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((Overview)) 

We consider quantum superpositions of possible alternative classical trajectories, a 
history being a path in configuration space, taken between fixed points (a and b). The 
basic idea of the Feynman path integral is a perspective on the fundamental quantum 
mechanical principle of complex linear superposition of such entire spacetime histories. 
In the quantum world, instead of there being just one classical ‘reality’, represented by 
one such trajectory (one history), there is a great complex superposition of all these 
‘alternative realities’ (superposed alternative histories). Accordingly, each history is to be 
assigned a complex weighting factor, which we refer to as an amplitude, if the total is 
normalized to modulus unity, so the squared modulus of an amplitude gives us a 
probability. The magic role of the Lagrangian is that it tells us what amplitude is to be 
assigned to each such history. If we know the Lagrangian L, then we can obtain the action 
S, for that history (the action being just the integral of L for that classical history along 
the path). The complex amplitude to be assigned to that particular history is then given by 
the deceptively simple formula amplitude 
 

exp( ) exp( )
b

a

i i
S Ldt 

ℏ ℏ
. 

 
The total amplitude to get from a to b is the sum of these. 
 
((Path integral)) 
What is the path integral in quantum mechanics? 

The path integral formulation of quantum mechanics is a description of quantum 
theory which generalizes the action principle of classical mechanics. It replaces the 
classical notion of a single, unique trajectory for a system with a sum, or functional 
integral, over an infinity of possible trajectories to compute a quantum amplitude. The 
basic idea of the path integral formulation can be traced back to Norbert Wiener, who 
introduced the Wiener integral for solving problems in diffusion and Brownian motion. 
This idea was extended to the use of the Lagrangian in quantum mechanics by P. A. M. 
Dirac in his 1933 paper. The complete method was developed in 1948 by Richard 
Feynman. This formulation has proven crucial to the subsequent development of 
theoretical physics, because it is manifestly symmetric between time and space. Unlike 
previous methods, the path-integral allows a physicist to easily change coordinates 
between very different canonical descriptions of the same quantum system. 

 
((The idea of the path integral by Richard P. Feynman)) 
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R.P. Feynman, The development of the space-time view of quantum 
electrodynamics (Nobel Lecture, December 11, 1965). 

http://www.nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-
lecture.html 
 

Feynman explained how to get the idea of the path integral in his talk of the Nobel 
Lecture. The detail is as follows. The sentence is a little revised because of typo. 
________________________________________________________________ 

I went to a beer party in the Nassau Tavern in Princeton. There was a gentleman, 
newly arrived from Europe (Herbert Jehle) who came and sat next to me. Europeans are 
much more serious than we are in America because they think that a good place to 
discuss intellectual matters is a beer party. So, he sat by me and asked, «what are you 
doing» and so on, and I said, «I’m drinking beer.» Then I realized that he wanted to know 
what work I was doing and I told him I was struggling with this problem, and I simply 
turned to him and said, ((listen, do you know any way of doing quantum mechanics, 
starting with action - where the action integral comes into the quantum mechanics?» 
«No», he said, «but Dirac has a paper in which the Lagrangian, at least, comes into 
quantum mechanics. I will show it to you tomorrow» 

Next day we went to the Princeton Library, they have little rooms on the side to 
discuss things, and he showed me this paper. What Dirac said was the following: There is 
in quantum mechanics a very important quantity which carries the wave function from 
one time to another, besides the differential equation but equivalent to it, a kind of a 
kernel, which we might call ),'( xxK ,which carries the wave function )(x  known at 
time t, to the wave function )'(x  at time, t . Dirac points out that this function K 

was analogous to the quantity in classical mechanics that you would calculate if you took 
the exponential of ℏ/i , multiplied by the Lagrangian ),( xxL ɺ  imagining that these two 
positions x, x’ corresponded t and t . In other words, ),'( xxK is analogous to 

)],
'

(exp[ x
xx

Li


 
ℏ

, 

 

)],
'

(exp[),'( x
xx

LixxK


 


ℏ
. (1) 

 
Professor Jehle showed me this, I read it, he explained it to me, and I said, «what does he 
mean, they are analogous; what does that mean, analogous? What is the use of that?» He 
said, «you Americans ! You always want to find a use for everything!» I said, that I 
thought that Dirac must mean that they were equal. «No», he explained, «he doesn’t 
mean they are equal.» «Well», I said, «let’s see what happens if we make them equal.» 

So I simply put them equal, taking the simplest example where the Lagrangian is 

)(
2
1 2 xVxM ɺ , but soon found I had to put a constant of proportionality A in, suitably 

adjusted. When I substituted )/exp( ℏLi for K to get 
 




 dxtxx
xx

LiAtx ),()],
'

(exp[),'( 





ℏ
, (2) 
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and just calculated things out by Taylor series expansion, out came the Schrödinger 
equation. So, I turned to Professor Jehle, not really understanding, and said, «well, you 
see Professor Dirac meant that they were proportional.» Professor Jehle’s eyes were 
bugging out-he had taken out a little notebook and was rapidly copying it down from the 
blackboard, and said, «no, no, this is an important discovery. You Americans are always 
trying to find out how something can be used. That’s a good way to discover things!» So, 
I thought I was finding out what Dirac meant, but, as a matter of fact, had made the 
discovery that what Dirac thought was analogous, was, in fact, equal. I had then, at least, 
the connection between the Lagrangian and quantum mechanics, but still with wave 
functions and infinitesimal times. 

It must have been a day or so later when I was lying in bed thinking about these 
things, that I imagined what would happen if I wanted to calculate the wave function at a 
finite interval later. I would put one of these factors )/exp( ℏLi  in here, and that would 
give me the wave functions the next moment, t  and then I could substitute that back 
into (2) to get another factor of )/exp( ℏLi and give me the wave function the next 
moment, t + 2, and so on and so on. In that way I found myself thinking of a large 
number of integrals, one after the other in sequence. In the integrand was the product of 
the exponentials, which, of course, was the exponential of the sum of terms like ℏ/L . 
Now, L is the Lagrangian and  is like the time interval dt, so that if you took a sum of 
such terms, that’s exactly like an integral. That’s like Riemann’s formula for the integral 

 Ldt , you just take the value at each point and add them together. We are to take the 

limit as 0 , of course. Therefore, the connection between the wave function of one 
instant and the wave function of another instant a finite time later could be obtained by an 
infinite number of integrals, (because  goes to zero, of course) of exponential )/( ℏiS  

where S is the action expression (3), 
 

 dtxxLS ),( ɺ . (3) 

 
At last, I had succeeded in representing quantum mechanics directly in terms of the 
action S. This led later on to the idea of the amplitude for a path; that for each possible 
way that the particle can go from one point to another in space-time, there’s an 
amplitude. That amplitude is an exponential of ℏ/i  times the action for the path. 
Amplitudes from various paths superpose by addition. This then is another, a third way, 
of describing quantum mechanics, which looks quite different than that of Schrödinger or 
Heisenberg, but which is equivalent to them. 
 
1. Introduction 

The time evolution of the quantum state in the Schrödinger picture is given by 
 

)'()',(ˆ)( tttUt   , 
 
or 
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 )'('')',(ˆ')'()',(ˆ)( txxttUxdxtttUxtx  , 

 
in the x  representation, where K(x, t; x’, t’) is referred to the propagator (kernel) and 
given by 
 

')]'(ˆexp[')',(ˆ)',';,( xttH
i

xxttUxtxtxK 
ℏ

. 

 
Note that here we assume that the Hamiltonian Ĥ  is independent of time t. Then we get 
the form 
 

 )'(')',';,(')( txtxtxKdxtx  . 

 
For the free particle, the propagator is described by 
 

]
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)'(
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ℏℏ
. 

 
(which will be derived later) 
 
((Note)) 

Propagator as a transition amplitude 

 

',',

')'ˆexp()ˆexp(

')]'(ˆexp[)',';,(
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i
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i

x

xttH
i
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Here we define  
 

xtH
i

tx )ˆexp(,
ℏ

 ,  )ˆexp(, tH
i

xtx
ℏ

 . 

 
We note that 
 

axtE
i

atH
i

xatx a )exp()ˆexp(,
ℏℏ

 , 

 
where 
 

aEaH aˆ . 
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((Heisenberg picture)) 
The physical meaning of the ket tx, : 
The operator in the Heisenberg's picture is given by 
 

)ˆexp(ˆ)ˆexp(ˆ tH
i

xtH
i

xH
ℏℏ

 , 

 

txxxtH
i

x

xxtH
i

xxtH
i

xtH
i

tH
i

xtH
i

txxH

,)ˆexp(

)ˆexp(

ˆ)ˆexp(

)ˆexp()ˆexp(ˆ)ˆexp(,ˆ









ℏ

ℏ

ℏ

ℏℏℏ

 

 
This means that tx,  is the eigenket of the Heisenberg operator Hx̂  with the eigenvalue 
x. 

We note that 
 

HS tH
i

t  )ˆexp()(
ℏ

 . 

 
Then we get 
 

HHS txtH
i

xtx  ,)ˆexp()( 
ℏ

. 

 
This implies that 
 

H
txtx ,,  ,  

S
xx  . 

 
where S means Schrödinger picture and H means Heisenberg picture. 
 
2. Propagator 

We are now ready to evaluate the transition amplitude for a finite time interval 
 

')]ˆexp[)].....ˆexp[)]ˆexp[

',',)',';,(

xtH
i

tH
i

tH
i

x

txtxtxtxK





ℏℏℏ
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where 
 

t 
t  t'

N
 (in the limit of N  ) 

 

t
t0 tDt  

 
where t0 = t' in this figure. 
 
We next insert complete sets of position states (closure relation) 
 

')ˆexp()ˆexp(

)ˆexp(......)ˆexp(

)ˆexp(....

',',)',';,(

112

2321

11221

xtH
i

xxtH
i

x

xtH
i

xxtH
i

x

xtH
i

xdxdxdxdx

txtxtxtxK
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NNN











 

ℏℏ

ℏℏ

ℏ

 

 
This expression says that the amplitude is the integral of the amplitude of all N-legged 
paths. 
 
((Note)) 
 

),(),,(),,(),,(),,.....(
),,(),,(),,(),,(),','(

11223344

44332211

txtxtxtxtx

txtxtxtxtx

NNNNNNNN 

 

 
with 
 

t'  t0  t1  t2  t3  t4  ....... tN 3  tN 2  tN 1  t  tN  
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We define 
 

,' 0xx   0' tt  , 
,Nxx   Ntt  . 

 
We need to calculate the propagator for one sub-interval 
 

1
ˆexp[ )i i

i
x H t x  

ℏ
, 

 
where i = 1, 2, …, N, and  
 

)ˆ(
2
ˆˆ

2

xV
m

p
H  , 

 
Then we have 
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2
1

2
2

1

2
2
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2
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2
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m

i p i
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m
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dp x p p t

 





 

    

    

     

       

  








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ℏ

ℏ

ℏ ℏ
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2
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2
2
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2
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2
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i
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m
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m

  
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where pi (i = 1, 2, 3, …, N), or 

 


























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

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
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m
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x
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i
i
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ℏℏ

ℏℏ
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ℏℏ






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where 
 

E( pi , x i1 )
pi

2

2m
 V(xi1) . 

