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1. Introduction 

Both Dirac and Feynman first recognized the importance of the change in phase of the 

wave function in quantum mechanics. In particular, Feynman found that the phase in the 

electron wave function can be expressed in good approximation by the action for the 

classical Lagrangian even for the quantum mechanics.  

When I taught the Feynman path integral at the class of Phys.422 (Quantum mechanics 

II) in Spring, 2021, I finally realized that the Onsager theory of de Haas-van Alphen effet 

(dHvA) published in 1952 (Philosophical Magazine) can be clearly understood in terms of 

the Feynman path integral. In spite of the quantum mechanics, the change in the phase of 

wave function for moving electrons along the path can be expressed in good approximation 

by 

 

exp( ) exp( )cl cl

i i
S L dt 
ℏ ℏ

, 

 

along the classical path, where clS  is the action and clL  is the Lagrangian where the 

classical motion of electrons is governed by the Lagrange equation. When the electron 

returns to the starting point after completing the closed orbit in the real space, the change 

of the phase in wave function should be equal to 2 n , where n is an integer. 

The quantization of the magnetic flux is experimentally observed in various kinds of 

electron systems (single electron or Cooper pair of two electrons) in the presence of an 

external magnetic field. The de Haas-van Alphen (dHvA) effect, Aharonov-Bohm (AB) 

effect, and superconductivity are among typical examples of such quantum phenomena. 

Note that the property of magnetic quantum flux is closely related to the unique and unusual 

role of vector potential A; 

 

(i) The phase in the wave function of electrons (single electron or Cooper pair) may 

undergo a change as 

 

' exp( )
iq

c


 

ℏ
, 

 

after the gauge transformation, 
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'  A A ,  
1

'
c t


   


. 

 

where A is the vector potential and   is a scalar potential. 

(ii) We also notice that the canonical momentum P is related to the kinetic momentum 

mp v  (satisfying the Newton second law for mechanics) with the relation 

 

q
m

i c
   P v A
ℏ

.  (This relation will be discussed later in detail) 

 

Here, we will present a possible explanation for these quantum behaviors, using the 

concept derived mainly from the Feynman path integral. We will also show that the 

approach of the Feynman path integral is actually equivalent to that based on the 

Schrödinger equation, in particular, the Ginzburg-Landau equation for the 

superconductivity. The magnetic quantum flux in the superconducting ring will be 

discussed on the basis of these models. The content of our discussion is as follows. 

 

(a) de Haas-van Alphen effect (Onsager), 

(b) Difference between canonical momentum and kinetic momentum, 

(c) Aharonov-Bohm effect based on the Feynman path integral, 

(d) Equivalence between methods of Feynman path integral and Ginzburg-

Landau equation, for superconductor, 

(e) Quantization of magnetic flux, 

(f) London equation and magnetic field penetration depth (Meissner effect), 

(g) Magnetic flux trapped in superconducting ring, 

(h) Discussion of the measurement results of quantized magnetic flux both in the 

ZFC (zero-field cooled) state and FC (field-cooled state); Goodman et al 

(1971). 

 

((Note)) ZFC magnetization measurement 

We have experiences of doing experiments on spin glasses (aging dynamics) using the 

SQUID magnetometer (Quantum Design, MPMS XL-5) with an ultra low field capability. 

From a experimental view-point, it is very important to realize the noticeable difference 

between the ZFC and FC magnetization. In our case, first, a remnant magnetic field is 

reduced to zero field (exactly less than 3 mOe) at 298 K. Then the sample is cooled from 

298 K to 1.9 K in zero field for the ZFC process. The Earth magnetic field at Binghamton, 

NY is 0.3 Oe (=3.0x10-5 T). 

 

________________________________________________________________________ 

((Fritz W. London)) 
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Fritz Wolfgang London (March 7, 1900 – March 30, 1954) was a German physicist 

and professor at Duke University. His fundamental contributions to the theories of 

chemical bonding and of intermolecular forces (London dispersion forces) are today 

considered classic and are discussed in standard textbooks of physical chemistry. With his 

brother Heinz London, he made a significant contribution to understanding 

electromagnetic properties of superconductors with the London equations and was 

nominated for the Nobel Prize in Chemistry on five separate occasions. 

https://en.wikipedia.org/wiki/Fritz_London 

 

 

 

Picture of Prof. Fritz London 

https://physicstoday.scitation.org/pto/info/resources/whitepapers 

 

((Lars Onsager)) 

Lars Onsager (November 27, 1903 – October 5, 1976) was a Norwegian-born 

American physical chemist and theoretical physicist. He held the Gibbs Professorship of 

Theoretical Chemistry at Yale University. He was awarded the Nobel Prize in Chemistry 

in 1968.  

https://en.wikipedia.org/wiki/Lars_Onsager 
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Picture of Prof. Lars Onsager 

https://en.wikipedia.org/wiki/Lars_Onsager#/media/File:Lars_Onsager2.jpg 

 

2. Action in the Feynman path integral 

The notion of path integral (sometimes also called functional integral or integral over 

trajectories or integral over histories or continuous integral) was introduced, for the first 

time, in the 1920s by Norbert Wiener (1921, 1923, 1924, 1930) as a method to solve 

problems in the theory of diffusion and Brownian motion. This integral, which is now also 

called the Wiener integral, has played a central role in the further development of the 

subject of path integration. 

It was reinvented in a different form by Richard Feynman (1942, 1948) in 1942, for the 

reformulation of quantum mechanics (the so-called ‘third formulation of quantum 

mechanics’ besides the Schrödinger and Heisenberg ones). The Feynman approach was 

inspired by Dirac’s paper (1933) on the role of the Lagrangian and the least-action principle 

in quantum mechanics. This eventually led Feynman to represent the propagator of the 

Schrödinger equation by the complex-valued path integral which now bears his name. At 

the end of the 1940s Feynman (1950, 1951) worked out, on the basis of the path integrals, 

a new formulation of quantum electrodynamics and developed the well-known diagram 

technique for perturbation theory 

We start with the Lagrange equation 

 

cl clL Ld

dt

      v r
, 
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or 

 

clLd

dt





P

r
, 

 

The conjugate momentum P can be derived as 

 

cl
cl

L
dt L dt

 
 

  P
r r

, 

 

or 

 

cl
d L dt  P r . 

 

Here we use a type of techniques which is used in the Feynman-Hellmann theorem; 

 

ˆ
ˆ( ) ( ) ( ) ( )

H
H       

 
 


 

. 

 

Thus, the action 
cl

S can be expressed by 

 

cl cl
S L dt d   P r . 

 

in the Feynman path integral. The change in phase of the wave function is 

 

1 1
clS d   P r

ℏ ℏ
. 

