories. We tend to think of these
histories as ‘possible alternative classical trajectories’ (in configuration space). The idea
is that in the quantum world, instead of there being just one classical ‘reality’, represented
by one such trajectory (one history). There is a great complex superposition of all these
‘alternative realities’ (superposed alternative histories). Accordingly, each history is to be
assigned a complex weighting factor, which we refer to as an amplitude if the total is
normalized to modulus unity, so the squared modulus of an amplitude gives us a
probability. We are usually interested in amplitudes for getting from a point a to a point b
in configuration space.

The magic role of the Lagrangian is that it tells us what amplitude is to be assigned to
each such history. If we know the Lagrangian L, then we can obtain the action S, for that
history (the action being just the integral of L for that classical history). The complex
amplitude to be assigned to that particular history is then given by the deceptively simple
formula

Complex amplitude oc exp(% S)=exp [% ILdt] .

For each history, there will be some action S, where S is the integral of the Lagrangian
along the path. All the histories are supposed to ‘coexist’ in quantum superposition, and
each history is assigned a complex amplitude exp(iS/#%). How are we to make contact

with Lagrange’s requirement, perhaps just in some approximate sense, that there should
be a particular history singled out for which the action is indeed stationary?

The idea is that those histories within our superposition that are far away from a
‘stationary-action’ history will basically have their contributions cancel out with the
contributions from neighboring histories. This is because the changes in S that come
about when the history is varied will produce phase angles exp(iS/#%) that vary all

around the clock, and so will cancel out on the average. Only if the history is very close
to one for which the action is large and stationary (so the argument runs), will its
contribution begin to be reinforced by those of its neighbors, rather than cancelled by
them. because in this case there will be a large bunching of phase angles in the same
direction.

This is indeed a very beautiful idea. In accordance with the ‘path-integral’
philosophy, not only should we obtain the classical history as the major contributor to the
total amplitude—and therefore to the total probability—but also the smaller quantum
corrections to this classical behavior, arising from the histories that are not quite classical
and give contributions that do not quite cancel out, which may often be experimentally
observable.

103



25.  Action in the Feynman path integral

The Feynman approach was inspired by Dirac’s paper (1933) on the role of the
Lagrangian and the least-action principle in quantum mechanics. This eventually led
Feynman to represent the propagator of the Schrédinger equation by the complex-valued
path integral which now bears his name. At the end of the 1940s Feynman (1950, 1951)
worked out, on the basis of the path integrals, a new formulation of quantum
electrodynamics and developed the well-known diagram technique for perturbation theory

We start with the Lagrange equation

b

EAR:2
dt\ ov or

or

dp_ ol
dt or

The conjugate momentum P can be derived as
oL 0
P=|—"Ydt=—|L dt,
I or or I “
or
[Pdr={L,di.
Here we use a type of techniques which is used in the Feynman-Hellmann theorem;
OH 0 -
D—lw (1) =—Ww D) |H|w(A)).
Z05] = lw(2)) = (w(D|H|y(A)
Thus, the action S, can be expressed by
S, =[Ldt=[P-dr.

in the Feynman path integral. The change in phase of the wave function is
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AH:L%=1IPdL
h T h

This simple form of the phase is essential point derived from the Feynman path integral.

26. Wave function for a charged particle in the presence of magnetic field

From the theory of the Feynman path integral, it is found that the change in phase of
the wave function is closely related to the action of classical Lagrangian, even for the
phenomena of quantum mechanics. The change in phase in the presence of a vector
potential A4, is given by

A@z%IPwh,

where P is the canonical momentum and p is the kinetic momentum, L, is the Lagrangian
and is defined by

1
L==—mv*+LA.v,
c

where e is the charge of particle and m is the mass. The canonical momentum P is defined
by

L
P=&=mv+g .
ov c

From the classical Lagrange theory. The equation of motion is governed by the Lagrange

equation,
dp_d iy oL,
dt dt ov 0

The time derivative of the kinetic momentum p is equal to an external force F such as
Lorentz force,

ap _

i F, (Newton’s second law)
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which will be shown later. In quantum mechanics, it is known that the canonical
momentum P (but not p) is expressed by the differential operator

P=-V.
i

We will discuss the application of the Feynman path integral in the next section 28S.
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APPENDIX-I

Mathematical formula-1
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o0 2
Idx exp(—ax” +bx +c¢) = \/Eexp(b— +c)
e a 4a

for Re[a]>0

((Mathematica))

J'_:Exp[_?a }{2] dx

TV 2T
ConditionalExpression —, Re[a] > @
- \/a
o -4a 2
Exp|— x“+b }{] dlx
—oo 2
bZ
. . reZas/2m _
ConditionalExpression — , Re[a] =@
L H".‘l' a
APPENDIX-II Action in the classical mechanics