 
Then we have 
 


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
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

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
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







N

i

i
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N
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p
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1

121
121

]))}(
2

(
)(
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.......
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ℏ
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We note that 
 

2 2
1

1

21
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exp[ { } ] exp[ { ( ) ]

2 2 2 2

exp[ ( ) ]
2 2
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 


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




     


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

 

 
ℏ ℏ ℏ ℏ ℏ

ℏ ℏ

 

 
_____________________________________________________________________ 
((Mathematica)) 
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Clear@"Global`∗"D; f1 =
1

2 π —
ExpB �

—
p x − �

p2

2 m —
∆tF;

Integrate@f1, 8p, −∞, ∞<D êê
Simplify@�, 8— > 0, m > 0, Im@∆tD  0<D &

�
� m x2

2 ∆t —

2 π � ∆t —

m
 

______________________________________________________________________ 
Then we have 
 



 


















N

i

i
ii

N

N
N

xV
t

xxm
t

i
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m
dxdxdxtxtxK

1
1
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2/
121

)}]()(
2

{exp[

)
2

(.......lim)',';,(

ℏ

ℏ
 

 
Notice that as N   and therefore t  0 , the argument of the exponent becomes the 
standard definition of a Riemann integral 
 

 












t

t

N

i

i
ii

t
N

xxdtL
i

xV
t

xxm
t

i

'1
1

21

0

),()}()(
2

{lim ɺ
ℏℏ

, 

 
where L is the Lagrangian (which is described by the difference between the kinetic 
energy and the potential energy). Mathematically, we had better to use  
 

1 1 1
' '

( , ) ( ( ), ( )
t t

t t

i i
dtL x x dt L x t x t ɺ ɺ

ℏ ℏ
  

 



 10  

t

x

O  
 

)()(
2
1

),( 2 xVxmxxL  ɺɺ . 

 
It is convenient to express the remaining infinite number of position integrals using the 
shorthand notation 
 

2/
121 )

2
(.......lim)]([ N

N
N ti

m
dxdxdxtxD


    ℏ

. 

 
Thus we have 
 

 )]}([exp{)]([',',)',';,( txS
i

txDtxtxtxtxK
ℏ

, 

 
where  
 

),()]([
'

t

t

xxdtLtxS ɺ . 

 
The unit of S is [erg sec]. 
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When two points at (ti, xi) and (tf, xf) are fixed as shown the figure below, for 
convenience, we use  
 

),()]([ 
f

i

t

t

xxdtLtxS ɺ . 

 

t1 t2

x1

x2

x

t

 
 
This expression is known as Feynman’s path integral (configuration space path integral). 

)]([ txS  is the value of the action evaluated for a particular path taken by the particle. If 
one wants to know the quantum mechanical amplitude for a point particle at x’, at time t’ 
to reach a position x, at time t, one integrates over all possible paths connecting the points 
with a weight factor given by the classical action for each path. This formulation is 
completely equivalent to the usual formulation of quantum mechanics. 

The expression for ',',)',';,( txtxtxtxK   may be written, in some loose sense, as 
 









)exp()exp()exp(

]
)0,(

exp[',',

21

)(
00

ℏℏℏ

ℏ

npathpathpath

pathall

NN

iSiSiS

NiS
ttxxttxx
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where the sum is to be taken over an innumerably infinite sets of paths. 
 
 

t

x

xclHtL

 
 
(a) Classical case 

Suppose that 0ℏ  (classical case), the weight factor ]/exp[ ℏiS  oscillates very 
violently. So there is a tendency for cancellation among various contribution from 
neighboring paths. The classical path (in the limit of 0ℏ ) is the path of least action, 
for which the action is an extremum. The constructive interference occurs in a very 
narrow strip containing the classical path. This is nothing but the derivation of Euler-
Lagrange equation from the classical action. Thus the classical trajectory dominates the 
path integral in the small ħ limit. 

In the classical approximation ( )ℏS   
 

 ',', 00 ttxxttxx NN "smooth function" )exp(
ℏ

cliS
. (1) 

 
But at an atomic level, S may be compared with ħ, and then all trajectory must be added 
in ',', 00 ttxxttxx NN   in detail. No particular trajectory is of overwhelming 
importance, and of course Eq.(1) is not necessarily a good approximation. 
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(b) Quantum case. 
What about the case for the finite value of ℏ/S  (corresponding to the quantum case)? 

The phase ]/exp[ ℏiS  does not vary very much as we deviate slightly from the classical 
path. As a result, as long as we stay near the classical path, constructive interference 
between neighboring paths is possible. The path integral is an infinite-slit experiment. 
Because one cannot specify which path the particle choose, even when one knows what 
the initial and final positions are. The trajectory can deviate from the classical trajectory 
if the difference in the action is roughly within ħ. 
 
((REFERENCE)) 
R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (extended edition) 
Dover 2005. 
 
((Note)) 

We can use the Baker-Campbell-Hausdorff theorem for the derivation of the 
Feynman path integral. We have a Hamiltonian 
 

ˆ ˆ ˆH T V   
 
where T̂  is the kinetic energy and ˆ ˆ( )V x  is the potential energy. We consider  
 

ˆ ˆ ˆexp( ) exp[ ( ) ]

ˆˆexp( )

i i
H t T V t

P Q

     

 

ℏ ℏ

 

 
where 
 

ˆ ˆi
P T t  

ℏ
,  ˆ ˆi

Q V t  
ℏ

 

 
We use the Baker-Campbell-Hausdorff theorem 
 

1 1 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆexp( ) exp( ) exp{ [ , ] [ ,[ , ]] [ ,[ , ]] ...}
2 12 12

P Q P Q P Q P P Q Q P Q       

 
with 
 

2 2ˆˆ ˆ ˆ[ , ] ( ) ( ) [ , ]
i

P Q t T V  
ℏ

  

 
3 3ˆˆ ˆ ˆ ˆ ˆ[ ,[ , ]] ( ) ( ) [ ,[ , ]]

i
P P Q t T T V  

ℏ
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3 3ˆ ˆˆ ˆ ˆ ˆ[ ,[ , ]] ( ) ( ) [ ,[ , ]]
i

Q P Q t V T V  
ℏ

 

 
In the limit of 0t  , we get 
 

ˆˆ ˆexp( ) exp( )

ˆˆexp( )exp( )

ˆ ˆexp( ) exp( )

i
H t P Q

P Q

i i
T t V t

   



    

ℏ

ℏ ℏ

 

 
Using this, we get the matrix element 
 

1 1

2
1 1

ˆ ˆ ˆexp( ) exp( ) exp( )

ˆexp( ) exp( ( ) )
2

j j j j

j j j

i i i
x H t x x T t V t x

i t i
x p x V x t

m

 

 

      


   

ℏ ℏ ℏ

ℏ ℏ

 

 
or 
 

1/2 2
1

1 12

( )ˆexp( ) exp{ [ ( )] )]
2 2 ( )

j j

j j j

x xi m i m
x H t x V x t

i t t


 

        ℏ ℏ ℏ
 

 
3. Free particle propagator 

In this case, there is no potential energy. 
 

 





 






N

i

iiN

N
N t

xxm
t

i

ti

m
dxdxdxtxtxK

1

212/
121 }])(

2
{exp[)

2
(.......lim)',';,(

ℏℏ
, 

 
or 
 

  

K(x,t;x' , t' )  lim
N

dx1 dx2 ....... dxN 1

(
m

2ℏit
)N / 2 exp[

m

2ℏit
{(x1  x ' )2  (x2  x1)

2  (x3  x2 )2  .... (x  xN1 )2}]
 

 
We need to calculate the integrals, 
 

])'(
4

exp[)(
4
1

])()'{(
2

exp[)
2

(

2
2

2/1

2
12

2
11

2/2
1

xx
ti

m

ti

m

xxxx
ti

m
dx

ti

m
f















 




ℏℏ

ℏℏ
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])(
2

exp[)
2

( 2
23

2/1
11 xx

ti

m

ti

m
fg 







ℏℏ
 

 

  

f2  g1dx2




 
1
6

(
m

ℏit
)1/ 2 exp[

m

6ℏit
(x3  x' )2 ] 

 

  

g2  f2(
m

2ℏit
)1 / 2 exp[

m

2ℏit
(x4  x3 )2 ] 

 

  

f3  g2dx3




 
1
8

(
m

ℏit
)1/ 2 exp[

m

8ℏit
(x4  x' )2 ] 

 
.......................................................................................................................................... 
 

  

K(x,t;x' , t' )  lim
N

(
m

2ℏNit
)1/ 2 exp[

m(x  x' )2

2ℏiNt
], 

 
or 
 

  

K(x,t;x' , t' )  (
m

2ℏi(t  t' )
)1/ 2 exp[

m(x  x' )2

2ℏi( t  t' )
] , 

 
where we uset  t' Nt  in the last part. 
 
((Mathematica)) 
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Free particle propagator;
e=Dt

Clear@"Global`∗"D;
exp_ ∗ := exp ê. 8Complex@re_, im_D � Complex@re, −imD<;
h1 = IHx1 − x'L2 + Hx2 − x1L2M êê Expand;

f0@x1_D :=
2 π � — ε

m

− 2
2
ExpB −m

2 � — ε
h1F;

f1 = Integrate@f0@x1D, 8x1, −∞, ∞<D êê
SimplifyB�, ImB m

ε —
F > 0F &

�
� m Hx2−x′L2

4 ε — − � m

ε —

2 π

g1 = f1
2 π � — ε

m

− 1
2
ExpB −m

2 � — ε
Hx3 − x2L2F êê Simplify;

f2 = ‡
−∞

∞
g1 �x2 êê SimplifyB� , ImB m

ε —
F > 0F &

�
� m Hx3−x′L2

6 ε —

6 π � ε —

m

g2 = f2
2 π � — ε

m

− 1
2
ExpB −m

2 � — ε
Hx4 − x3L2F êê Simplify;

f3 = ‡
−∞

∞
g2 �x3 êê SimplifyB� , ImB m

ε —
F > 0F &

�
� m Hx4−x′L2

8 ε — − � m

ε —

2 2 π

g3 = f3
2 π � — ε

m

− 1
2
ExpB −m

2 � — ε
Hx5 − x4L2F êê Simplify;

f4 = ‡
−∞

∞
g3 �x4 êê SimplifyB� , ImB m

ε —
F > 0F &

�
� m Hx5−x′L2

10 ε —

10 π � ε —

m
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4. Gaussian path integral 

The simplest path integral corresponds to the vase where the dynamical variables 
appear at the most up to quadratic order in the Lagrangian (the free particle, simple 
harmonics are examples of such systems). Then the probability amplitude associated with 
the transition from the points ),( ii tx  to ),( ff tx  is the sum over all paths with the action 
as a phase angle, namely, 
 

),(]exp[),;,( ifcliiff ttFS
i

txtxK
ℏ

 , 

 
where clS  is the classical action associated with each path, 
 

),,( txxdtLS clcl

t

t

cl

f

i

ɺ , 

 
with the Lagrangian ),,( txxL ɺ  described by the Gaussian form, 
 

)()()()()()(),,( 22 tfxtextdxtcxxtbxtatxxL  ɺɺɺɺ  
 
If the Lagrangian has no explicit time dependence, then we get 
 

)(),( ifif ttFttF  . 
 