 

This simple form of the phase is essential point derived from the Feynman path integral. 

 

3. Action 
cl

S  of free particle 

The Lagrangian for the free particles is 

 

21

2
L m v , 

 

where m is the mass of particle. The Lagrange equation is 
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( ) 0
d d L L

m
dt dt

 
   

 
P v

v r
, 

 

where P  is the canonical momentum (conjugate momentum), 

 

clL



P

v
, 

 

So that we have 

 
2 2clL m T   P v v , 

 

where T is the kinetic energy of free particle. In the Feynman path integral, the phase is 

given by 

 

exp( ) exp( )

exp( )

exp( )

exp( )

exp( )

cl cl

i i
S L dt

i
dt

i
d

i
m d

i
d



 

 

 

 











P v

P r

v r

p r

ℏ ℏ

ℏ

ℏ

ℏ

ℏ

 

 

where mp v . Note that for the free particle, we have m P p v . Thus, we have an 

appropriate form of the phase as 

 

exp( ) exp( ) exp( )cl

i i i
S d  p r p r≃
ℏ ℏ ℏ

. 

 

This expression of the phase factor is the same as that of the plane wave and spherical wave. 

We also note that this is the same as Maupertuis’ principle (1741) [Pierre Louis 

Maupertuis] 

 

2S d Tdt     P r , 

 

(Landau-Lifshitz). 
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((Pierre Louis Maupertuis: (1698 – 1759) French.  

Maupertuis is often credited with having invented the principle of least action; a 

version is known as Maupertuis's principle – an integral equation that determines the path 

followed by a physical system. His work in natural history is interesting in relation to 

modern science, since he touched on aspects of heredity and the struggle for life. 

 

4. Change in phase of wave function for a particle in the presence of magnetic 

fielA 

From the theory of the Feynman path integral, it is found that the change in phase of 

the wave function is closely related to the action of classical Lagrangian, even for the 

phenomena of quantum mechanics. The change in phase in the presence of a vector 

potential A, is given by 

 

1
d  P r

ℏ
, 

 

where P is the canonical momentum and p is the kinetic momentum, clL  is the Lagrangian 

and is defined by 

 

21

2
cl

q
L m

c
  v A v , 

 

where e is the charge of particle and m is the mass. The canonical momentum P is defined 

by 

 

clL q
m

c


  


P v A

v
. 

 

From the classical Lagrange theory. The equation of motion is governed by the Lagrange 

equation, 

 

( )cl clL Ld d

dt dt

 
 

 
P

v r
. 

 

The time derivative of the kinetic momentum p is equal to an external force F such as 

Lorentz force, 

 

d

dt


p
F ,  (Newton’s second law) 
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which will be shown later. In quantum mechanics, it is known that the canonical 

momentum P (but not p) is expressed by the differential operator 

 

i
 P
ℏ

. 

 

If we assume that the wave function is given by the form 

 
( )

0( ) ie   r
r , 

 

we get the expression, 

 

( )

0( ) [ ( )] ( )ie r
i

      rP r r
ℏ

ℏ , 

 

leading to the relation 

 

1
( ) P r

ℏ
, 

 

in our cases where the amplitude of the wave function is constant. So that, the canonical 

momentum is directly related to the phase of the wave function. Using this relation, we get 

the change of phase as 

 

1 1
( )clS d d        P r r r

ℏ ℏ
. 

 

In quantum mechanics, canonical momentum can be replaced by the quantum 

mechanical operator;  

 

,
ˆˆ[ , ] 1i j i jP r

i

ℏ

, 

 

or 

 

ˆ ( )
i i

     r P r r
ℏ ℏ

, 
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in the r  representation. The conjugate momentum is represented by 

 

i
 P
ℏ

. 

 

5. de Haas-van Alphen (dHvA) effect 

It is well known that a conduction electron in metal undergoes a rotation around a 

closed orbit in the presence of an external magnetic field B. At low temperatures and strong 

magnetic field, the magnetization oscillates with 1/B with the frequency F which is closely 

related to the extremal cross section of the Fermi surface normal to the direction of 

magnetic field. This phenomenon is called the de Haas-van Alphen effect. 

In 1952, Lar Onsager spent at the Cambridge University as a sabbatical stay from Yale 

University. He stayed at the Mont Laboratory of Cambridge University. During the times, 

David Shoenberg and his group (A. Brian Pippard) studied the Fermi surface of metals 

such as copper, bismuth, and so on, by using a de Haas-van Alpen effect. Just before 

Onsager returned to Yale University at the end of his sabbatical stay, he submitted his 

theory how to understand the principle of de Haas van Alphen effect. According to Pippard, 

experimentalists in the Mond laboratory did not understand the theory proposed by 

Onsager.  

When I was a graduate student of the University of Tokyo, I had an opportunity to do 

experiments of de Haas-van Alphen (dHvA) effect of copper. In order to understand the 

principle, I read the book of Charles Kittel, (APPENDIX of Introduction to Solid State 

Physics, 4th edition). I understood the essential point of the dHvA effect. However, I did 

not understand the starting assumption of the paper of Onsager (or Kittel); the difference 

between the mechanical linear momentum ( mp v ) and the canonical momentum ( )P . 

However, once we learn the principle of the Feynman path integral we now clearly 

understand the difference between p and P. Note that sometimes, Π  is used instead of P. 
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Fig.1 de Haas van Alphen effect in gold with B//[110]. The oscillation is from the 

dog’s bone orbit. The signal is related to the second derivative of the 

magnetic moment with respect to field. (C. Kittel).  

 

6. Action clS  for a charged particle in the presence of vector potential A 

We start with a Lagrangian given by 

 

21

2

q
L m

c
  v A v , 

 

where A is the vector potential and B is the magnetic field ( B A ). The canonical 

(conjugate) momentum is defined by 

 

clL q q
m

c c


    


P v A p A

v
  (conjugate momentum) 

 

Where mp v  (the kinetic momentum) and is different from the conjugate momentum P. 

Note that the Hamiltonian H is given by 
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2

2

2

1
( ) ( )

2

1

2

1
( )

2

H L

q q
m m

c c

m

q

m c

  

     



 

P v

v A v v A v

v

P A

  

 

In quantum mechanics, P corresponds to P̂  (operator) in quantum mechanics. 

 

21 ˆˆ ˆ( )
2

q
H

m c
 P A , 

 

where we have the commutation relation, 

 

,
ˆˆ ˆ[ , ] 1i j i jP x

i

ℏ

, 

 

and 

 

( )
i i

     r P r r
ℏ ℏ

. 

