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Translation operators are linear and unitary. They are closely related to the momentum operator;
for example, a translation operator that moves by an infinitesimal amount in the x direction has a
simple relationship to the x-component of the momentum operator. Because of this, conservation
of momentum holds when the translation operators commute with the Hamiltonian, i.e. when laws
of physics are translation-invariant.

Here we discuss the properties of the translation operator for the 3D system.

1. Translation operator
The state vector:

lv)=Jdrlr){rly).
where
(rlr)=6@r-r),
T(a)r)=|r+a).
Translation operator:
v) = lv) =T @),
with
T*(a)T(a)=1. Unitary operator

(a)

It is expected from the analogy of classical mechanics that
(W'Flw) = (w[flw)+ (v lalw ).

or



W[ @iT@|y)=(v|F +dy),
leading to the relation

T*(a)iT(a) =F +al,

or
#T(a)=T(a)f +al(a),
or
[7,T(a)]=al(a).
or

[F,T(a)] = ihif(a) =aT(a)
op
From this differential equation, we get the form of T (a)as

- A
T(a)= eXp(—Ep -a)
Using the commutation relation, we get

ff"(a)|r> = f"(a)f|r> +af(a))|r>
= (f"(a)r|r>+af"(a))|r> ,
=(r+ a)f"(a)|r>

This implies that T (a)| r> is the eigenket of 7 with the eigenvalue (r +a),
f"(a)|r> =|r +a> ,

or



(r+a|=(r|l"(a).
Note that

r)=T"(a)|r+a).
When r ->r—a, we get

lr—a)=T"(a)|r),
or

(r|T(a)={r -al

(b)

It is also expected from the analogy of classical mechanics that
(W'ply') = (w|Bly)-
or
W @pT@lw)=(w|blw),
leading to the commutation relation
T (@pT@=p, or  [pT(@)]=0.

Note that

b, 7y =22 F(ay=0
i Or

So that 7'(a) is independent of f .

We assume that the infinitesimal translation operator is given by

f(dr):i—%é-dr,



where

(a)

T*(dr)T(dr) =1,

T*(dr)FT(dr) =F +drl,
T*(dr)pT(dr)=p.

G is a Hermitian operator.

T (dr)F(dr) = (i + %G dr)(i —%é dr)

:i+é(GA+—GA)-dr

=1

Then we have

(b)

or

(©)

or

G' =G (Hermitian operator)

The commutation relation (1)

[f;,i—%(;’-dr]zo,

[$,:Gs1=0 with @, f = x,y,z.

The commutation relation (I1)

(i+%é-dr)f(i—%é-dr):1?+dri,



(G -dr)f — (G - dr) = E_dri :
1
or
S i) A~ Fin
D16, %,ldx, = —dx,1=—1Y_5,dx, ,
(o4 l l (o4

So we get the commutation relation

3. Infinitesimal translation operator

T(dr)y) =T (dr)[dr|r)ry)
= [drT(dr)|r)(ry)
= dr'|r'+dr><r'|1//>
= [dr'|r)(r'~dr|y)

Using the Taylor expansion

<r’—dr|l//> =y (r'-dr)=y(r')— %dr ,
we have

f(dr)|l//> = jdr'|r' [w(r') —Mdr]

= [ar|r () ——(r|bly) - dr]

=(i—%ir-dr)|l//>



since
- h
(rlply) ==V {rly)-
Then we have
T(dr) =i—%f;-dr .

4. Finite translation operator
The finite translation operator is given by

o 3 2 l ~ a N l A
T@)=lm(l-——p-—)" =exp(——p-a),
G= Bl =cjpeoDf G0
where we use the definition of ¢ ™ as

.. Xy
e =lim(l-—)".
( N)

N—>ow

5. Transformation function
Using the relation

(rloly) =29 (rlw) =2y

We assume that |1//> = |p>

(rlplp) =" (r]p)

or

2 (vlp)= 1 pirlp)

or



<r|p> =4 exp(%p ‘T) (A; constant)

We note that
(plp)=5(p—p)
Then we have
(p[p") =[ar(p|r)(r|p)
[ [dr expl- (p'-p)-1]

_| 4} @) a‘[% ®-p)]

=| 4] 27h)’s(p'-p)
leading to
|4|=@xh)™"
In conclusion, we have the transformation function as
(r|p) = srexn(epor).
(27h) h

6. Translation operator for two-body problem
We consider a Hamiltonian of two particles at r1 and r». p1 and p> are the momentum of
particles 1 and 2, respectively.



rr—12|)

0)

The Hamiltonian is given by

A 1 . 1 . A A
H:_pl2 +_p22 +V(|”1 -5

2m, 2m, )-

where V(|f] —f2|) is the interaction between two particles with mass m: and mo. This is so-called

the central field problem.