For simplicity, we use this theorem without proof.  
 

)(]exp[),;,( ifcliiff ttFS
i

txtxK 
ℏ

. 

 
((Proof)) R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals. 
 
Let )(txcl  be the classical path between the specified end points. This is the path which is 
an extremum for the action S. We can represent )(tx  in terms of )(txcl  and a new 
function )(ty ; 
 

)()()( tytxtx cl  , 
 
where 0)()(  fi tyty . At each time t, the variables )(tx  and )(ty  differ by the 

constant )(txcl  (Of course, this is a different constant for each value of t). Thus, clearly, 
 

ii dydx  , 
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Fig. ( ) ( ) ( )i cl i ix t x t y t  . ( )cl ix t  is constant for 1i i it t t t t      , which is 

independent of the path, while  ( )ix t and ( )iy t  are also constant for 

1i i it t t t t      , but depends on the path chosen. So that we have 
d ( ) ( )i ix t dy t  which depends on the choice of path. 

 
for each specific point ti in the subdivision of time. In general, we may say that 
 

)()( tDytDx  . 
 
The integral for the action can be written as 
 
 


f

i

t

t

if dtttxtxLttS ])),(),([],[ ɺ , 

 
with 
 

)()()()()()(),,( 22 tfxtextdxtcxxtbxtatxxL  ɺɺɺɺ . 
 
We expand ),,( txxL ɺ  in a Taylor expansion around clcl xx ɺ, . This series terminates after 
the second term because of the Gaussian form of Lagrangian. Then 
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clclclcl xxxxclcl y
x

L
yy

xx

L
y

x

L
y

x

L
y

x

L
txxLtxxL

ɺɺ
ɺ

ɺ
ɺ

ɺ
ɺ

ɺ
ɺɺ ,

2
2

22
2

2

2

|)(
2
1

||),,(),,(




















 . 

 
From here we obtain the action 
 











































f

i

f

i

clcl

f

i

clcl

f

i

clcl

t

t

t

t

xxifcl

t

t

xx

t

t

xxifclif

ytcyytbytadt

y
x

L
y

x

L
dtttS

y
x

L
yy

xx

L
y

x

L
dt

y
x

L
y

x

L
dtttSttS

])()()([

)||(],[

|)(
2
1

)||(],[],[

22

,
2

2

22
2

2

2

ɺɺ

ɺ
ɺ

ɺ
ɺɺ

ɺ
ɺ

ɺ

 

 
The integration by parts and use of the Lagrange equation makes the second term on the 
right-hand side vanish. So, we are left with 
 

 
f

i

t

t

ifclif ytcyytbytadtttSttS ])()()([],[],[ 22
ɺɺ . 

 
Then we can write 
 

 
f

i

t

t

ifcl dtytcyytbytattStxS ])()()([],[)]([ 22
ɺɺ . 

 
The integral over paths does not depend on the classical path, so the kernel can be written 
as 
 

]exp[),(

)(}])()()([exp{]exp[),;,( 22
0

0

clif

t

t

y

y

cliiff

S
i

ttF

tDydtytcyytbyta
i

S
i

txtxK

f

i

ℏ

ɺɺ
ℏℏ



 


  

 
where 
 

 




f

i

t

t

y

y

if tDydtytcyytbyta
i

ttF )(}])()()([exp{),( 22
0

0

ɺɺ
ℏ

. 
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It is defined that ),( if ttF  is the integral over all paths from 0y  back to 0y  during 

the interval )( if tt  . 
 
REFERENCES 

S.Rajasekar and R. Velusamy, Quantum Mechanics II, Advanced Topics (CRC Press, 
2015). 

 
((Note)) 

If the Lagrangian is given by the simple form  
 

22 )()()(),,( xtcxxtbxtatxxL  ɺɺɺ  
 
then ),( if ttF  can be expressed by 
 

),0;,0(),( iiffif txtxKttF  . 
 
4. Evaluation of ),( if ttF  for the free particle 

We now calculate )',( ttttF if   for the free particles, where the Lagrangian is 
given by the form, 
 

2

2
1

),,( xmtxxL ɺɺ  . 

 
Then we have 
 







f

i

t

t

y

y

if tDydty
mi

ttF )(}
2

exp{),( 2
0

0

ɺ
ℏ . 

 
Replacing the variable y by x, we get 
 







f

i

t

t

x

x

if tDxdtx
mi

ttF )(}
2

exp{),( 2
0

0

ɺ
ℏ

 

 
In this case, formally ),( if ttF  is equal to the propagator ),0;,0( iiff txtxK  ,  
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}])(....)()({
2

exp[)
2

(

.......lim

),0;,0(),(

2
1

2
21

2
23

2
12

2
1

2/

121
















 

NNN

N

N
N

iiffif

xxxxxxxx
ti

m

ti

m

dxdxdx

txtxKttF

ℏℏ
 

 

where we put 0' xxi , and 0 xx f , and 
N

tt

N

tt
t

if '



 . 

We now evaluate the following integral; 
 

}])(....)()({
2

exp[)
2

(

.......lim),(

2
1

2
21

2
23

2
12

2
1

2/

121












  

NNN

N

N
N

if

xxxxxxxx
ti

m

ti

m

dxdxdxttF

ℏℏ

 

 
We note that 
 

)....(2)....(2

)(....)()(

123221
2

1
2

2
2

1

2
1

2
21

2
23

2
12

2
1









NNN

NNN

xxxxxxxxx

xxxxxxxxf
 

 
Using the matrix, f can be rewritten as 
 

 )ˆˆˆ(ˆˆˆˆ)ˆ(ˆ UAUUAUUAUXAXf T   , 
 
with 
 































1

2

1

.

.

.

.

Nx

x

x

X ,  











































21.....
12.....
.......
..12100
..01210
..00121
0.00012

A . 

 
We solve the eigenvalue problems to determine the eigenvalues and the unitary operator, 
such that 
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





























n

UAU









..0000
.......
.......
0..000
0..000
0..000
0..000

ˆˆˆ
4

3

2

1

, 

 
where i  is the eigenvalue of A. Then we have 
 

 






































































1

1

2

1

2

1

4

3

2

1

11111

.

.

.

.

..0000
.......
.......
0..000
0..000
0..000
0..000

..

N

i

ii

Nn

Nf

















 

 
The Jacobian determinant is obtained as 
 

1det
),...,,(
),...,,(

121

121 





 U
xxx

N

N


. 

 
Then we have the integral 
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)'(2

2

)(det2

.....
1

)
2

()
2

(

2
...

22
)

2
(

}]...{
2

exp[)
2

(.......lim

)',(),(

121

2/)1(2/

121

2/

2
11

2
22

2
11

2/
121

tti

m

tiN

m

Ati

m

ti

m

ti

m

m

ti

m

ti

m

ti

ti

m

ti

m

ti

m
ddd

ttFttF

N

NN

N

N

NN

N

N
N

if



































  

ℏ

ℏ

ℏ

ℏℏ

ℏℏℏ

ℏ

ℏℏ

























 
 
where 
 

NA N  1321 ...det   
 
 
((Mathematica)) Example (N = 6). 
The matrix A (5 x 5): 51N  
 

































21000
12100
01210
00121
00012

A  

 
The eigenvalues of A: 
 

321  , 32  , 23  , 14  , 325  . 
 
The unitary operator 
 

Û  
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





1

1

2
N

i

iif  . 

 

























5

4

3

2

1

0000
0000
0000
0000
0000

ˆˆˆ









UAU . 

 
6det  NA . 

________________________________________________________________________
__ 
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Clear "Global` " ;

A1

2 1 0 0 0

1 2 1 0 0

0 1 2 1 0

0 0 1 2 1

0 0 0 1 2

;

eq1 Eigensystem A1

2 3 , 3, 2, 1, 2 3 , 1, 3 , 2, 3 , 1 ,

1, 1, 0, 1, 1 , 1, 0, 1, 0, 1 ,

1, 1, 0, 1, 1 , 1, 3 , 2, 3 , 1

1 Normalize eq1 2, 1 Simplify

1

2 3
,

1

2
,

1

3
,

1

2
,

1

2 3

2 Normalize eq1 2, 2 Simplify

1

2
,

1

2
, 0,

1

2
,

1

2  
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3 Normalize eq1 2, 3 Simplify

1

3
, 0,

1

3
, 0,

1

3

4 Normalize eq1 2, 4 Simplify

1

2
,

1

2
, 0,

1

2
,
1

2

5 Normalize eq1 2, 5 Simplify

1

2 3
,
1

2
,

1

3
,
1

2
,

1

2 3

UT 1, 2, 3, 4, 5 ; U Transpose UT ;

UH UT;

U MatrixForm

1

2 3

1

2

1

3

1

2

1

2 3

1

2

1

2
0

1

2

1

2

1

3
0

1

3
0

1

3

1

2

1

2
0

1

2

1

2

1

2 3

1

2

1

3

1

2

1

2 3  
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UH.U Simplify; UH.U MatrixForm

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1

2

3

4

5

;

s1 UH.A1.U Simplify; s1 MatrixForm

2 3 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 1 0

0 0 0 0 2 3

f1 Transpose .s1. FullSimplify

2 3 1
2

3 2
2

2 3
2

4
2

2 3 5
2

Det A1

6

K1 eq1 1, 1 eq1 1, 2 eq1 1, 3 eq1 1, 4

eq1 1, 5 Simplify

6  
 

 

6. Calculation of the average Â   

In order to understand the above discussion, for the sake of clarity, we discuss the 

fundamental mathematics in detail. 

6.1 The average Â   under the original basis { ib } 
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We consider the two bases { ,  i ib a }, where the new basis { ia } is related to the 

original basis {} ib  through a unitary operator Û , 

 

ˆ
j ja U b ,  ˆ

j jb U a
 ,  ˆ

j jb a U , 

 

with ˆˆ ˆ 1U U
  . ia  is the eigenket of the Hermitian operator Â  with the eigenvalue 

ia . 

 

ˆ
i i iA a a a . 

 

Note that 

 

ˆ ˆ
i j i j i jb a b U b a U a  , 

 

or 

 

ˆ ˆ ˆ ˆ ˆ
i j i j i ja U a b U UU b b U b

  . 

 

In other word, the matrix element of Û  is independent of the kind of basis (this is very 

important property). We also note that 

 

ˆ ˆˆ ˆ
i j i j i ija A a b U AU b a    (diagonal matrix) 

 

Here we define the Column matrices for the state   of the system, 
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1

2

.

.

.

n






 
 
 
 

  
 
 
  
 

β    

1

2

.

.

.

n






 
 
 
 

  
 
 
  
 

α   (matrix form) 

 

with 

 

i ib  ,  i ia  . 

 

We now consider the average over the state   under the original basis { ib }. 

 

 

,

*

,

*

,

11 12 1 1

21 22 2

* * *
1 2

1 2

ˆ

ˆ

ˆ

. . .

. . .
. . . . . . .

. . .
. . . . . . .
. . . . . . .