 

7. Role of mechanical momentum mp v : Newton’s second law 

The Hamiltonian of the charged particle in the presence of vector potential Â  and 

scalar potential  , is given by 

 

2 21 1ˆˆ ˆ ˆ( )
2 2

q
H q m q

m c
      P A v , 

 

with 

 

ˆˆˆ ˆ
q

m
c

  p v P A . 

 

where p̂  is the operator of kinetic momentum. Note that the Lagrangian L is given by 

 

21

2

q
L m q

c
    v A v  
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Now we use the Heisenberg’s equation of motion, 

 

 

 

2
2 2 2

2
2 2

2

2 2

ˆˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ, ,
2

ˆ ˆ ˆ ˆ, ,
2

22 ˆˆˆ ˆ( ) ,
2

ˆˆ ˆ( ) ,

ˆ( )
ˆ

x x

x x y z x

x y z x

yz
y z x x

z y y z x

x

d m
mv v H

dt i

m mq
v v v v v

i i

m mq
v v v v

i i

iq Biq Bm q q
v v P A

i m c m c i c

q q
B v B v P

c i

q
q

c x

   

      

     

       

     


  


v B

ℏ

ℏ ℏ

ℏ ℏ

ℏℏ

ℏ ℏ

ℏ

 

 

where 

 
2

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,

2
ˆ

x y x y y y x y

z y

v v v v v v v v

i q
B v

m c

          


ℏ

  

 

   2

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,

2
ˆ

x z x z z z x z

y z

v v v v v v v v

i q
B v

m c

    

 
ℏ

 

 

ˆ ,
ˆ

xP
i x

     

ℏ
 

 

Note that the electric field and the magnetic field are defined by 

 

 E , B A . 

 

Thus, we have the Newton’s second law 
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ˆ ˆ( )

1
[ ( )]

x x

x

x

d q
mv q

dt c x

q
c


   



  



v B

E v B

F

 

 

where F is the Lorentz force. So that, we get the  

 

ˆ ˆ 1
ˆ( )

d d
m m q E

dt dt c
    

p v
F v B . 

 

So that, the kinetic momentum p is directly related to the external force through the 

Newton’s second law. 

 

8. Commutation relation of velocity operators (Dyson) 

We consider the commutation relations: 

 

2

2

ˆ ˆˆ ˆˆ ˆ[ , ] ,

ˆ ˆˆ ˆ, ,

ˆ ˆˆ ˆ, ,

ˆ ˆ
( )

ˆ ˆ

1̂

x y x x y y

x y x y

x y y x

y x

z

q q
mv mv P A P A

c c

q
P P A A

c

q q
P A P A

c c

A Aiq

c x y

iq B

c

     

      

       

 
 

 



ℏ

ℏ

  

 

or 

 

2
ˆˆ ˆ[ , ] 1z

x y

iq B
v v

m c

ℏ

 

 

Similarly, we have 

 

2
ˆˆ ˆ[ , ] 1x

y z

iq B
v v

m c

ℏ

, 
2

ˆˆ ˆ[ , ] 1
y

z x

iq B
v v

m c

ℏ

 

 

We also have the relations 
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1 ˆˆˆ ˆ ˆ[ , ] ,

1 ˆ ˆ,

1̂

i j i i j

i j

ij

v x P qA x
m

P x
m

im


   

   


ℏ

 

 

or 

 

ˆˆ ˆ[ , ] 1i j ijv x
im


ℏ

. 

 

Similarly, we get 

 

1 ˆˆˆ ˆ[ , ] , ,

1 ˆˆ ,

1̂

i j i j j

i j

ij

q
x v x P A

m c

x P
m

i

m


    

   


ℏ

 

 

Derivative of the commutation relation: 

 

ˆ ˆ ˆ[ , ] [ , ] 0i j i j

d
x mv v mv

dt
  , 

 

or 

 

ˆ
ˆ ˆ[ , ] [ , ] 0

j

i i j

F
x v v

m
  . 

 

9. Explanation of de Haas-van Alphen effect (Onsager, Kittel, Chambers) 

Suppose that the electron moves along a closed orbit in the presence of a magnetic field 

along the z axis. According to the Feynman path integral, the phase factor is given by 
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exp( ) exp( )

exp( )

exp[ ( )

exp( ) exp( )

cl cl

i i
S L dt

i
d

i q
d

c

i iq
d d

c



 

  

   







 

P r

p A r

p r A r

ℏ ℏ

ℏ

ℏ

ℏ ℏ

  

 

for the charged particle in the presence of magnetic field. We now consider the two parts, 

separately the first part and the second part. The equation of motion of a particle of charge 

q in a magnetic field B is 

 

d q d

dt c dt
 

p r
B , 

 

(Lorentz force), where  ( )mp v  is the kinetic momentum of the particle and A is the 

vector potential. This may be integrated with respect to time to give 

 

q

c
 p r B , 

 

apart from an additive constant which does not contribute to the final result. Thus, one of 

the path integral is 

 

( )

( )

2 ( )

2

q
d d

c

q
d

c

q
a

c

q

c

   

   

  

  

 



p r r B r

B r r

B r

� �

�
  

 

  is the magnetic flux contained within the orbit in real space  

 

( )Ba  r , 

 

where ( )a r  is the area enclosed by closed orbit in the real space. The other path integral is 
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( )

( )

q q
d d

c c

q
d

c

q
Ba

c

q

c

   

 



 

 



A r A a

B a

r

� �

  

 

using the Stokes’ theorem, where da  is the area element (vector) in real space. The phase 

is given by 

 

1

1

2

clS

q
d d

c

q q

c c

q

c

 

   

   

  

 p r A r

ℏ

ℏ ℏ

ℏ ℏ

ℏ

 

 

Suppose that the change of phase is 2( )n      after passing along the closed orbit, 

where  is constant. Then the magnetic flux is quantized as 

 

0

2
( )( )

( )( )

2 ( )

c
n

q

ch
n

q

n








   

  

  

ℏ

, 

 

Or 

 

 

2
( )

c
n

q


  

ℏ
, 

 

where  
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7 2

0 2.067833848 10 G cm   .  (magnetic flux quantum). 

 

The area of the orbit in the k-space is related to the area of the orbit in the r-space 

 

2( ) ( ) ( )
c

a a
qB

r k
ℏ

. 

 

The magnetic flux is expressed in terms of 

 

2 2 1
( ) ( ) ( ) ( ) ( )

c c
Ba B a a

qB q B
   r k k

ℏ ℏ
, 

 

or 

 

2 1 2
( ) ( ) ( )

c c
a n

e B e


   k

ℏ ℏ
, 

 

or 

 

2
( ) ( )

q
a B n

c


 k

ℏ
. 