((Definition of Central-force Problem))

In classical mechanics, the central-force problem is to determine the motion of a particle
under the influence of a single central force. A central force is a force that points from the particle
directly towards (or directly away from) a fixed point in space, the center, and whose magnitude
only depends on the distance of the object to the center.

We consider the two particles (denoted by particle 1 and particle 2) located at r; and r2,
respectively. The position ket vector for these two particles is expressed by

|r1,r2>:|r1>l®|r2>2,



using the Kronecker product ® . Note that we have the commutation relations,

[iliaﬁlj] :ihé;ja [iziaﬁzj] :lhé;, >

[)%Ii’ﬁZj] =0, [)Acziaﬁlj] =0.
which means that the operators for particle 1 and particle 2 are completely independent each

other.
The total momentum is defined by

A

P=p +p,.
Using the closure relation, we can define the wave function as

|l//> = J-drldrz

non ) n ).

We now show that

V(7 - ). T @), (@)] =0
((Proof))
T,(@)T,@V (f -, )|r.r,) =V (r —6)T @75 @), r,)
= V(|r1 —r'2|)|r1 +a,r, +a>
V(i - AT @T,(@)|n.r,) =V (i - &) +a.r, +a)
= V(|r1 - r2|)|r1 +a,r, + a>'
Then we have
T,(@)T, (@)V (7, = &)\ 15) = V(i = BT (@), (@) 1,1 )
or
[7.(@)T, (a).V (|, —#))] =0.




Since

1
2m,

N N 1 . .
[7,()T,(a),— p," +=——p,"1=0,
2m,

we get the commutation relation
[7\(a)T, (), H]=0.
This means that there is a simultaneous eigenket |l//> of both YA“I (a)f S(a) and H , such that

Hly)=Ely), L@, @|y)=2y).

We also note that

T,(6a)T, (da) = exp(—%i)-&z) = i—%f’-é'a .
For any 6a, we have
[H,P]=0,
leading to
%<1//(t)|f’| 1//(t)> = %(1//(t)|[[fl ,13]| 1//(t)> =0. (Ehrenfest theorem)

This implies the conservation of the total momentum. In other words, the total momentum is a
constant of motion.

((In summary))
What is the physical meaning of the above result?

From H| | l//> =F | l//> , the wave function of the Schrodinger equation is given by
y(r.n)=(nnly).
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From f’l (a)f’ ) (a)| 1//> = /1| 1//>, we have

(n.n| L@ @)w) = - ar, ~aly) =y(r -ar-a)= 2y ().

Suppose that r, —a =0 (a can be chosen arbitrarily). Then we get
y(n—n,0)=Ay(n.n).

In other words, the wave function y(r,r,) is only dependent on the relative coordinate
r=n-n, yrn)=y().

The total momentum is a constant of motion. P = p, + p,

((Note))
The use of Kronecker product for the translation operators. (see the APPENDIX).

Instead of the use of f](a)f’2 (a), we can it using the Kronecker product

1,(2)®T,(a) = exp[~—(p, ®1+1©p,) 2]

where we define
P=p, ®1+1®p,,
instead of using the expression of
P= p,+p,-

6. Two-body problems: Classical mechanics

11



0)

Lagrangian:

L @iy L dn

L=om() o m(—3 —V(n-nl,
dr, dr,
pl:ml;’ Pzzng-
Center of mass:
_m +myr

I,
G
m +m,

Relative coordinate:

F=n-—n,

12



m,r mr
KL =r—

K=r;+

m +m,’ m +m,
The Lagrangian L can be written in terms of 7, and r

m, m,

) 1 )
)+ —m, (g —
m; +m, T m,

P’ =V (r

)