. . .

i i j i

i j

i i j i

i j

i ij i

i j

n

n

n

n n nn n

A A

b b A b b

b b A b b

A

A A A

A A A

A A A

 

 

 

 




  












  
  
  
  

   
  
  
    
  









β Aβ

  

 

(matrix form), using the closure relation. The relation between β  and α  is obtained as 

follow. 
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ˆ

i i

i j j

j

i j j

j

i j j

j

a

a b b

a b

b U b

 





















 

 

or 

 
α U β   (matrix form) 

 

since ˆ
i ia b U

 . 

6.2 The average Â   under the new basis { ia } 

Next, we now consider the average under the new basis { ia }. 

 

 

,

*

,

*

,

1 1

2 2

* * *
1 2

2

,

ˆ

ˆ

ˆ

0 . . . 0
0 . . . 0
. . . . . . .

. . .
. . . . . . .
. . . . . . .
0 0 . . .

i i j j

i j

i i j j

i j

i i ij i

i j

n

n n

i i

i j

A A

a a A a a

a a A a a

a

a

a

a

a

 

 

 

  




  













  
  
  
  

   
  
  
    
  











 

 

6.3 The calculation of the average using Mathematica 

(i) Find eigenvalue and eigenkets of matrix A by using Mathematica  
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Eigensystem[A] 

 

which leads to the eigenvalues ia  and eigenkets, ia . The eigenkets ahould be 

normalized using the program Normalize. When the system is degenerate ( the same 

eigenvalues but different states), further we need to use the program Orthogonize for all 

eigenkets obtained by doing the process of Eigensystem[A] 

 

(ii) Determine the unitary matrix U 

Unitary matrix U is defined as 

 

 

1 1 1 2 1

2 1 2 2 2

1 2

1 2

. . .

. . .
. . . . . .
. . . . . .
. . . . . .

. . .

. . .

n

n

n n n n

n

b a b a b a

b a b a b a

b a b a b a

 
 
 
 

  
 
 
  
 



U

u u u

  

 

where 

 

1

2

3

.

.

i

i

i

i

n i

b a

b a

b a

b a

 
 
 
 

  
 
 
  
 

u    (matrix form of eigenkets) 

 

Thus, we have 

 
α U β , β Uα   (matrix form) 
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where 

 

 1 2 ......  nU u u u   

 

and 

 
*

1
*

2

*

.

.

.

n



 
 
 
 

  
 
 
  
 

u

u

U

u

 

 

Note that 

 

ˆ( ) ( )    β Aβ α U AUα α Aαɶ   

 

where 

 

1

2

0 . . . 0
0 . . . 0
. . . . . .ˆ
. . . . . .
. . . . . .
0 0 . . . n

a

a

a



 
 
 
 

  
 
 
  
 

U AU   (diagonal matrix) 

 

6.4 Example-1 (3x3 matrix) 

Here we discuss a typical example, A is 3x3 matrix. 
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 

 

2 2 2
1 2 3 1 2 2 3 3 1

1
* * *

1 2 3 2

3

1

1 2 3 2

3

2( )f         


   




   





     



 
   
 
 

 
   
 
 

β Aβ

A

A

  

 

Where 1 , 2 , and 3  are real, 

 

1

2

3





 
   
 
 

β ,     * * *
1 2 3 1 2 3

T        β β , 

 

2 1 1
1 2 1
1 1 2

  
    
   

A . 

 

Eigenvalue problem of matrix A (we solve the problem using Mathematica. The system 

is degenerate) 

 

1 1 1a A ,  2 2 2a A ,  3 3 3a A . 

 

where the eigenvalues and eigenkets are as follows, 

 

1 3a  ,  1

1
1

0
2

1


 
   
  

, 
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2 3a  ,  2

1
1

2
6

1


 
   
 
 

, 

 

3 0a  ,  3

1
1

1
3

1


 
   
 
 

. 

 

under the basis { }ib . The unitary matrix can be obtained as 

 

 1 2 3

1 1 1
2 6 3

2 1
0

6 3
1 1 1
2 6 3

  

 
 
 
 

  
 
 
 
 

U

,  

1

2

3

1 1
0

2 2
1 2 1
6 6 6

1 1 1
3 3 3







 



 
 

  
 
 

 
 
 
 

  
 
 
 
 

U

 

 

1 U U ,  
3 0 0
0 3 0
0 0 0



 
   
 
 

U AU  

 

1 2 3

1 1

2 2 2 3

3 3

1 2 3

1 1 1 1 1 1
2 6 3 2 6 3

2 1 2 1
0

6 3 6 3
1 1 1 1 1 1
2 6 3 2 6 3

  
 
   
 

  

   
    

      
                  

            
      
   

β Uα   

 

Thus, we have 
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 
1 1

* * *
1 2 3 2 2

3 3

2 2 2
1 1 2 2 3 3

2 2 2
1 2 3

( )

0 0
0 0
0 0

3 3 0

f

a

a

a

a a a


   



  

  



 





  
      
   
   

  

  

β Aβ

α U AU α

 

 

6.5 Example-2 4x4 matrix 

We also discuu the second example; A is 4x4 matrix. 

 

 

 

2 2 2 2
1 2 3 4 1 2 2 3 3 1

1

2* * * *
1 2 3 4

3

4

1

2
1 2 3 4

3

4

2 2 2 2 2f          




   






   





      



 
 
 
 
 
 

 
 
 
 
 
 

β Aβ

A

A

  

 

Where 1 , 2 , 3  and 4  are real, 

 

1

2

3

4






 
 
 
 
 
 

β      * * * *
1 2 3 4 1 2 3 4

T          β β  
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1 1 0 0
1 2 1 0

0 1 2 1
0 0 1 1

 
   
  
 

 

A . 

 

Eigenvalue problem of matrix A (using Mathematica) 

 

1 1 1a A ,  2 2 2a A , 

 

3 3 3a A ,  4 4 4a A  

 

The eigenvalues and eigenkets are obtained as follows, 

 

1 2 2a   ,  1

1

2 2 2

1 1
1

2 2

1 1
1

2 2
1

2 2 2



 
 

 
 
  
 

  
 
 
 
   

, 

 

2 2a  ,  2

1
2
1
2
1
2

1
2



 
 
 
 
 

  
 
 
 
 
 

, 
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3 2 2a   ,  3

1 1
1

2 2

1 1
1

2 2

1 1
1

2 2

1 1
1

2 2



 
 

 
 
 
 

  
  
 
 
 
  
 

. 

 

4 0a  ,   4

1
2
1
2
1
2
1
2



 
 
 
 
 

  
 
 
 
 
 

. 

 

The unitary matrix: 

 

 1 2 3 4

1 1 1 1 1
1

2 2 222 2 2

1 1 1 1 1 1
1 1

2 2 2 22 2

1 1 1 1 1 1
1 1

2 2 2 22 2

1 1 1 1 1
1

2 2 222 2 2

   

 
 

 
 
    
 

  
 

    
 
 
     

U

, 
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1

2

3

4

1 1 1 1 1 1
1 1

2 22 22 2 2 2 2 2
1 1 1 1
2 2 2 2

1 1 1 1 1 1 1 1
1 1 1 1

2 2 2 22 2 2 2
1 1 1 1
2 2 2 2















 
 
 
 
  
 

 
    

  
 
  
 
 
      
 
 
 
 

U

 

 

1 U U ,  

2 2 0 0 0
0 2 0 0

0 0 2 2 0
0 0 0 0



 
 
    
 
 

U AU , 

 

1 1

2 2

3 3

4 4

1 1 1 1 1
1

2 2 222 2 2

1 1 1 1 1 1
1 1

2 2 2 22 2

1 1 1 1 1 1
1 1

2 2 2 22 2

1 1 1 1 1
1

2 2 222 2 2

 
 
 
 

 
 

 
 

           
       
    

           
 
     

β Uα , 

 

or 
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1 2 3 4

1
1 2 3 4

2

3
1 2 3 4

4

1 2 3 4

1 1 1 1 1
1

2 2 222 2 2

1 1 1 1 1 1
1 1

2 2 2 22 2

1 1 1 1 1 1
1 1

2 2 2 22 2

1 1 1 1 1
1

2 2 222 2 2

   


   




   


   

 
    

 
 

           
    
   

          
 
       

. 

 

Thus, we have 

 

 
1

2* * * *
1 2 3 4

3

4

2 2 2 2
1 1 2 2 3 3 4 4

2 2 2 2
1 2 3 4

( )

2 2 0 0 0
0 2 0 0

0 0 2 2 0
0 0 0 0

(2 2) 2 (2 2) 0

f

a a a a




   



   

   



 





   
  
          

   

     

β Aβ

α U AU α

 

 

7. Equivalence with Schrödinger equation 

The Schrödinger equation is given by 
 

)(ˆ)( tHt
t

i  



ℏ . 

 
For an infinitesimal time interval  , we can write 
 

)0(ˆ)0()( 


 H
i

ℏ
 , 

 
from the definition of the derivative, or 
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)0()](
2

[

)0(ˆ)0()(

2

22









xxV
xm

i

Hx
i

xx









ℏ

ℏ

ℏ  

 
or 
 

)0,()](
2

[

)0(ˆ)0,(),(

2

22

xxV
xm

i

Hx
i

xx

















ℏ

ℏ

ℏ  

 
in the x  representation. 

We now show that the path integral also predicts this behavior for the wave function. 
To this end, we start with 
 






 )0(')0,';,(')(  xxxKdxx , 

 
or 
 






 )0,'()0,';,('),( xxxKdxx  , 

 
where 
 

)}]
2

'
(

)'(
2
1

{exp[
2

)]
2

'
,

'
(exp[

2
)0,';,(

2

2 xx
V

xx
m

i

i

m

xxxx
L

i

i

m
xxK





















ℏℏ

ℏℏ  

 
Then we get 
 










 )0,'()}]

2
'

(
)'(

2
1

{exp['
2

),( 2

2

x
xx

V
xx

m
i

dx
i

m
x 







ℏℏ
. 

 
We now define 
 

xx' . 
 
Then we have 
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




 )0,()]
2

(
2

exp[
2

),(
2










 xxV
iim

d
i

m
x

ℏℏℏ
. 

 
The dominant contribution comes from the small limit of . Using the Taylor expansion 
in the limit of 0  
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Thus, we have 
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which is the same as that derived from the Schrödinger equation. The path integral 
formalism leads to the Schrödinger equation for infinitesimal intervals. Since any finite 
interval can be thought of a series of successive infinitesimal intervals the equivalence 
would still be true. 
 
((Note)) 
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((Mathematica)) 
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Clear@"Global`"D;
Integral@n_D :=

IntegrateBηn
ExpB� m η2

2 — ε
F, 8η, −∞, ∞<F êê

SimplifyB�, ImB m

ε —
F > 0F &;

K1 = Table@8n, Integral@nD<, 8n, 0, 4<D;
K1 êê TableForm
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2 π
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ε —

1 0

2
2 π

J−� m
ε —

N3ê2

3 0

4
3 2 π

J−� m
ε —
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8. Motion of free particle; Feynman path integral 

The Lagrangian of the free particle is given by 
 

2

2
x

m
L ɺ . 