 

In the Fermi surface experiments we may be interested in the increment 
1

( )
B

   

 

21 1 1
( )

( )

q

B F a k c


  

ℏ
, 

 

or 

 

( )
2

c
F a k

q

ℏ

. 

 

In the experiment of dHvA effect, it is known that the magnetization of metals oscillates 

as a function of 1/B with the frequency as 

 

2
sin( )

F
M

B


 , 
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where F is directly related to the area of cross section of Fermi surface. 

 

( )
2

c
F a

q
 k
ℏ

. 

 

Experimentally, one can find the extremal cross section ( )a k , which is perpendicular to 

the direction of magnetic field. 

 

10. Mond Laboratory before and after the publication of Onsager’s paper 

I found a very interesting article in the book entitled Out of Crystal Maze by Hoddeson 

et al. In 1952, Lars Onsager stayed at the Mond Laboratory (Cambridge University), where 

the Fermi surfaces in metals such as copper and bismuth were experimentally determined 

by the de Haas-van Alphen (dHvA) effect, by David Shoenberg and A.B. Pippard, and 

others. Experimentalists were struggling to understand the principle of the dHvA effect. 

Onsager proposed his model on the quantization of magnetic quantum flux inside the 

closed orbits of conduction electrons. 

 

((Hoddeson et al.)) 

This was basically the situation until at least the 1950/1951 academic year, when the 

Norwegian-American quantum chemist Lars Onsager visited Shoenberg's Mond 

Laboratory on a year's sabbatical from Yale. As Shoenberg recalls: 

 

For quite a while [even] before then he had made cryptic remarks. about a simple 

interpretation of the de Haas-van Alphen periodicities in terms of Fermi surface 

areas. But I could never understand just what he meant. It was only after repeated 

requests that he should write down his ideas that, practically on the eve of his return 

to Yale, he produced a three-page paper for Phil. Mag., which has since become a 

classic. He showed that the period [of de Haas-van Alphen oscillations] was 

inversely proportional to the extremal area of cross-section of the Fermi surface. It 

turned out that I. M. Lifshitz had had the same idea independently but had not 

published it; eventually it was I. M. Lifshitz and his students who developed the 

general theory in detail. 

 

Lifshitz's original contribution had come as early as 1950 "at a session of the Soviet 

Academy of Sciences [of the Ukrainian SSR in Kiev] when he read a paper that showed 

how the movement of an electron following a complex law of dispersion in a magnetic 

field can be quantized." As Shoenberg's former research student Brian Pippard recalls, 

Shoenberg and Onsager had shared an office during the latter's visiting year at Cambridge. 
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But even after Onsager had written his paper, at least for a year or two, Cambridge 

physicists tended to give it little importance. Pippard recalls: 

 

There wasn't a lovely lot of algebraic quantities and integrals and things which you 

could evaluate [in this paper] because Onsager was talking in geometrical terms—

and I think David [Shoenberg] was disappointed to see "so little" coming out and 

failed to realize that Onsager had provided the complete clue. So nothing happened. 

The paper was published and nobody in Cambridge took any notice. They went on 

measuring the de Haas-van Alphen effect and fitting it with ellipsoidal shapes [in 

which the relation between energy and wave vector is assumed to be quadratic]. 

 

That was the situation at the end of 1952. 

 

11. Demonstration of the notation 
i

 P
ℏ

 (Richard Feynman) 

I found a very interesting article on the canonical momentum (conjugate momentum). 

In his book of the Feynman Lectures on Physics, Richard Feynman demonstrated that  

 

i
 P
ℏ

. 

 

using the concept of the gauge transformation. This is amazing to us. Here we will 

reproduce his discussion from his book. Note that the use of gauge transformation is 

essential to the demonstration of the above form of P. 

 

((REFERENCES)) 

R.P. Feynman, R.B. Leighton, and M. Sands; The Feynman Lectures on Physics, The New 

Millennium edition, Vol. III: Quantum Mechanics (Basic Books, 1964).  

 

11.1 Gauge transformation (definition) 

Here we use the notation q for the charge of electron, for convenience. According to 

the theory of the gauge transformation, the vector potential A and a scalar potential    

 

'  A A ,  
1

'
c t


   


, 

 

where   is an arbitrary function of x, y, z, and t. We note that Schrödinger equation is 

given by 
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21
[ ( ) ]
2

q
q i

m c t





   


P A ℏ , 

 

for A  and    

 

21 '
[ ( ') '] '
2

q
q i

m c t





   


P A ℏ , 

 

for 'A  and ' , where the wave function changes from   to '  as 

 

' exp( )
iq

c
  

ℏ
. 

 

11.2 Gauge used in the Aharonov-Bohm effect 

In the above equations, we assume that ' 0A  such that 0   ; 0  is independent 

of t. 

 

0' 0  A A ,  '   , 

 

leading to 

 

0 d  A r , 

 

0 0' exp( ) exp( )
iq iq

d
c c

       A r
ℏ ℏ

, 

 

where the new wave function is expressed by 0'  . Thus, we have the Schrödinger 

equation 

 

2 0
0

1
( )
2

q i
m t





  


P ℏ . 

 

When 0  , 0  is the wave function of the free particle. So that, we can conclude that  

 

i
 P
ℏ

. 

 

11.3 Probability current J and probability density   
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For the original gauge, we still have the same Schrödinger equation, 

 

21
[ ( ) ]
2

q
q i

m c t





   


P A ℏ . 

 

In quantum mechanics, the probability density is given by 

 
*   , 

 

and the continuity equation is 

 

d

dt
  J , 

 

where J is the probability current. We note that 

 
*

*d

dt t t

 
  

 
 

 
. 

 

Using the Schrödinger equation, we get 

 

21
[ ( ) ]
2

q
i q

t m c





   


P Aℏ , 

 

and its complex conjugate, 

 
*

*2 *1
[ ( ) ]
2

q
i q

t m c





    


P Aℏ . 

 

Then we have 
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*
*

* 2 *2 *

* 2 *2 *

*

*

1 1 1 1
[ ( ) ] [ ( ) ]
2 2

1
[ ( ) ( ) ]

2

1
[ ( ) ( )

2

( ) ( ) ]

d

dt t t

q q
q q

i m c i m c

q q

mi c c

q q

mi i c i c

q q

i c i c

 
  

   

   

 

 

 
 

 

       

   

     

      

P A P A

P A P A

A A

A A

ℏ ℏ

ℏ

ℏ ℏ

ℏ

ℏ ℏ

 

 

or 

 

* * * *1
[ ( ) ( ) ]

2

d

dt mi
       S S S S

ℏ
, 

 

where 

 

q

i c
  S A
ℏ

  * q

i c
  S A
ℏ

. 