. 1 .
L(r,r,r;) =Eml(rG +
or
. 1. .. 1 .,
L(l",l",rG) :EMFG +§,U” —V(|l"|)
where the total mass is defined by
M=m +m,,

and the reduced mass is defined by

mm,

1
m, +m, u o mm,

Lagrange equations:

i(a_L)_a_L dfoL) o
de\or) or’ de\or, ) or,

Since L(r,r,r;)1s independent of r;, we find that the conjugate momentum

oL ) ) )
DPs :aTZMrG =mh +mr, =p, +p,,
G

is a cyclic (time-independent) (which means the momentum conservation because of no external
force). The conjugate momentum is given by

oL . o
p=—=ur=u(r,—r).
or

13



or

where

The Hamiltonian H can be written as
H=p, i;+p-r—L
) A 1 .
:PG"'G+P"'_[EM"62+EW2_V(|V|)]-

2 2
=P P 4%

2M  2u
where
Pl il
G MpGa ,Up

The total orbital angular momentum:

14



or

with

L. =L +1L,
=KhXp t+rnLXp,
m,r m mr m
=(rg +—=—)x(p+———p;) +(r; ———)x(~p+———
m, +m, m, +m, m, +m, m, +m,

=1, Xp.+Frxp

P;)

L =L ,+L

L.=r;xp;. L=rxp

Quantum Kepler problem

We now consider the quantum mechanics of the central force problem.

(1)

(i)

(111)

(iv)

The relative co-ordinate operator:

>
>

~>
Il
=
|
(38
-

The relative momentum operator:

m,p,—mp,

m, +m,

p=

The co-ordinate operator for the center of mass:

L M+ myP,
Fp=—"""">.
m; +m,

The momentum operator for the center of mass:

IA’G=IA’1+IA’2-

Note that p. = p,+ p, = P (total momentum)

(V)

The total angular momentum operator for the system:

15



L. =L +L,
with
Ly =75 % pg
L=¢xp (internal angular momentum)

The reduced mass is defined as

UL

m, +m,

8. The commutation relation:
We assume that

[)’eli’j&lj]zo’ [5‘\"21"5&2_/]:0’
[lalia]alj]:oa [[521"]52]‘]:0,
We note that

[5‘\:1,‘ ,]51]4] = lhé;, >

[X,,D,;1=1R0,

i >
for the same particle, and
[%,P,;1=0, [%,:,P,;1=0,
[X,;,%,,1=0, [P1i> P2;1=0,
for the different particles, where i = x, y, z, and j = x, y, z.

Based on the above relations, we discuss the commutation relations between F, p,r., p,,as

follows.

16



A A . MyD;—mp,;
[x,p,1=[%, — %;,———

m, + m,
m A A ~ ~
= 2 (X, P11+ : (X5, )]
m, + m, m, + m,

[ P =% = %002 1 + )]
=[5, P 1 =[50 22y
= ihS,1-ihs,1
=0

mx,; +nm,x,,

[)ACGNIA?G]']:[ ap1j+f72j]

m +m,

m A A m ~ ~
:—l[xli’plj]+—2[x2i’p2j]
m1+m2 m1+m2

= ihs, 1

mXy, +myX,, Myp; —=Mp,;

[Xe,0,1=1 ,
m1+m2 m1+m2

m.m ~ ~ m.m

=—12 [xli’plj]_ 2
m1+m2 m1+m2

=0

[)221"132]']

m,p,;, —mp,;

[ﬁGi’ﬁj] = [ﬁli +ﬁ2i’
my +m2

m A A my N N
= 2 [pli’plj]_ 2 [pzi’p2j]
m1+m2 m1+m2

=0
We note that the original Hamiltonian

~ 1 . 1 . A A
H=—p +— +V(r —r
2m1p1 2m2p2 (|1 2

)

can be rewritten as

17



A2 ~2

A=A0,+H, =25+ P . pq#).
2n
with

rel

A2
a,=2 ivq#).
2p

((Mathematica))
Using the commutation relations, we can directly show that

1 1 p.. P’
i’]z + i’zz = Lo + p_
2m, 2m, 2M 2u

Clear["Global *"]; pl = {plx, ply, plz};

ml m2
P2 = {p2x, p2y, p2z}; u= ———; Ml =ml + m2;
ml + m2
m2 pl - ml p2
p= ;
ml + m2
PG = pl +p2;
G.pG .
k1= 22, BB, FullSimplify;
2 M1 2u
l.p1 2.p2
K2=P P + P2.P // Simplify;
2ml 2 m2

K1 - K2 // Simplify
0

9. Reduction of the two-body problem
We note that

[i’G’I:Irel] = 0’
and
[I:[ai’G] :[I:[G +I:Irel’i’G] :[I:Irel’i’G] =0.