 
Lagrange equation for the classical path; 
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

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


x

L

x

L

dt

d

ɺ
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or 
 

ax ɺ , 
 
or 
 

batx  . 
 
This line passes through (t', x'), (t, x); 
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which is independent of t1. Consequently, we have 
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((Approach from the classical limit)) 

 
To find A, we use the fact that as 0' tt , K must tend to )'( xx   
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((Mathematics)) 
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((Evaluation of ℏ/S )) 
From the above discussion, S can be evaluated as 
 

x
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or 
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2
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. 

 
where p is the momentum, 
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kp ℏ . 

 
Suppose that m is the mass of electron and the velocity v is equal to c/137. We make a 

plot of 
ℏ

S
(radian) as a function of x (cm). 

 
((Mathematica)) 
NIST Physics constant : cgs units

Clear@"Global`∗"D;
rule1 = 9c → 2.99792 × 1010, — → 1.054571628 10

−27
,

me → 9.10938215 10−28=;

K1 =
me c

2 —
ê. rule1

1.2948 × 1010

K1 ê 137
9.4511 × 107  
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1
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104
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1010
SêÑ HradL

 
 

Fig. 
ℏ

S
(radian) as a function of x (cm), where v = c/137. m is the mass of electron.  

 
9. Evaluation of S for the 1D system (example 8-1, Towmsend, 2nd edition) 
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We consider the Young’s double slit; 
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The phase difference between two paths is evaluated as  
 

xxkx
pS
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2
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2
1

ℏℏ
, 

 

If 
ℏ

S
 is comparable to , the interference effect can be observed. Such a condition is 

satisfied when  
 

x . 
 
((Note)) 
 

In classical physics, the phase difference is given by 
 

x




2

. 

 
10. What is the Lagrangian for photon? 

 
((Landau-Lifshitz)) 

For a particle, we have the Hamilton equations 
 

H
 


p

r
ɺ ,  

H
 


v r

p
ɺ  
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In view of the analogy, we can immediately write the corresponding equation for rays: 
 


 


k

r
ɺ ,  


 


v r

k
ɺ  

 
In vacuum, ck  , so that 0kɺ , cv n  ( n  is a unit vector along the direction of 
propagation); in other words, in vacuum the rays are straight lines, along which the light 
travels with velocity c. 

Pursuing the analogy, we can establish for geometrical optics a principle analogous to 
the principle of least action in mechanics. However, it cannot be written in Hamiltonian 
form as 0Ldt  , since it turns out to be impossible to introduce, for rays, a function 

analogous to the Lagrangian of a particle. Since the Lagrangian of a particle is related to 
the Hamiltonian H  by the equation 
 

H
L H


  


p

p
, 

 
replacing the Hamiltonian H by the angular frequency   and the momentum by the wave 

vector k, we should have to write for the Lagrangian in optics, 




 


k
k

. But this 

expression is equal to zero, since ck  .But this expression is also clear directly from 
the consideration that the propagation of rays is analogous to the motion of particles with 
zero mass. 

As is well, in the case where the energy is constant, the principle of least action for 
particles can also be written in the form of the so-called principle of Maupertuis: 
 

0S d    p l  

 
where the integration extends over the trajectory of the particle between two of its points. 
In this expression the momentum is assumed to be a function of the energy and the 
coordinates. The analogous principle for rays is called Fermat’s principle. In this case, we 
can write by analogy: 
 

0d    k l  

 

In vacuum, 
c


k n , and we obtain ( d dl l n : 

 
0dl   

 
which corresponds to rectilinear propagation of the rays. 
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((REFERENCE)) 
L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon, 1996). 
 
((Note)) 

From a view-point of the phaser diagram for the interference, photons are one of the 
best examples. I will use this example for the explanation of photon propagator. It seems 
to me that theorists hesitate to use the word of photon. Why is that? It is hard to find the 

expression of the action S for photon, even if the path integral is expressed by exp( )
i

px
ℏ

; 

plane-wave form. The Lagrangian form of photon is not simple compared to that of 
particle (such as electron). 
 
11. Single slit experiment 

In order to understand the path integral method, let us go back to the Young’s double 
slit experiment. We obtain an interference pattern, independent of whether we use a light 
source, or particle (electron) source. This can, of course, be explained by saying that there 
is a probability amplitude associated with each path. Note that a path integral approach 
offers a road to quantum mechanics for systems that are not readily accessible via 
Hamiltonian mechanics (Merzbacher, 1998). In his book, Feynman discussed the 
principle of least action for particles (Feynman, 1964).  
 

Is it possible to say intuitively that 
 

L T cp  , 
 
where T is the kinetic energy of photon, c is the velocity of light, and p is the 
momentum.? The momentum p is expressed by 
 

2
p k




 
ℏ

ℏ , 

 
where   is the wave length of photon. Then the action S can be evaluated as 
 

S Ldt cpdt cp t p x        

 
where p is assumed to be constant and x c t   . Then we have 
 

exp( ) exp( ) exp( )
i i

S px ikx 
ℏ ℏ

 

 
The phase of change in wave function for photon is  
 

k x    
 
where k is the wave number. 
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________________________________________________________________________ 

Imagine the slit divided into many narrow zones, width y (=  = a/N). Treat each as 
a secondary source of light contributing electric field amplitude E to the field at P. 

 
 

 
 

We consider a linear array of N coherent point oscillators, which are each identical, 
even to their polarization. For the moment, we consider the oscillators to have no intrinsic 
phase difference. The rays shown are all almost parallel, meeting at some very distant 
point P. If the spatial extent of the array is comparatively small, the separate wave 
amplitudes arriving at P will be essentially equal, having traveled nearly equal distances, 
that is 
 

N

E
rErErErE N

0
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The sum of the interfering spherical wavelets yields an electric field at P, given by the 
real part of 
 

]]...1[)(Re[

])(...)()(Re[
))()()()(

0

)(
0

)(
0

)(
0

113121

21

rrikrrikrriktkri

tkritkritkri

N

N

eeeerE

erEerEerEE












 



 52  

 
((Note)) 
When the distances r1 and r2 from sources 1 and 2 to the field point P are large compared 
with the separation , then these two rays from the sources to the point P are nearly 
parallel. The path difference r2 – r1 is essentially equal to  sin. 

Here we note that the phase difference between adjacent zone is  
 



















 )(

)(
)(

)sin(sin)(

1

34

23

12

NN rrk

rrk

rrk

N

a
kkrrk

 

 

where k is the wavenumber, 

2

k . It follows that 
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Thus the field at the point P may be written as 
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We now calculate the complex number given by 
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If we define D to be the distance from the center of the line of oscillators to the point P, 
that is 
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Then we have the form for E as 
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The intensity distribution within the diffraction pattern due to N coherent, identical, 
distant point sources in a linear array is equal to  
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in the limit of N→∞, where 
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 sinsin kaNkN   

 
 sink  

 
where a = N. We make a plot of the relative intensity I/Im as a function of . 
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The numerator undergoes rapid fluctuations, while the denominator varies relatively 
slowly. The combined expression gives rise to a series of sharp principal peaks separated 
by small subsidiary maxima. The principal minimum occurs in directions in direction m 
such that 
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12. Phasor diagram 

(i) The system with two paths 

The phasor diagram can be used for the calculation of the double slilts (Young) 
interference. We consider the sum of the vectors given by OS  and ST . The magnitudes 
of these vectors is the same. The angle between OS  and ST  is  (the phase difference). 
 

 
 
Fig. Phasor diagram for the double slit. 
 
In this figure, RQTQSQO  . 2/ STMSOM . Then we have 
 

2
cos2

2
cos22


AOSOMOT  . 

 

The resultant intensity is proportional to  2OT , 
 

  )cos1(2
2

cos4 2222



 AAOTI . 

 
Note that the radius R is related to OS  (= A) through a relation  
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2
sin2


RA  . 

 
When A = 1 (in the present case), we have the intensity I as 
 

2
cos4 2 I  

 
The intensity has a maximum (I = 4) at n 2  and a minimum (I = 0) at  
 

)2/1(2  n . 
 
(ii) The system with 6 paths. 
 

 
 
Fig. The resultant amplitude of N = 6 equally spaced sources with net successive phase 

difference φ.  = N φ = 6 φ. 
 
(iii) The system with 36 paths (comparable to single slit) 
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Fig. The resultant amplitude of N = 36 equally spaced sources with net successive 

phase difference φ. 
 
(iv) Single slit in the limit of N→∞ 

We now consider the system with a very large N. We may imagine dividing the slit 
into N narrow strips. In the limit of large N, there is an infinite number of infinitesimally 
narrow strips. Then the curve trail of phasors become an arc of a circle, with arc length 
equal to the length E0. The center C of this arc is found by constructing perpendiculars at 
O and T.  
 

 
 
The radius of arc is given by  
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)(0  NRRE  . 

 
in the limit of large N, where R is the side of the isosceles triangular lattice with the 
vertex angle φ, and  is given by  
 

 sinkaN  , 
 
with the value  being kept constant. Then the amplitude Ep of the resultant electric field 
at P is equal to the chord OT , which is equal to 
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Then the intensity I for the single slits with finite width a is given by 
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2
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(




mII  . 

 

where Im is the intensity in the straight-ahead direction where  

The phase difference φ is given by 


 sin2sin2sin p
a

ka  . We make a 

plot of I/Im as a function of , where p = a/ is changed as a parameter. 
 

 
 
Fig. The relative intensity in single-slit diffraction for various values of the ratio p = 

a/. The wider the slit is the narrower is the central diffraction maximum. 
 
13. Gravity: Feynman path integral 
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((Calculation from the classical limit)) 
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gx ɺɺ , 

 

BAtt
g

x  1
2

11 2
, 

 
Initial conditions: 
 

x1 = x and t1= t, 
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and '1 xx   and '1 tt   
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A and B are determined from the above two equations. 
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Then we get the expression of the Lagrangian 
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The Hamilton’s principle function is 
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Clear@"Global`∗"D; eq1 = x �
−1

2
g t2 + A t + B;

eq2 = x0 �
−1

2
g t02 + A t0 + B;

rule1 = Solve@8eq1, eq2<, 8A, B<D êê Flatten;

x1 =
−1

2
g t12 + A t1 + B ê. rule1 êê FullSimplify

−Ht0 − t1L Hg Ht − t0L Ht − t1L + 2 xL + 2 Ht − t1L x0

2 Ht − t0L

v1 = D@x1, t1D êê Simplify

g Ht − t0L Ht + t0 − 2 t1L + 2 Hx − x0L
2 Ht − t0L

L1 =
m

2
v12 − m g x1 êê FullSimplify

1

8 Ht − t0L2
m IHg Ht − t0L Ht + t0 − 2 t1L + 2 Hx − x0LL2 −

4 g Ht − t0L H−Ht0 − t1L Hg Ht − t0L Ht − t1L + 2 xL + 2 Ht − t1L x0LM

K1 = ‡
t0

t

L1 �t1 êê FullSimplify

−
m Ig2 Ht − t0L4 − 12 Hx − x0L2 + 12 g Ht − t0L2 Hx + x0LM

24 Ht − t0L

rule1 = 8x → x0, t → t0 + T<; K2 = K1 ê. rule1 êê Simplify

−
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24
g m T Ig T2 + 24 x0M

 
 