 

Note that 

 
* * * *

1

* * *

* * * * * *

* * * * *

( ) ( )

( ) ( )

( ) ( )

[ ( )]

I

q q

i c i c

q

i c

q

i c

   

   

       

       

   

       

         

         

S S S S

A S A S

S S A S A S

S S A A

ℏ ℏ

ℏ

ℏ

 

 

where 

 

* * * * * *

* *

( ) ( )

( )

q q

i c i c

i

         

   

           

   

A S A S A A A A

A A

ℏ ℏ

ℏ
 

 

We now calculate the term defined by * * *( )    S S   
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* * *

2

* * * * *

* * * * * *

* * * * * *

* * * * *

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

I

q

c

   

       

       

       

       

  

       

       

       

       

S S

S S S S

S S S S

S S S S

S S A A

 

 

where 

 

* * * * *

* *

* *

* *

( ) ( )

( )

( )

q q

i c i c

i i

q

c

q

c

       

   

   

   

         

     

   

    

S S A A

A A

A A

ℏ ℏ

ℏ ℏ

 

 

Thus, we get the relation 1 2I I
i


ℏ

, leading to 

 

* * * *

1

2

* * *

1
[ ( ) ( ) ]

2

1

2

1

2

1
( )

2

d

dt mi

I
mi

I
mi i

m

    

   

   





   

 

S S S S

S S

J

ℏ

ℏ

ℏ

ℏ
 

 

The Probability current is obtained as 

 

* * *

*

*

1
( )

2

Re[ ]

Re[ ]

m

m

   

 

 

 





J S S

S

v
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The current density is related to the velocity v as 

 
*Re[ ] J v , 

 

q q
m

c i c
     v S P A A

ℏ
, 

 

q
m

c
 P v A . 

 

12. Two kinds of momenta (Richard P. Feynman) 

In his book, Feynman pointed out the difference between the canonical momentum P 

and mp v . The difference of these momenta is clearly explained as follows by Feynman. 

________________________________________________________________________ 

REFERENCES 

R.P. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, The New 

Millennium Edition Vol. III: Quantum Mechanics (Basic Books, 2010) 

_______________________________________________________________________ 

((Feynman)) 

The equation for the current is rather interesting, and sometimes causes a certain 

amount of worry. You would think the current would be something like the density of 

particles times the velocity. The density should be something like *  , which is o.k. And 

each term in  

 

* * *

ˆ ˆ
1

{ ( ) ( ) }
2

q q
A A

c c

m m
   

 
 

P P

J   

 

looks like the typical form for the average-value of the operator 

 

1 ˆ( )
q

m c
P A , (1) 
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so maybe we should think of it as the velocity of flow. It looks as though we have two 

suggestions for relations of velocity to momentum, because we would also think that 

momentum divided by mass, ˆ / mP , should be a velocity. The two possibilities differ by 

the vector potential. It happens that these two possibilities were also discovered in classical 

physics, when it was found that momentum could be defined in two ways. One of them is 

called “kinematic momentum,” but for absolute clarity I will in this lecture call it the “mv-

momentum.” This is the momentum obtained by multiplying mass by velocity. The other 

is a more mathematical, more abstract momentum, some times called the “dynamical 

momentum,” which I’ll call “p-momentum.” The two possibilities are 

 

mv-momentum = mv, 

p-momentum: 
q

m
c

 P v A  (2) 

 

It turns out that in quantum mechanics with magnetic fields it is the p-momentum which is 

connected to the gradient operator P̂ , so it follows that Eq.(1) is the operator of a velocity. 

I’d like to make a brief digression to show you what this is all about—why there must be 

something like Eq.(2) in the quantum mechanics. The wave function changes with time 

according to the Schrödinger equation in Eq.(3) 

 

21ˆ [ ( ) ]
2

q
i H q

t m i c
   


    


A

ℏ
ℏ . (3) 

 

If I would suddenly change the vector potential, the wave function would not change at the 

first instant; only its rate of change changes. Now think of what would happen in the 

following circumstance. Suppose I have a long solenoid, in Fig.2. And there is a charged 

particle sitting nearby. Suppose this flux nearly instantaneously builds up from zero to 

something. I start with zero vector potential and then I turn on a vector potential A.  
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Fig.2 The electric field outside a solenoid with an increasing current. 

 

That means that I produce suddenly a circumferential vector potential A. You’ll remember 

that the line integral of A around a loop is the same as the flux of B through the loop. Now 

what happens if I suddenly turn on a vector potential? According to the quantum 

mechanical equation the sudden change of A does not make a sudden change of  ; the 

wave function is still the same. So the gradient is also unchanged. 

But remember what happens electrically when I suddenly turn on a flux. During the 

short time that the flux is rising, there is an electric field generated whose line integral is 

the rate of change of the flux with time: 

 

1

c t


 


E A . 
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That electric field is enormous if the flux is changing rapidly, and it gives a force on the 

particle. The force is the charge times the electric field, and so during the build up of the 

flux the particle obtains a total impulse (that is, a change in mv) equal to /q c A . In other 

words, if you suddenly turn on a vector potential at a charge, this charge immediately picks 

up an mv-momentum equal to /q c A . But there is something that is not changed 

immediately and that’s the difference between mv and /q c A . And so the sum 

q
m

c
 P v A  is something which is not changed when you make a sudden change in the 

vector potential. This quantity P is what we have called the p-momentum and is of 

importance in classical mechanics in the theory of dynamics, but it also has a direct 

significance in quantum mechanics. It depends on the character of the wave function, and 

it is the one to be identified with the operator  

 

q
m

i c
   P v A
ℏ

. 

 

13. Aharonov-Bohm effect 

Here we discuss the Aharonov-Bohn effect by using the Feynman path integral. 
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Fig.3 Schematic diagram of the Aharonov-Bohm experiment. Electron beams are 

split into two paths surrounding the long solenoid. The beams are brought 

together at a screen, and the resulting quantum interference pattern depends 

upon the magnetic flux strength, despite the fact that the electrons only 

encounter a zero magnetic field. Path denoted by red (counterclockwise). 

Path denoted by blue (clockwise). 

 

We now consider the phase difference between two paths in the Aharonov-Bohm effect. 

A beam of electrons is split into two paths, and pass either side of a long solenoid, before 

being recombined. The beams are kept well away from the solenoid, so they encounter 

only regions where B = 0. However, the potential vector A is not zero. We consider the two 

paths; path denoted by red (counterclockwise) and path denoted by blue (clockwise). The 

change of the phase along the red path 
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1

1
( )

1
( )

red
red

red

red

d

q
m d

c

q
d

c

  

  

  







P r

v A r

k A r

ℏ

ℏ

ℏ
ℏ

 

 

Here we note that the kinetic momentum is given by 

 

p kℏ   

 

since there is no external force on electron along the red path;  

 

0
d

m
dt

 
v

F .  