18



Then I:Ird and p, can all be simultaneously diagonalized. In other words, there exists a

simultaneous eigenstate | Pe» Er> .

Hg|po-E,) = Es|Po-E.)»  H,|pe.E,)=E,|ps.E,),
and

| pe,E,) = (H + H,.)| Po-E,) = (Eg + E,)| po, E, ) .
We note that

)

Hel po) =21 po)=Ec| po).

where
_ P
¢ oM

The wave function can be described by

w)=|pe)®|E,)=|ps)lv,), or v)=|pg.E.)
where

E)=|y,).

o) = |1s) @] r)

Based on the commutation relations,

10.  The representation of

[%60s Doy 1 = ihS, 1 [%,p,1=ihd,1,

[/ )

we can use the basis

”G”’>:|”G>®|”>’

19



for both the center-of mass co-ordinate and relative co-ordinate, corresponding to the basis for the
momentum basis

| pe.p)=|Ps)®| ).

The transformation functions are defined by

<rG|pG>: exp(ipG'rG),
h

1
(2@)3/2
and

(r|p) :;exp(ip-r).
(2@)3/2 h

The wave function in the position representation can be described by

v)=1pe)E) =Ipe)v.).

The representation of the wave function in the positional representation

{ro,rly) =(rs|pe )rly,) = eXP(%pG r)rlw,).

1
(2ﬂh)3/2

11.  Ehrenfest theorem for ()
We note that

[H,ps1=0.

From the Ehrenfest theorem, we have

d . 1/ . ~
E<pG>:E<[pG7H]>:Oa

leading to < f)G> =constant of motion. For simplicity, we assume that

20



P =0.

The we have the final form of the Hamiltonian as

A A ﬁz
H=H,="—+V({F).
2p

The Schrodinger equation is given by

P _
[2H + V(r)] Wr> = Er Wr>
or

W,
[—EV, +V (r)r

v,)=Elrly,).

12.  Rotation operator in Quantum mechanics
After the geometrical rotation;

r>Rr=r', (geometrical rotation)

we assume that the state vector changes from the old state |1//> to the new state |1//'> .

A

w')=Rly),

or

A

R",

W=
where R is a rotation operator in the quantum mechanics. It is natural to assume that
Wlely) = (w l'ly) =y [R#ly).
or
(IR #Rly) = (w[R#y).,

21



or

RYFR = NP .

The rotation operator is a unitary operator.

W) =lv),
or

R*R=RR" =1 (Unitary operator)
From Eq. (1),

PR = RRF .
Here we calculate
fl§| r> = l%ﬂ%ﬂ r> = l%ﬂ%r| r> = %r1§| r> )

1A3| r> is the eigenket of 7 with the eigenvalue Rr . So that we can write

Rlr)=|%).
When

Rr=r,,
or

r=R"r,

R%'r,) =|n),
or

22
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%7 )= R'r,).
For any r,

%) = R|r),

RR'|r)=RR7'r) =R 'r) =|r).
In summary, we have

(1) R'R=RR" =1.

2) R

r> :|‘.Rr>.
3)  (r|R*=(%r|.

@  Rr)=|%"r).

5)  (rlR=(%7|.

13.  Reotation matrix
Suppose that the vector r is rotated through & (counter-clock wise) around the z axis. The
position vector r is changed into r' in the same orthogonal basis {e1, e2}.

23



r

'
X1
X1

In this Fig, we have

e -e'=cosg e,-e'=sing

e -e,'=—sing’ e,-e,'=cosg
We define r and ' as

r'=x'e +x,'e, = xe,'"+x,e,’' ,
and

r=xe +xe,
Using the relation

e-r'=e -(x'e+x,'e,)=e -(xe'+x,e,")

' ' ' _ ' '
e, r'=e,-(x'e +x,'e;) = e, - (x¢,'+x,8,")
we have

x'=e -(xe'+x,e,") = x, cosg—ux,sing

x,'=e,-(xe,'+x,e,") = x,sing+x,cos¢g

24
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or including the x3 axis,

X' X, cosg —sing O0) x
X" [=R.(P)| x, |=|sing cosg O]x,|.
x;' X, 0 0 I\ x,

We note that

cos¢p —sing 0
R.(#)=|sing cosg 0],
0 0 1

and

cos(—¢) —sin(—¢) O cos¢p sing O
‘.R;l (¢)=| sin(—¢) cos(—¢) O |=|—-sing cosg O].
0 0 1 0 0 1