14. Simple harmonics: Feynman path integral 

((Classical limit)) 
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Initial conditions: 
 

x1 = x and t1= t, 
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A and B are determined from the above two equations. 
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Then we get the expression of the Lagrangian 
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((Mathematica)) 

Clear@"Global`∗"D;
expr_∗ := expr ê. 8Complex@a_, b_D � Complex@a, −bD<
seq1 = x � A Cos@ω0 tD + B Sin@ω0 tD;
seq2 = x0 == A Cos@ω0 t0D + B Sin@ω0 t0D;
srule1 = Solve@8seq1, seq2<, 8A, B<D êê Simplify êê Flatten;

x1 = A Cos@t1 ω0D + B Sin@t1 ω0D ê. srule1 êê Simplify;

v1 = D@x1, t1D êê Simplify;

L1 =
m
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v12 −
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ω02 x12 êê Simplify;
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L1 �t1 êê FullSimplify
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If the initial state of a harmonic oscillator is given by the displaced ground state wave 
function 
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Clear@"Global`∗"D;
exp_ ∗

:= exp ê. 8Complex@re_, im_D � Complex@re, −imD<;

KSH@ξ_, t_, ξ1_D :=
1

2 π � Sin@ω0 tD ExpB �

2 Sin@ω0 tD IIξ 2 + ξ12M Cos@ω0 tD − 2 ξ ξ1MF;

ϕ0@ξ_D := π−1ê4
ExpB− Hξ − ξ0L2

2
F;

f1 = ‡
−∞

∞
KSH@ξ, t, ξ1D ϕ0@ξ1D �ξ1 êê FullSimplify@�, 8 Im@Cot@t ω0DD > −1, ω0 t > 0<D &

�
−
Jξ2+ξ02N Cot@t ω0D+� ξ Hξ+2 � ξ0 Csc@t ω0DL

2 H�+Cot@t ω0DL −� Csc@t ω0D
π1ê4 1 − � Cot@t ω0D

Amp1 = f1
∗
f1 êê FullSimplify

�−Hξ−ξ0 Cos@t ω0DL2

π  
rule1 = 8ω0 → 1, ξ0 → 1<; H1 = Amp1 ê. rule1;

Plot@Evaluate@Table@H1, 8t, 0, 20, 2<D, 8ξ, −3, 3<D,
PlotStyle → Table@8Thick, Hue@0.1 iD<, 8i, 0, 10<D, AxesLabel → 8"ξ", "Amplitude"<D
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15. Gaussian wave packet propagation (quantum mechanics) 
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 )'(')',';,(')( txtxtxKdxtx  . 

 
K(x, t; x’, t’) is referred to the propagator (kernel)  
 
For the free particle, the propagator is given by 
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Let’s give a proof for this in the momentum space. 
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((Quantum mechanical treatment)) 
 
Probability amplitude that a particle initially at x’ propagates to x in the interval t-t’. This 
expression is generalized to that for the three dimensions. 
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has the form of Gaussian distribution with the standard deviation x . The Fourier 
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which is the Gaussian distribution with the standard deviation 
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which has the form of Gaussian distribution with the standard deviation 
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Fig. Plot of 
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)(tx   as a function of x where the time t is changed as a parameter. 
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16. Wave packet for simple harmonics (quamtum mechanics) 

((L.I. Schiff p.67-68)) 
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with 
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Here we use the generating function: 
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The left-hand side is 
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Using the generating function 
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we have the final form 
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 ( , t)

2
 represents a wave packet that oscillates without change of shape about  = 0 

with amplitude 0 and angular frequency 0. 
 
17. Mathematica 
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Fig. The time dependence of ])cos(exp[
1

),( 2
002/1

2
tt 


  , where 0 =1. 

0/2 T . The peak shifts from  = 0 at t = 0 to  = 0 at t = T/4,  = 0 at t = 
T/2,  = - 0  at t = 3T/4, and  = 0 at t = T. 
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18. Neutron interferometry 

A neutron beam is split into two beams by an interferometer. The relative phase of the 
two beams is varied by rotating the interferometer around the AC of the incident beam. 
(R. Colella, A.W. Overhauser, and S.A. Werner [Phys. Rev. Lett. 34, 1472 (1975)]. 

Suppose that the interferometry initially lies in a horizontal plane so that there are no 
gravitational effects. We then rotate the plane formed by the two paths by angle  about 
the segment AC. The segment BD is now higher than the segment AC by l2sin. 
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Fig. Experimental cobfiguration for neutron interefernce due to gravity. There 

are two paths; path A-B-D and path A-C-D.   is the rotation angle from 
the z axis in the z-x plane. 
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Fig.  Dependence of gravity-induced phase on angle of rotation . From R. 

Colella, A. W. Overhauser, and S. A. Werner, Phys.. Rev. Lett. 34 ( 1975) 
1472. 

 
((Note)) 
The action is obtained as 
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From the previous discussion we have the propagator for the gravity 
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For the path ABD and path ACD, we have 
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The phase difference between the path ABD and the path ACD is given by 
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where p is the momentum 
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The time T is related to l1 as 
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The intensity for the interference is  
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Fig. The phasor diagram. The intensity corresponds to the length OT , where 

OS ST  1. 
 

Note that 
 

1 2
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mgl l

v
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where m is the mass of neutron. We consider the thermal neutron at the temperature 

300T   K. The energy of neutron is given by 21 3
2 2 BE mv k T  . The thermal energy is 

 
38.778E   meV. 

 
The average velocity v is evaluated as 
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The intensity I is evaluated as 
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We assume that the area 2

1 2 6 l l cm . We make a plot of the intensity I as a function of 
the rotation angle   (radian). 
 

 
 
Fig. Plot of the intensity (neutron interference due to gravity) as a function of 

rotation angle   (rad).  
 
((Mathematica)) We use the cgs units for the calculation. 
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19. Quantum-mechanical interference to detect a potential difference 

 

 
 

A low-intensity beam of charged particles, each with charge q, is split into two parts. 
each part then enters a very long metallic tube shown above. Suppose that the length of 
the wave packet for each of the particles is sufficiently smaller than the length of the tube 
so that for a certain time interval, say from t0 to t, the wave packet for the particle is 
definitely within the tubes. During this time interval, a constant electric potential V1 is 
applied to the upper tube and a constant electric potential V2 is applied to the lower tube. 
The rest of the time there is no voltage applied to the tubes. Here we consider how the 
interference pattern depends on the voltages V1 and V2. 
 

Without the applied potentials, the amplitude to arrive at a particular point on the 
detecting screen is 
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With the potential, the Lagrangian in the path is modified as 
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We assume that 
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The intensity depends on the phase; I becomes maximum when  n2  and minimum 
at  
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((Note)) Method with the use of gauge transformation 

The proof for the expression can also be given using the concept of the Gauge 
trasnformation. The vector potential A and scalar potential  are related to the magnetic 
field B and electric field E by 
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The gauge transformation is defined by 
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where  is an arbitrary function. The new wave function is related to the old wave 
function through 
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The wave function )(r  is given by 
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When V is the electric potential and is independent of time t, we have 
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This expression is exactly the same as that derived from the Feynman path integral. 
 
20. Quantization of magnetic flux and Aharonov-Bohm effect 

The classical Lagrangian L is defined by 
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where the charge q = -e (e>0), A is the vector potential. The corresponding change in the 
action of some definite path segment going from ),( 11  nn tr  to ),( 1 nn tr  is then given by 
 












n

n

t

t
dt

d
dt

c

e
nnSnnS

1

)1,()1,( )0()0( A
r

, 

 
This integral can be written as 
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where rd  is the differential line element along the path segment.  

Now we consider the Aharonov-Bohm (AB) effect. This effect can be usually 
explained in terms of the gauge transformation. Here instead, we discuss the effect using 
the Feynman’s path integral. In the best-known version, electrons are aimed so as to pass 
through two regions that are free of electromagnetic field, but which are separated from 
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each other by a long cylindrical solenoid (which contains magnetic field line), arriving at 
a detector screen behind. At no stage do the electrons encounter any non-zero field B.  
 

 
Fig. Schematic diagram of the Aharonov-Bohm experiment. Electron beams are split 

into two paths that go to either a collection of lines of magnetic flux (achieved by 
means of a long solenoid). The beams are brought together at a screen, and the 
resulting quantum interference pattern depends upon the magnetic flux strength- 
despite the fact that the electrons only encounter a zero magnetic field. Path 
denoted by red (counterclockwise). Path denoted by blue (clockwise) 
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Reflector

Reflector

B
out of page
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slit-1slit-2P Q

 
 
Fig. Schematic diagram of the Aharonov-Bohm experiment. Incident electron beams 

go into the two narrow slits (one beam denoted by blue arrow, and the other beam 
denoted by red arrow). The diffraction pattern is observed on the screen. The 
reflector plays a role of mirror for the optical experiment. The path1: slit-1 – C1 – 
S. The path 2: slit-2 – C2 – S. 

 
Let B1  be the wave function when only slit 1 is open. 
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The line integral runs from the source through slit 1 to r (screen) through C1. Similarly, 
for the wave function when only slit 2 is open, we have 
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The line integral runs from the source through slit 2 to r (screen) through C2. 
Superimposing Eqs.(1) and (2), we obtain 
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The relative phase of the two terms is 
 

   aArArrArrAr dddd
PathPath

)()()()(
21

, 

 
by using the Stokes’ theorem, where the closed path consists of path1 and path2 along the 
same direction. The relative phase now can be expressed in terms of the flux of the 
magnetic field through the closed path, 
 

 
ℏℏℏℏ c

e
d

c

e
d

c

e
d

c

e
aBaArA )( . 

 
where the magnetic field B is given by 
 

AB  . 
 
The final form is obtained as 
 

)]()exp()([)](exp[)( 0,20,12
rrrArr    id

c

ie

Path
B

ℏ
, 

 
and   is the magnetic flux inside the loop. It is required that 
 

 n2 . 
 
Then we get the quantization of the magnetic flux, 
 

e

c
nn

ℏ2
 , 

 
where n is a positive integer, n = 0, 1,2,….. Note that 
 

e

cℏ2
=4.135667510-7 Gauss cm2. 

 
which is equal to 2 0 , where 0  is the magnetic quantum flux, 
 

e

c

2
2

0
ℏ

 = 2.067833758(46) x 10-7 Gauss cm2. (NIST) 

 
We note that 
 

0

0 0

ee

c c
 

 
    

 ℏ ℏ
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The intensity is  
 

0

0

2

2

0

(1 )(1 )

2 [1 cos( )]

4cos
2

4cos

i iI I e e

I

 







    

  

   
 

 
  

 

 

 

x 0

I I0

1 1 2 3 4 5

1

2

3

4

 
 
Suppose that the area for the region of magnetic field is 21 mmA  =10-2 cm2. 
 

2 5

7
0

10 10
2.06783 10 2.06783

B B




 

 
 

 
If 0.3B G ,  4

0/ 1.45 10    .  
If 1 mGB  ,  0/ 48   . 
If 0.01 mGB  , 0/ 0.48   . 