 

The change of the phase along the blue path, 

 

1

1
( )

1
( )

blue
blue

blue

blue

d

q
m d

c

q
d

c

  

  

  







P r

v A r

k A r

ℏ

ℏ

ℏ
ℏ

 

 

The phase difference between two paths is obtained as 

 

( )

2
( )

red blue

red blue

q
d d d

c

q
d d

c

  




  

     

    

  



k r k r A r

A a

ℏ

ℏ

�   

 

Using the Stokes’ theorem. Noting that B A , we get the change of phase is 

 

2

2

q
d d

c

q
d

c








    

   

B a
ℏ

ℏ
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or 

 

0

2
d

  

 

  


 

 

where q e  for single electron, 

 

0

2

2

c

q


 

ℏ
  with  q e . 

 

The first term is the phase change without magnetic field and the second term is the phase 

change in the presence of magnetic field. 

 

14. Magnetic flux quantization in superconducting ring 

As a typical example, we apply the concept of quantum phase derived above, to the 

superconductivity, in particular superconducting ring in the presence of magnetic field. 
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Fig.4 Superconducting ring. The magnetic field is applied along the z axis, normal 

to the ring. There is no current inside of the superconducting ring (C. Kittel). 

There are inner and outer edge currents only over the penetration depth from 

surfaces. 

 

We now consider the magnetic flux quantization in superconductivity. According to the 

Feynman path integral, the change of the phase is expressed by 

 
*

*1 1
( )

q
d d m d

c
           P r r v A r
ℏ ℏ
� � . 

 

We note that the current density is related to the velocity v  as * *n qj v . Inside the 

superconductor ring, we have 0J . So that the change of the phase is rewritten as 
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*

*

*

*

q
d

c

q
d

c

q
B d

c

q

c

  

  

 

 







A l

A a

a

ℏ

ℏ

ℏ

ℏ

�

 

 

When 2   , the magnetic quantum flux is quantized as 

 

0*

2 2

2

c ch

q e

 
    

ℏ
. 

 

Note that *n  the number density of Copper-pairs, and it is estimated as / 2n n  . 
* 2m m , and * 2q e   (e>). 

 

15. London equation and Meissner effect in superconductor 

From the equation,  

 
*

*1 1
( )

q
d d m d

c
           P r r v A r
ℏ ℏ
� � , 

 

the London equation of superconductors can be derived as 

 
*

* q
m

c
  v A ℏ , 

 

or 

 
*

*

1
( )

q

m c
  v Aℏ , 

 

or 

 
* * *

* *

*
( )

n q q
n q

m c
   J v Aℏ . 
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We may take the rot of both sides to obtain the London equation 

 
* *2 * *2

* *

n q n q

m c m c
     J A B . 

 

U sing the Maxwell’s equation; 
4

c


 B J  and 0 B , we can derive the London 

equation  

 
* *2

*
( )

4

c n q

m c
     J B B  

 

or 

 

,
* *2

* 2

4
( )

n q

m c


   B B , 

 

or 

 
* *2

2

* 2 2

4 1

L

n q
B

m c




  B B , 

 

where L  is the London penetration depth, 

 

* 2 2

* *2 24 4
L

m c mc

n q ne


 
  . 

 

The magnetic field reduces to zero over the penetration depth from the surface of the 

system (Meissner effect). 
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Fig.5 The magnetic field penetrates into the superconducting phase, over the 

London penetration depth. The current becomes zero inside the 

superconducting phase. 

 
16. Derivation from Schrödinger equation: current density J 

Heisenberg’s equation of motion: 

 
*
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The probability current density is given by 
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*
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*
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The current density is derived as 
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2*2*
* *

* *
[ ]

2

qq

m i m c


       J A

ℏ
. 

 

Now we assume that 
 

 ie . 

 

where   is independent of r and t. Since 

 

 
2** 2i , 

 

we have 
 

* *
2 2*

*
( ) s

q q
q

m c
     
ℏ

ℏ
J A v  

 
or 

*
*

s

q
m

c
  A vℏ . 

 

This equation is generally valid. Note that J is gauge-invariant. Under the gauge 
transformation, the wave function is transformed as 

 
*

'( ) exp( ) ( )
iq

c


 r r

ℏ
. 

 
This implies that 

 

c

q

ℏ




*

'  , 

 

Since '   A A , we have 

 
* * * *

' ( ' ') [ ( ) ( )] ( )
q q q q

c c c c


             J A A Aℏ ℏ ℏ

ℏ ℏ ℏ ℏ
. 

 
So the current density is invariant under the gauge transformation. Here we note that 

 

( ) ( ) exp[ ( )]i  r r r . 

 
and 
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( ) {exp[ ( )] ( ) } [ ( ) ( ) exp[ ( )] ( ) ]i i i
i i

           
ℏ ℏ

P r r r r r r r . 

 

If ( ) r  is independent of r, we have 

 
( ) [ ( )] ( )   ℏP r r r  

 

or 
 

( ) ℏP r . 

 

Then we have the following relation 
 

*
*

s

q
m

c
   ℏP A v  

 

when )(r  is independent of r. 

In summary, the approach from the Ginzburg-Landau equation leads top the same 

results derived from the Feynman path integral. 

 

17. Approach from the Ginzburg-Landau equation: Flux quantization 

We start with the current density 
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*
( )

s s

q q
q

m c
     J A v
ℏ

ℏ
. 

 

Suppose that 
2* sn =constant, then we have 
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The path of integration can be taken inside the penetration depth where s
J =0. 
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where  is the magnetic flux. Then we find that 

 


ℏc

q
n

*

12 2 , 

 

where n is an integer. The phase  of the wave function must be unique, or differ by a 

multiple of 2 at each point, 
 

n
q

c
*

2 ℏ
 . 

 
The flux is quantized. When |q*| = 2|e (for |Cooper pair of electrons), we have a magnetic 

quantum fluxoid; 
 

e

ch

e

c

22

2
0 

ℏ
 = 2.06783372 × 10-7 Gauss cm2. 

 

18. Magnetic field penetration depth 

We start with the current density (Ginzburg-Landau theory) 
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We assume that   (real). 
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Then we have 

 
*2 2

*
( )
4

qc

m c




  B B , 



 

38 

 

 
or 
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Then we have London’s equation 
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where 
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The solution of the above differential equation is given by 

 

)/exp()0()( xxBxB ZZ  , 

 
where the magnetic field is directed along the z axis. 
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The current J flows along the y direction. 
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Fig.6 The distribution of the magnetic induction B(x) (along the z axis) and the 

current density (along the y axis) near the boundary between the normal 

phase and the superconducting phase. The plane with x = 0 is the boundary. 