14. Infinitesimal rotation matrix around the 7 axis
We assume that ¢ = de (infinitesimally small angle);

'

x
r'=|y' =R (da)r
S
cos(da) sin(da) 0Y x 1 da 0)x
=| —sin(da) cos(da) 0| y|=|-da 1 0]y
0 0 L\ z 0 0 1)z
x+yda
=|—xda+y
z

or
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X'=x+yda
V'=y—-xda

Z'=z

Then we have

= <x +yda,y—xda,z

V)
(x+yvda,y—xda,z)

0 0
(xayaz) - da(x__y_)W(xayaZ)
0 ox

Then we have the expression of the infinitesimal rotation operator as
é;mn:i—édmg.
((Note))

L

z

v)=2 oy Drly).

v)=(r .

(rl(xp, - 3p.)

15.  Positional-space representation of L in spherical co-ordinates
We also use the ket vector |r) =

r,0, ¢> , Where r, 6, and ¢ are the spherical coordinates.

R (da)

r,0,4) =

r0,p+da),

26



R (de)

r, 49,¢> =

r,0,p—da).

(r,0,p—da|=(r,0,¢|R.(da).

thus we have

<r, 0,¢

On the other hand, we get

(r,0,4|R.(do)|y) =(r,0,¢

i—%izda|y/> —(r.0.4

Then we have

Pl ="2,
<I’,0,¢LZ l//>_ l a¢< a0a¢ l//>
or
o . hd
Lza—¢t//(r)— ; a¢t//(r)-

R(do)y)={r,0,¢—da|y)=(r0,¢

0
l//>—daa—¢<r,6?,¢

w) —%da(r,0,¢

v)

L.

V)

16. Finite rotation

0

Aa

Fig. oa=NAc.

27
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Ay 1 A N _ 1: "_i "N:. "_iﬁ"]\/
R.(a)=lm[R (Aa)]" = lim (1 hAO!LZ) lim (1 hNLZ)

i -
=exp(——alL
p( - 2)

((Note))
i a 7] -
lim(———7L)" = lim[(1+£5)* | =e”,
lim (i~ L)Y = lim((+4)" ]
where
__ o
p=-_al..

In general, we have the rotation operator
- i o~
R(a)=exp(——al-u).

In the case of an arbitrary quantum mechanical system, using the general angular momentum J

instead of L :

f(u(a) = exp(—%aj- u).
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APPENDIX-I
We show the following theorem (see Steeb)

Theorem:
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exp(zzl ®1+1® é) = exp(zzl ® i) exp(i ® é)

= exp(A4) ® exp(B)
((Proof))
Since
[A®1,1®B]=(A®1)1®B)-(1®B)(A®])
—A®B-A®B
=0
we have

exp(A®1+1® B) =exp(A®1)exp(1® B)
Now,
i | [P S By N L R o B
exp(A@l)—Zn:E(A@)l) , exp(l@B)—Zn:E(l@)B)
So that, we have

exp(A®1)exp(1® B) = Zﬁ(;@i)" (1® B)”

n,m

Note that

(A®1)'1®B)" = 4" ® B"

Thus, we get
n A NN 1 - R
exp(A®1)exp(I®B) =) —— A" ® B”
v 1m!
Y Lrey L
n! ~ m!
= exp(A) ® exp(B)
leading to
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exp(zzl ®1+1® E’) = exp(zzl ® i) exp(i ® E’)
= exp(A4) ® exp(B)

From this theorem we also get

exp(é ®1+1® 121) = exp(é ® i) exp(i ® 121)
= exp(B) ® exp(A)

APPENDIX-II
Product of the translation operators

. . i oA
Tl(a)®Tz(a)=eXp[—g(P1®1+1®P2)'a]

((Proof))

. . i i
T(a)®T,(a)= exp(—gpl -a)®exp(—%pz ‘a)
i Aoa
=eXP{—%[(p1-a)®l+l®(pz-a)]}
i o0 oA
=exp[—%(p1®1+1®pz)-a]

i~
=exp(——P-a
p(= )

where

o>

=p, ®1+1®p,
with

[ﬁl’ﬁ2]=0 D)
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since p,and p, are the momenta of particles 1 and 2, respectively.
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