We start to discuss the calculus of variations with an action given by the form

Ly
S = j L[%,x]dt,

. dx . . . .
where x = 7 The problem is to find has a stationary function x_(x) so as to minimize
t

the value of the action S. The minimization process can be accomplished by introducing a
parameter &.
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)

Fig.
x(t)=x, x(t,)=x,,
x, (1) = x, () + en(1),
where ¢ is a real number and
x () =x,  x,(t,)=x,,

n@)=0, 77(t_f‘) =0,

ox = [@j de =n(t)de,
og ).,
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Ly
S[x, 1= .[L(xd () +en(t),x,,(t)+en(t))dte,
has a minimum at = 0.

S[x._o]= jL[‘xcl ()]dt,

[%j =0, 5L:a_L|godg’
o ). oe

os[x,] ‘oL - oL,
o= j o0+

‘oL oL . 'td L
= | =n)dt +—n@®)} | —|—(=)n(t)dt
!ax"() ax"( I idt(ax)n()

“oL d oL
= j o~ Gomwar

(M

The Taylor expansion:
ty
S[x, 1= .[L(xd () +en(t),x,,(t)+en(t))dt

((Fundamental lemma))
If

f M@)n(t)dt =0

for all arbitrary function 7(¢) continuous through the second derivative, then M(f) must
identically vanish in the interval 7, <t <t¢,.

From this fundamental lemma of variational and Eq.(1), we have Lagrange equation
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oL d oL
=2 =0. 2
o dr' o @

L can have a stationary value only if the Lagrange equation is valid.
In summary,

S = TL(x,)'c)dt ,

X

8S=0©8—L—i(a—L_):O.
Ox dt Ox

APPENDIX-III: Lagrangian of charged particle in the electromagnetic field

(III1-1) Lagrangian of free particle
((L.D. Landau and E.M. Lifshitz))

In the course of an infinitesimal time interval dt the moving clocks go a distance dr. Let us
ask what time interval (proper time d7 ) is indicated for this period by the moving clocks. In a
system of coordinates linked to the moving clocks, the latter are at rest, dr'=0. Because of the
invariance of intervals

c(dr)* —(dr")’ =c*(dr)* =c*(dt)* — (dr)’

or

dr = (dt)’ —iz(arr)2
C

/ 1 dr,
=dt,[1-—(—
cz(dt)

2
v

= dr,[1-Z
CZ

where sz is the velocity. Integrating this expression, we can obtain the time interval
t

indicated by the moving clocks when the elapsed time according to a clock at rest is Az. The
action § is given by
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2
S:'[Ldt:—mczjdr:—mczjdt,/l—;}—z,

yielding to the expression of the Lagrangian for the free particle as

2
L =-mc* l—v—z.
N\ ¢

where m is the mass of the particle. Note that the units of L is erg.

(II1-2) Four-potential of the electromagnetic field.
The four-dimensional vector for the scalar potential and vector potential,

A" =(¢,A), (Gaussian)
A" = (Q,A) . (SI units)
c

Hereafter, we use the Gaussian units for the four-dimension potential. We note that
x" =(ct,r), x, =(ct,-1r),

and
xfx, = it —r.

Generalized potential U is obtained as

vdr =4 4, dx"
C

=9 (cpdt— A-dr)
C
c dt

—g(p—L AV
C

or
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U=g(@-~A-V).

where ¢ is a charge of particle. The Lagrangian for a charged particle in an electromagnetic field
has the form

L=K-U

2
= —mcz,/l—v—2 —q(¢—lA-V)
c c

The action S is expressed by

t t 2
s = | L, =jt,(—mc2,/1—2—2 +%A-V—q¢)dtl

The generalized momentum is

P =6—L= dd +1A=p+1A,
ov Vv ooc c
==
c
with
_omyv
- 2
1=
c
We also note that
S, = '[ P-dr. (Feynman path integral)

The Hamiltonian H is obtained as follows.
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H=P-v-L

2
/ 1
—(p+LA)veme 1-Zg(p-—A-v)
C C C
2 2
mv ) v
= +mc 1/1——2+q¢
Y C
\/1—7
C
2
mc

= =+q¢
v
-z

or
H - m?c?
( cq¢)2 -
==
v2
mzcz(l——2)+mzv2
_ c
2
1=
c
:mZCZ +02p2
22 9 \\2
=mc +(P-—=A)
c
or else