 

 
 

Fig.7 Meissner effect, which can be observed in the ZFC state. B = 0 inside the 

sphere (superconductor). We use Mathematica (ContourPlot and 
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StreamPlot). See the detail in Superconductivity (M.S. Suzuki and I.S. 

Suzuki). 

 

19. Comment by Parks on the superconducting current in superconducting ring 

Long ago, it was suggested by Fritz London that if a supercurrent flows in a 

superconducting ring, the magnetic flux maintained in the hole by the current should be 

quantized (in the FC state). In his article, Parks discussed the current inside the 

superconducting ring. We show his interesting discussion on the quantized magnetic flux   

as follows. 

 

R.D. Parks, Quantized Magnetic Flux in Superconductors, Science, Dec. 11, 1964. New 

Series Vol. 146, No. 3650 (Dec.11, 1964) p.1429-1435 (American 

Association for the Advancement of Science).  

https://www.jstor.org/stable/1714816 

 

For the Superconducting cylinder with very thin wall, we have 
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The London penetration depth L
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For convenience, we change n to n . Thus, we get 
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The kinetic energy of the system is 
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where 

 
2R B  , 

 

and B is the magnetic field in the hole of the ring or cylinder). 
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Fig.8 Plot of the normalized kinetic energy 0
/

KE
y f f  as a function of 

normalized magnetic flux 0
/x  . n is a quantum number (integer). 

 

 
 

Fig.9 Plot of the normalized current density 0
/

s
y J J  as a function of 

normalized magnetic flux 0
/x  . n is a quantum number (integer). 

 

20. Magnetic flux in the ZFC state and FC state 

 

(a) FC state with 0B    

At c
T T , the sample is in the absence of external magnetic field. Next, the external 

magnetic field ( 0
B ) is applied to the sample (Sn, type-1 superconductor). Then, the sample 

is cooled down to the lower temperature below Tc. We call such a state as the FC (field 

cooled) state. At the fixed temperature T ( c
T T ), the magnetic field is gradually removed. 

The magnetic flux is now trapped in the superconducting ring (or cylinder) without 

magnetic field. 
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Fig.10 The measurement of magnetic flux of superconducting ring in the FC state. 

The process between the point 2 and the point 3 is reversible for the path 

2 3  and path 3 2  at 0
T T . 
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Fig.11 FC state. The magnetic field distribution near the superconducting ring, and 

the edge current. Figures taken from P. Mangin and R. Kahn, 

Superconductivity An Introduction (Springer International Publishing AG, 

2017). 
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Fig.12. FC state. The magnetic field distribution near the superconducting ring and 

edge currents inside the ring. c
T T  0

0 B B  . The direction of the outer 

edge current is opposed to that of the inner edge current. 
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Fig.13 FC state. The outer edge current and inner edge current below c
T  at B = 0, 

as a function of the distance. The system is cooled in the presence of 

magnetic field (FC state). Below c
T  the magnetic field is decreased to zero.  

 

(b) FC (field cooled) state: c
T T  and B = 0 

As we pass the transition temperature under applied field, superconducting currents 

appear near the inner and outer surfaces in order to expel the magnetic field from the 

superconductor. We note that they turn in opposite directions. The field lines are pushed 

towards the exterior and interior. 

 

 
Fig.14 FC state. The magnetic field distribution. The quantized magnetic flux is 

trapped in the superconducting ring. Figures from P. Mangin and R.Kahn, 

Superconductivity An Introduction (Springer International Publishing AG 

2017). 
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(a) 

 

 
 

(b) 
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(c) 

 

Fig.15 FC state. The system is cooled from the normal phase ( cT T ) to the 

superconducting phase ( c
T T ) in the presence of external magnetic field 

(FC state). Below Tc, the external magnetic field is decreased to zero. (a), 

(b) and (c) The magnetic flux is trapped in the superconducting ring. B = 0. 

The magnetic field distribution and the edge currents. The direction of the 

outer edge current is the same as that of the inner edge current. 
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Fig.16 FC state. Outer edge current and inner edge current below c
T  at B = 0. The 

system is cooled in the presence of magnetic field (FC state). Below c
T , 

then the magnetic field is decreased to zero. 0B  . 

 

(c) Zero-field cooled (ZFC) state 
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Fig.17 ZFC state. The system is cooled from the high temperature TH (the point 1) 

to T0 (<Tc) ( the point 2, below Tc) in the absence of external magnetic field. 

At the temperature T0, an external magnetic field is increases from B = 0 to 

B0 (the point 3). The path between the point 3 and the point 4 is reversible 

(the path 3 4  and the path 43) at 0
T T . 

 

After cooling in zero field, a magnetic field is applied and then turned off while 

staying in the superconducting phase (Meissner effect) 
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Fig.18 ZFC state. Figures taken from P. Mangin and R. Kahn, Superconductivity 

An Introduction (Springer International Publishing AG, 2017). The 

Meissner effect is observed for c
T T  and 0

0 B B  .  

 

22. Expression for the Magnetic flux for the FC state and ZFC state 
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We start with the expression 

 

4
a

B B M      (cgs units) 

 

Where a
B  is the external magnetic field and M is the magnetization. The magnetic flux is 

obtained as 

 

4
a

Ba B a Ma  , 

 

where a is the area of superconducting ring. The flux through the ring,  , is the sum of 

the flux ext
  from the external source and the flux sc

  from the superconducting 

currents which flow in the surface of the ring: 

 

ext sc
  . 

 

(a) ZFC state (Meissner effect) 

Because of the Meissner effect, in ZFC state we have 

 

0 ( )
ext sc ZFC

    , 

 

or 

 

( )
sc ZFC ext

  . 

 

(b) FC state 

In FC state, we have 

 

0
( )

ext sc FC
n     ,  (n: integer) 

 

or 

 

0
( )

sc FC ext
n    . 

 

(c)  The difference ( ) ( )
sc FC sc ZFC

      

Thus, we have the difference between  
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0
( ) ( )

sc FC sc ZFC
n      . 

 

Schematically, we make a plot of ( ) ,  ( ) , ,  
sc FC sc ZFC

    as a function of ( )
sc FC

  as 

follows. 

 

 
 

Fig.19 Plot of ( ) ( )
sc FC sc ZFC

     (red line), ( )
sc FC

  (green line) and 

( )
sc ZFC

  (blue line) as a function of ext
 . The negative slope in ( )

sc FC
  

with ( )
sc FC

  indicates the diamagnetic behavior due to the Meissner effect. 