 
((Note)) 
 

Equivalence between Aharonov Bohm effect and Feynman path integral 
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Lagrangian: 
 

21
2

q
L m q

c
   v v A .  

 
Canonical momentum: 
 

L q
m

c


  


P v A
v

. 

 
Vector potential and scalar potential: 
 

AB  , 
 






tc

A
E

1
, 

 
The gauge transformation is defined by 
 

 AA' , 
 

tc 






1

' , 

 
where  is an arbitrary function. The new wave function of free particle (A’=0) '( ) r  is 
related to the original wave function ( ) r  through 
 

'( ) exp( ) ( )
iq

c
  r r

ℏ
. 

 
For the Aharonov-Bohm effect, we assume that 
 

' 0   A A ,  d    A r . 

 
So that the original wavefunction ( ) r  is 
 

( ) exp( ) '( )

exp( ) '( )

'( ) exp( )

iq

c

iq

c

iq
d

c

  

 



 

 

 

ℏ

ℏ

ℏ

r r

r

r A r
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with 
 

d   A r , 

 

'( ) exp( ) exp( )i i d    r k r k r .  (free-particle wave function) 

 
Thus, we have the original wavefunction as 
 

( ) exp( )exp( )

exp( )

exp[ ( )]

exp[ ( )

exp[ ]

iq
r i d d

c

i iq
d d

c

i q
d d

c

i q
d

c

i
S

   

   

   

  



 

 

 



k r A r

k r A r

k r A r

p A r

ℏ

ℏ
ℏ ℏ

ℏ
ℏ

ℏ

ℏ

 

 
The integral is over a certain path in the 3D real space. It is found that that S is the action and 
given by 
 

( )
q

S d d
c

     P r p A r ,  (Feynman path integral) 

 
where 
 

L q
m

c


  


P v A
v

. 

 
In conclusion, we show that the Aharonov-Bohm (AB) effect can be explained by the Feynman 
path integral. In other words, the AB effect is equivalent to the Feynman path integral. 
 
21. Example-1: Feynman path integral 

We consider the Gaussian position-space wave packet at t = 0, which is given by 

)
2

exp(
2
1

)0( 2

2




x
tx   (Gaussian wave packet at t = 0). 

The Gaussian position-space wave packet evolves in time as 
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]
)(2
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1

2
1

]
2

)(
2
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22

1

)0()0,;,((

2

2

2

2
0

2

2
0

0

000

m

ti

x

m

ti

t

xximx
dx

ti

m

xxtxKdxtx

ℏℏ

ℏℏ
























 (1) 

 
where 
 

]
2

)(
exp[)

2
()0,;,(

2
02/1

00
t

xxim

ti

m
txtxK

ℏℏ





 (free propagator) (2) 

 
(Note) You need to show all the procedures to get the final form of tx ( . 

(a) Prove the expression for tx (  given by Eq.(1). 

(b) Evaluate the probability given by 
2

(tx   for finding the wave packet at the 

position x and time t. 
 
(a) 
The Gaussian wave packet: 
 

)
2

exp(
2
1

)0( 2

2




x
tx  . (Gaussian) 

 
The free propagator: 
 

]
2

)(
exp[)

2
()0,;,(

2
02/1

00
t

xxim

ti

m
txtxK

ℏℏ





. 

 
Then we have 
 












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

]
2

)(
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exp[
22
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)0()0,;,((

2
0

2

2
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0

2/1

000

t

xximx
dx
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xxtxKdxtx

ℏℏ 



 

 
Here we have 
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(
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(
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


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




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



 

 
where 
 

t

im
a

ℏ22
1

2 


, 
t

imx
b

ℏ
 , 

t

imx
c

ℏ2

2

 . 

 
Then we get the integral 
 

)
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4
)
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2

2
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2
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b
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b
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b
c
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



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





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







 

 

Note that when 0
2

1
)Re( 2 


a , the above integral can be calculated as 

 

a
ydy

aa

b
xadx





 










)exp(

1
)

2
(exp[ 22

00 , 

 

with the replacement of variable as )
2

( 0
a

b
xay   and adxdy  0 . Thus we have 

 

]
)
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ℏ
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

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or 
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Finally we get 
 

]
)(2

exp[
1

2
1

(
2

2

2

m

ti

x

m

ti
tx

ℏℏ 








 . 

 



 98  

It is clear that at t = 0, tx (  is the original Gaussian wave packet. 
 
(b) 
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22. Example-2: Feynman path integral 

Suppose that the Gaussian wave packet is given by 
 

)
2

exp(
2
1

)0( 2

2

0 


x
xiktx  . (Gaussian) 
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Here we discuss how such a Gaussian wave packet propagates along the x axis as the 
time changes. 
 
The free propagator: 
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Here we have 
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Note that when 0
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a ,  the above integral can be calculated as 
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22




m

tℏ
 . 

 
Then we have 
 

]
)(

)(
exp[

1
2
1

(

2

22
4

202

2

22
4

2

m

t

m

tk
x

m

t
tx

ℏ

ℏ

ℏ 














 . 

 
This means the center of the Gaussian wave packet moves along the x axis at the constant 
velocity. 
 

(i) The height of 
2

(tx   is   

2

22
4

1
2
1

m

tℏ



. 

 

(ii) The width is    2

22
41

m

t
x

ℏ
 


. 

 

(iii) The Group velocity is  
m

k
vg

0ℏ
 . 

 
23. Summary: Feynman path integral 

The probability amplitude associated with the transition from the point ),( ii tx  to 
),( ff tx is the sum over all paths with the action as a phase angle, namely, 
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Amplitude = )exp( S
i

paths
All


ℏ

, 

 
where S is the action associated with each path. So we can write down 
 

)exp()(

)exp(

,,),;,(

clif

t

t
paths
All

iiffiiff

S
i

ttF

dtL
i

txtxtxtxK

f

i

ℏ

ℏ







  

 
where Scl is the classical action associated with each path. 

If the Lagrangian is given by the simple form  
 

22 )()()(),,( xtcxxtbxtatxxL  ɺɺɺ , 
 
then ),( if ttF  can be expressed by 
 

),0;,0(),( iiffif txtxKttF  . 
 
24. Comment by Roger Penrose on Feynman path integral 

 

Roger Penrose: Road to the Reality. A Complete Guide to the Law of the Universe 

(Jonathan Cape London, 2004). 

 
Here is a very interesting comment by Roger Penrose (Nobel laureate, 2020) on the 

Feynman Path integral. The content is the same, but some sentences are appropriately 
revised. 
 

The Lagrangian is in many respects more appropriate than a Hamiltonian when we 
are concerned with a relativistic theory. The standard Schrödinger/Hamiltonian 
quantization procedures lie uncomfortably with the spacetime symmetry of relativity. 
However, unlike the Hamiltonian, which is associated with a choice of time coordinate, 
the Lagrangian can be taken to be a completely relativistically invariant entity. 

The basic idea, like so many of the ideas underlying the formalism of quantum 
theory, is one that goes back to Dirac, although the person who carried it through as a 
basis for relativistic quantum theory was Feynman. Accordingly, it is commonly referred 
to as the formulation in terms of Feynman path integrals or Feynman sum over histories. 
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The basic idea is a different perspective on the fundamental quantum mechanical 
principle of complex linear superposition. Here, we think of that principle as applied, not 
just to specific quantum states, but to entire spacetime histories. We tend to think of these 
histories as ‘possible alternative classical trajectories’ (in configuration space). The idea 
is that in the quantum world, instead of there being just one classical ‘reality’, represented 
by one such trajectory (one history). There is a great complex superposition of all these 
‘alternative realities’ (superposed alternative histories). Accordingly, each history is to be 
assigned a complex weighting factor, which we refer to as an amplitude if the total is 
normalized to modulus unity, so the squared modulus of an amplitude gives us a 
probability. We are usually interested in amplitudes for getting from a point a to a point b 
in configuration space. 

The magic role of the Lagrangian is that it tells us what amplitude is to be assigned to 
each such history. If we know the Lagrangian L, then we can obtain the action S, for that 
history (the action being just the integral of L for that classical history). The complex 
amplitude to be assigned to that particular history is then given by the deceptively simple 
formula 
 

Complex amplitude  exp( ) exp[ ]
i i

S Ldt  
ℏ ℏ

. 

 
For each history, there will be some action S, where S is the integral of the Lagrangian 
along the path. All the histories are supposed to ‘coexist’ in quantum superposition, and 
each history is assigned a complex amplitude exp( / )iS ℏ . How are we to make contact 
with Lagrange’s requirement, perhaps just in some approximate sense, that there should 
be a particular history singled out for which the action is indeed stationary? 

The idea is that those histories within our superposition that are far away from a 
‘stationary-action’ history will basically have their contributions cancel out with the 
contributions from neighboring histories. This is because the changes in S that come 
about when the history is varied will produce phase angles exp( / )iS ℏ  that vary all 
around the clock, and so will cancel out on the average. Only if the history is very close 
to one for which the action is large and stationary (so the argument runs), will its 
contribution begin to be reinforced by those of its neighbors, rather than cancelled by 
them. because in this case there will be a large bunching of phase angles in the same 
direction. 

This is indeed a very beautiful idea. In accordance with the ‘path-integral’ 
philosophy, not only should we obtain the classical history as the major contributor to the 
total amplitude—and therefore to the total probability—but also the smaller quantum 
corrections to this classical behavior, arising from the histories that are not quite classical 
and give contributions that do not quite cancel out, which may often be experimentally 
observable. 
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25. Action in the Feynman path integral 

The Feynman approach was inspired by Dirac’s paper (1933) on the role of the 
Lagrangian and the least-action principle in quantum mechanics. This eventually led 
Feynman to represent the propagator of the Schrödinger equation by the complex-valued 
path integral which now bears his name. At the end of the 1940s Feynman (1950, 1951) 
worked out, on the basis of the path integrals, a new formulation of quantum 
electrodynamics and developed the well-known diagram technique for perturbation theory 

We start with the Lagrange equation 
 

cl clL Ld

dt

      v r
, 

 
or 
 

clLd

dt





P

r
, 

 
The conjugate momentum P can be derived as 
 

cl
cl

L
dt L dt

 
 

  P
r r

, 

 
or 
 

cl
d L dt  P r . 

 
Here we use a type of techniques which is used in the Feynman-Hellmann theorem; 
 

ˆ
ˆ( ) ( ) ( ) ( )

H
H       

 
 


 

. 

 
Thus, the action 

cl
S can be expressed by 

 

cl cl
S L dt d   P r . 

 
in the Feynman path integral. The change in phase of the wave function is 
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1 1
clS d   P r

ℏ ℏ
. 

 
This simple form of the phase is essential point derived from the Feynman path integral. 
 
26. Wave function for a charged particle in the presence of magnetic field 

From the theory of the Feynman path integral, it is found that the change in phase of 
the wave function is closely related to the action of classical Lagrangian, even for the 
phenomena of quantum mechanics. The change in phase in the presence of a vector 
potential A, is given by 
 

1
d  P r

ℏ
, 

 
where P is the canonical momentum and p is the kinetic momentum, 

cl
L  is the Lagrangian 

and is defined by 
 

21
2cl

q
L m

c
  v A v , 

 
where e is the charge of particle and m is the mass. The canonical momentum P is defined 
by 
 

clL q
m

c


  


P v A

v
. 