H= \/mzc4 +c’ (P —gA)2 +q¢
c
For low velocities, i.e., for classical mechanics, the Lagrangian goes over into
1 5 .9q
L=—mv +=A-v—q¢
2 c

and the Hamiltonian is
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H=P-v-L

2 2

mv / %

= tmc’ l—— +q¢
v c
V'

c
2

mc

= +q¢
i

2
C

In this approximation,
p=mv=P- A
c

The final form of the Hamiltonian is given by

H = H —mc* =ip2 +qz¢=i(P—1A)2 +q¢
2m 2m c

(I11-3) Derivation of Lorentz force from Lagrangian
The Lorentz force, which is a force on a particle with a charge ¢ due to an electric field E and
magnetic field B,

F:q(E+lva)
c

where v is the velocity of particle

E=-V¢- 10A (electric field)

cot’
B=VxA. (magnetic field)

The gauge transformation is defined by
A'=A+Vy, ¢'=¢—18—Z

c Ot

where y is an arbitrary function. Suppose that the Lagrangian L is expressed as
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2
I 1
L=-mc’ l—v—z—q(;/ﬁ——A-V)
c c

1 1
=—mv’ —q(p——A-V)
2 c

=T-U
is the velocity-dependent potential energy. Note that

ov v: ¢ c

2
C

Lagrange equation is

R
dt\ov) or

with

VL=V(-gp+Lv-A),
C

d . .
where E 1s a total derivative. We note that
t

V(v-A)=(v-V)A+(A-V)v
+vx(VxA)+Ax(VxV)

Since v and r are independent variables in the Lagrangian, we have
(A-V)v=0, Ax(Vxv)=0
leading to
V(v-A)=(v-V)A+vx(VxA)

We note that
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d(oL) d. ¢
dfob)_d o 9
dt(avj g PrA)

_dp  qdA
dt c dt

dp ¢q . OA
=—+=[—+(v-V)A
a Tl TVVA

with

dA, _0A  _OA 04 o4

1 1

—L=—"Tx4x v z—L
dt ot ox oy 0z

=%+(V'V)Ai
Ot
or
dA_OA L Lo
dt ot

So that, we have
VL=—qVé+Iv(v-A)
c
We get the final form of the Lagrange equation as

P 4OA Ly VAT =gV g+ LV(v-A)
dt c¢ ot c

or

ap_ s LOAL qioi Ay (v
2 =4V ==+ T IV(V-A) = (V- V)A]

= q(—V¢—la—A)+gvx(VxA)
cot’ ¢

=q(E+lv><B)
c

which is equivalent to the Lorentz force, with
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(I11-4)

V(v-A)—(v-V)A=vx(VxA)=vxB

Gauge transformation

The original Lagrangian L, is changed into a new Lagrangian L;,' during the Gauge

transformation,

1
Ly'=—q(g=—A"V)

10
=—q(¢—F)+LA+vyv)
cot ¢

=L, +1(8—Z+V;(-v)
c ot

_p,+4 dy(r,t)
c dt

But as we know, adding to the Lagrangian a total time derivative of a function of » and ¢ does not

change the equations of motion. The function

that

since

d ody, doy 0dy
dt or dt~ dt or  or dt

d_Z:a_Z+xa_Z+ya_Z+Za_Z

dt ot ox oy 0z

oy
=L 1 (v-V
Py (v-V)y

d0dy,_d oy, 0dy
dt ox dt~ dt ox  ox dt’

i[iﬂ]:i[a_l]:id_l
dt oy dt~ dt oy~ Oy dt’

odx

d ody, d oy
il a " alte oz dt

o T a e
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dt

always satisfies the Lagrange equation. Note



In other words,

Lly=Lr
dt or or
is equal to
d 0 0
Z(=L)=—=1L
a o 1) "o o
. dy
independent of the form R
t
((Comment))

Yasushi Takahashi (Note on Mathematical Physics, Kodansha, 1992) in Japanese.

"It may be reasonable to use the expression of the Lagrangian (classical system) given by

L:lmv2+1A-V—q¢.
2 c

The reason is why the Lagrange equation for this form of Lagrangian yields the equation of
motion of the charged particles with charge g with the Lorentz force F,

d—p:F:q(E+lva).
dt c

(II1-5) Feynman path integral
S,=[P-dr=[(p+LA)dr
c

For the closed path

gSA-dr:j(vXA)-da
='[B-da
=,
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((Stokes’ theorem))

l eq q
—pLA-dr="Lo
hq‘)c ch °

Magnetic quantum flux (fluxoid)

_hc 2rxhc  rmhe

P e 20 e

@, =2.0678x107 Gauss cm? (cgs units)
or

@, =2.0678x10™"° T m? (SI units)
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