Note that ( ) ( )
sc FC sc ZFC

    for 0
ext

   

 

23. Experiments by Goodman et al (1971) for quantum magnetic flux 

The magnetic flux, represented by the symbol Φ, threading some contour or loop is 

defined as the magnetic field B multiplied by the loop area S, i.e. Φ = B⋅S. Both B and S 

can be arbitrary, meaning Φ can be as well. However, if one deals with the superconducting 

loop or a hole in a bulk superconductor, the magnetic flux threading such a hole/loop is 

actually quantized. The (superconducting) magnetic flux quantum Φ0 = h/(2e) ≈ 

2.067833848...×10−15 Wb is a combination of fundamental physical constants: the Planck 

constant h and the electron charge e. Its value is, therefore, the same for any superconductor. 

The phenomenon of flux quantization was discovered experimentally by B. S. Deaver and 

W. M. Fairbank and, independently, by R. Doll and M. Näbauer, in 1961. The quantization 
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of magnetic flux is closely related to the Little–Parks effect, but was predicted earlier by 

Fritz London in 1948 using a phenomenological model.  

 

https://en.wikipedia.org/wiki/Magnetic_flux_quantum 

 

7
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 Tesla m2 (SI  units) 

 

((Experiment)) Superconducting ring 

W.L. Goodman, W.D. Willis, D.A. Vincent, and B.S. Deaver, Jr., Phys. Rev. B 4, 1530 

(1971). 

Here we show the excellent experimental results of the superconducting cylinder by 

Goodman et al.  
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Fig.20 (i) Experiment-1 (1 2 ) ZFC state (cooling down from high temperature 

H
T  above Tc in the absence of a magnetic field). (ii) Experiment-2 (point 3): 

Meissner effect (ZFC state). 

(iii) After the preparation of FC state (3 4 5  ). Measurement of 

magnetic flux in the FC state (5 to 6, and 6 to 5) 

 

 
 

Fig.21 Trapped flux as a function of the magnetic field in which the cylinder was 

cooled below its critical temperature c
T . ( ) ( )

sc FC sc ZFC
     as a 

function of the external magnetic field a
B . 
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Fig.28 Trapped flux as a function of the field in which the cylinder was cooled 

through its critical temperature. The dots and crosses are data from two 

different runs at 3.68 and 3.60 K, respectively. The critical temperature of 

Sn is 3.72 K. 
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Fig.29 

Upper: Trapped flux as a function of the magnetic field in which the 

cylinder was cooled below critical temperature (FC state). The difference 

between the straight line and the lower curve gives exactly the trapped flux 

curve. When the cylinder is cooled through c
T  in the field and is unchanged 

when the field is turned off. 

 

Lower: flux produced by the cylinder in the field in which it was cooled 

below the critical temperature (FC state). Note that the lower figure (which 

may correspond to FC
 and 

ZFC
 ) is different from that in Fig.19, in sign. 

 

The straight line shows the flux produced by the cylinder when it is inserted into 

the applied field already superconducting and with no flux trapped (ZFC state). 
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Fig.30 Trapped flux as a function of temperature. The dashed line indicates a 

jump to the zero flux state. 
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Fig.31 Net flux in cylinder before the applied field was turned off as a function of 

the applied field. The circles and triangles are for opposite directed fields. 

The solid lines are separated by hc/2e in the vertical direction. (B.S. Deaver 

Jr. and W.M. Fairbank, Phys. Rev. Lett. 7, 43, (1961). Note that the lower 

figure (which may correspond to FC
 as shown in Fig.19) is somewhat 

different from the lower part of Fig.29. 

 

24. Summary 

Until 1940’s, the amplitude of the wave function in Schrödinger equation has been 

sufficiently understood. The square of the amplitude indicates the probability of finding a 

quantum system in corresponding state (Born). How about the phase in the wave function? 

After 1940’s, physicists gradually came to understand the significance of the quantum 

phase. They tried to explain the strange nature of superconductivity in metals and 
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superfluidity of liquid 4He. Here are several important articles contributing to the 

understanding of quantum phase in 1950’s and early 1960’s. It is amazing that the 

following theories and experiments appeared in such short times.  

1. Dirac: the significance of Lagrangian in quantum mechanics. 

2. Feynman; Feynman path integral; relation between action and phase. 

3. London: discovery of London equation for the superconductivity. 

4. Ginzburg-Landau theory for the superconductivity.  

5. Onsager’s theory on the de Haas van Alphen effect in metals. 

6. Onsager and Feynman: quantized circulation in rotating He II of liquid 4He. 

7. BCS (Bardeen, Cooper, and Schrieffer) theory for the superconductivity; 

existence of Cooper pairs. 

8. Abrikosov: mixed phase with vortex lines in type II superconductors. 

9. Aharonov-Bohm effect; significance of the role of vector potential. 

10. Evidence of the quantization of magnetic flux in superconducting ring. 

11. Observation of quantization of circulation in liquid 4He (Vinen) 

12. Josephson: discovery of Josephson effect. 

 

((Nomenclature)) 

 

Continuity equation 

Probability current 

Probability density 

Canonical momentum (conjugate momentum) 

Kinematic momentum (Feynman) 

Dynamical momentum (Feynman) 
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APPENDIX 

Classical approach: A particle in the presence of electric field and magnetic field:  
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2

q
L T V m q

c
      v A v . 

 

Conjugate momentum 

 

L q
m

c


  


P v A

v
. 

 

Hamiltonian: 
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Equation of motion (Hamilton’s principle) 
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d
H q m

dt



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
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r
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d
H

dt


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
r v

P
. 

 

H is independent of v; 

 

0 H L
 

  
 

P
v v

, 

 

leading to 
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L q
m

c


  


P v A

v
. 

 

Here we use the formula of vector analysis. The proof of this formula will be given later. 

 

( ) ( ) ( ) ( ) ( )             F G F G G F F G G F   

 

We now calculate 
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for  A B v .  
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We note that 
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and 
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q
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v v v P A

v A

  

 

since P  is independent of r, and B A . Thus, we get 

 

( )
d q q

q
dt c c

      P v A v B  (1) 

 

We also have the relation 
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d d q d
m

dt dt c dt
 P v A  (2) 

 

From Eqs.(1) and (2), we have 
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d q d q q

m q
dt c dt c c
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Noting that 
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d d H
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r r P

, 

 

we get 

 

d e
m q

dt c
    v v B   (Lorentz force) 

 

((Matheamtica)) 

 

( ) ( ) ( ) ( ) ( )             A B A B B A A B B A  
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