 
From the classical Lagrange theory. The equation of motion is governed by the Lagrange 
equation, 
 

( )cl clL Ld d

dt dt

 
 

 
P

v r
. 

 
The time derivative of the kinetic momentum p is equal to an external force F such as 
Lorentz force, 
 

d

dt


p
F ,  (Newton’s second law) 
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which will be shown later. In quantum mechanics, it is known that the canonical 
momentum P (but not p) is expressed by the differential operator 
 

i
 P

ℏ
. 

 
We will discuss the application of the Feynman path integral in the next section 2S. 
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APPENDIX-I 

 
Mathematical formula-1 
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)
4

exp()exp(
2

2
c

a

b

a
cbxaxdx 





  

 
for 0]Re[ a  
 
((Mathematica)) 
 

 
________________________________________________________________________ 
APPENDIX-II  Action in the classical mechanics 

We start to discuss the calculus of variations with an action given by the form 
 


f

i

t

t

dtxxLS ],[ ɺ , 

 

where 
dt

dx
x ɺ . The problem is to find has a stationary function )(xxcl  so as to minimize 

the value of the action S. The minimization process can be accomplished by introducing a 
parameter .  
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ti tf

xi

xf

x

t

xcl t

x t

 
Fig. 
 

ii xtx )( , ff xtx )( , 

 
)()()( ttxtx cl   , 

 
where  is a real number and 
 

iicl xtx )( , ffcl xtx )( , 

 
0)( it , 0)( ft , 

 







dtd
x

x )(
0















, 
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 
f

i

t

t

clcl dtttxttxLxS ))()(),()((][  ɺɺ , 

 
has a minimum at  = 0. 
 



f

i

t

t

cl dttxLxS )]([][ 0 , 

 

0
][

0


















xL

, 


  d
L

L 0| 


 , 

 









































f

i

f

i

f

i

f

i

f

i

t

t

t

t

t

t

t

t

t

t

dtt
x

L

dt

d

x

L

dtt
x

L

dt

d
t

x

L
dtt

x

L

dtt
x

L
t

x

LxS

)()]([

)()(|)}()(

)}()({
][









ɺ

ɺɺ

ɺ
ɺ

 

 (1) 
 
The Taylor expansion: 
 

 
f

i

t

t

clcl dtttxttxLxS ))()(),()((][  ɺɺ  

 
((Fundamental lemma)) 

If 
 

0)()( 
f

i

t

t

dtttM   

 
for all arbitrary function (t) continuous through the second derivative, then M(t) must 
identically vanish in the interval fi ttt  .  

________________________________________________________________________ 
From this fundamental lemma of variational and Eq.(1), we have Lagrange equation 
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0)( 







x

L

dt

d

x

L

ɺ
. (2) 

 
L can have a stationary value only if the Lagrange equation is valid.  

In summary,  
 


2

1

),(
x

x

dtxxLS ɺ , 

 

S = 0  0)( 







x

L

dt

d

x

L

ɺ
. 

 
APPENDIX-III: Lagrangian of charged particle in the electromagnetic field 

 
(III-1)  Lagrangian of free particle 

((L.D. Landau and E.M. Lifshitz)) 

 
In the course of an infinitesimal time interval dt the moving clocks go a distance dr. Let us 

ask what time interval (proper time d ) is indicated for this period by the moving clocks. In a 
system of coordinates linked to the moving clocks, the latter are at rest, ' 0d r . Because of the 
invariance of intervals 
 

2 2 2 2 2 2 2 2( ) ( ') ( ) ( ) ( )c d d c d c dt d    r r  

 
or 
 

2 2
2

2
2

2

2

1
( ) ( )

1
1 ( )

1

d dt d
c

d
dt

c dt

v
dt

c

  

 

 

r

r
 

 

where 
d

dt


r
v  is the velocity. Integrating this expression, we can obtain the time interval 

indicated by the moving clocks when the elapsed time according to a clock at rest is  . The 
action S is given by 
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2
2 2

21
v

S Ldt mc d mc dt
c

        , 

 
yielding to the expression of the Lagrangian for the free particle as 
 

2
2

21
v

L mc
c

   . 

 
where m is the mass of the particle. Note that the units of L is erg. 
 
(III-2)  Four-potential of the electromagnetic field. 

The four-dimensional vector for the scalar potential and vector potential, 
 

( , )A  A ,  (Gaussian) 
 

( , )A
c

 
 A .  (SI units) 

 
Hereafter, we use the Gaussian units for the four-dimension potential. We note that 
 

( , )x ct  r ,  ( , )x ct  r , 

 
and 
 

2 2 2x x c t r
   . 

 
Generalized potential U is obtained as 
 

( )

1
( )

1
( )

q
Udt A dx

c

q
c dt d

c

d
q dt dt

c dt

q dt
c












  

  

  

A r

r
A

A v

 

 
or 
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1

( )U q
c

  A v . 

 
where q is a charge of particle. The Lagrangian for a charged particle in an electromagnetic field 
has the form  
 

2
2

2

1
1 ( )

L K U

v
mc q

c c


 

     A v
 

 
The action S is expressed by 
 

2
2

1 12' '
( 1 )

t t

t t

v q
S Ldt mc q dt

c c
        A v   

 
The generalized momentum is 
 

2

21

L mv q q

c cv

c


    




P A p A
v

, 

with 
 

2

21

m

v

c





v
p . 

 
We also note that 
 

clS d P r .  (Feynman path integral) 

 
The Hamiltonian H is obtained as follows. 
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2
2

2

2 2
2

22

2

2

2

2

1
( ) 1 ( )

1

1

1

H L

q v
mc q

c c c

m v
mc q

cv

c

mc
q

v

c







  

       

   



 



P v

p A v A v

v

  

 
or 
 

2 2
2

2

2

2
2 2 2 2

2

2

2

2 2 2 2

2 2 2

( )
1

(1 )

1

( )

H q m c

vc

c

v
m c m v

c

v

c

m c c

q
m c

c






 




 

  

p

P A

 

 
or else 
 

2 4 2 2( )
q

H m c c q
c

   P A  

 
For low velocities, i.e., for classical mechanics, the Lagrangian goes over into  
 

21
2

q
L mv q

c
   A v   

 
and the Hamiltonian is 
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2 2
2

22

2

2

2

2

1

1

1

H L

m v
mc q

cv

c

mc
q

v

c





  

   



 



P v

v
 

 
In this approximation, 
 

q
m

c
  p v P A  

 
The final form of the Hamiltonian is given by 
 

2 2 21 1
( )

2 2
q

H H mc q q
m m c

       p P Aɶ   

 
(III-3)  Derivation of Lorentz force from Lagrangian 

The Lorentz force, which is a force on a particle with a charge q due to an electric field E and 
magnetic field B,  
 

1
( )q

c
  F E v B   

 
where v is the velocity of particle 
 

1
c t




  

A

E ,  (electric field) 

 
 B A .   (magnetic field) 

 
The gauge transformation is defined by 
 

'A A   ,  
1

'
c t


 


 


 

 
where   is an arbitrary function. Suppose that the Lagrangian L is expressed as 
 



 115  

2
2

2

2

1
1 ( )

1 1
( )

2

v
L mc q

c c

m q
c

T U





     

   

 

A v

v A v   

 
is the velocity-dependent potential energy. Note that 
 

2

21

L m q q

c c

c


    




v
P A p A

v v
  

 
Lagrange equation is 
 

d L L
L

dt

        v r
, 

 
with 
 

( )
q

L q
c

     v A , 

 

where 
d

dt
 is a total derivative. We note that 

 
( ) ( ) ( )

( ) ( )
     

     

v A v A A v

v A A v
  

 
Since v and r are independent variables in the Lagrangian, we have 
 

( ) 0 A v ,  ( ) 0  A v  

 
leading to 
 

( ) ( ) ( )      v A v A v A  

 
We note that 
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( )

[ ( ) ]

d L d q

dt dt c

d q d

dt c dt

d q

dt c t

     

 


   



p A
v

p A

p A
v A

  

 
with 
 

( )

i i i i i

i
i

dA A A A A
x y z

dt t x y z

A
A

t

   
   

   


  


v

ɺ ɺ ɺ

 

 
or 
 

( ) ]
d

dt t


  


A A

v A   

 
So that, we have 
 

( )
q

L q
c

      v A  

 
We get the final form of the Lagrange equation as 
 

[ ( ) ] ( )
d q q

q
dt c t c




        


p A
v A v A  

 
or 
 

1
( ) [ ( ) ( ) ]

1
( ) ( )

1
( )

d q
q

dt c t c

q
q

c t c

q
c






       




     


  

p A
v A v A

A
v A

E v B

 

 
which is equivalent to the Lorentz force, with 
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( ) ( ) ( )        v A v A v A v B  

 
(III-4)  Gauge transformation  

The original Lagrangian 0L  is changed into a new Lagrangian 0 'L  during the Gauge 

transformation, 
 

0

0

0

1
' ( ' ' )

1
( ) ( )

( )

( , )

L q
c

q
q

c t c

q
L

c t

q d t
L

c dt




 






   


     




   


 

A v

A v

v

r

 

 
But as we know, adding to the Lagrangian a total time derivative of a function of r and t does not 

change the equations of motion. The function 
d

dt


 always satisfies the Lagrange equation. Note 

that 
 

[ ] [ ]
d d d d

dt dt dt dt

    
 

  r r rɺ
 

 
since 
 

( )

d
x y z

dt t x y z

t

    




   
   
   


  


v

ɺ ɺ ɺ

 

 

[ ] [ ]
d d d d

dt x dt dt x x dt

    
 

  ɺ
, 

 

[ ] [ ]
d d d d

dt y dt dt y y dt

    
 

  ɺ
, 

 

[ ] [ ]
d d d d

dt z dt dt z z dt

    
 

  ɺ
. 
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In other words,  
 

( ') '
d

L L
dt

 


 r rɺ
 

 
is equal to  
 

0 0( )
d

L L
dt

 


 r rɺ
 

 

independent of the form 
d

dt


. 

 
((Comment)) 
Yasushi Takahashi (Note on Mathematical Physics, Kodansha, 1992) in Japanese. 

 
"It may be reasonable to use the expression of the Lagrangian (classical system) given by 
 

21
2

q
L mv q

c
   A v . 

 
The reason is why the Lagrange equation for this form of Lagrangian yields the equation of 
motion of the charged particles with charge q with the Lorentz force F, 
 

1
( )

d
q

dt c
   

p
F E v B . 

 
(III-5)  Feynman path integral 

 

( )
cl

q
S d d

c
     P r p A r   

 
For the closed path 
 

( )

B

d d

d

   

 

 

 


A r A a

B a

�
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((Stokes’ theorem)) 
 

1
B

q q
d

c c
   A r

ℏ ℏ
�   

 
Magnetic quantum flux (fluxoid) 
 

0
2

2 2
hc c c

e e e

 
   

ℏ ℏ
. 

 
7

0 2.0678 10    Gauss cm2 (cgs units) 

 
or 
 

15
0 2.0678 10    T m2  (SI units) 
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