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Translation operators are linear and unitary. They are closely related to the momentum operator; 

for example, a translation operator that moves by an infinitesimal amount in the x direction has a 

simple relationship to the x-component of the momentum operator. Because of this, conservation 

of momentum holds when the translation operators commute with the Hamiltonian, i.e. when laws 

of physics are translation-invariant. 

Here we discuss the properties of the translation operator for the 3D system. 

 

1. Translation operator 

The state vector: 

 

  rrrd , 

 

where 

 

)'(' rrrr   , 

 

arra )(T̂ . 

 

Translation operator: 

 

 )(ˆ' aT , 

 

with 

 

1̂)(ˆ)(ˆ  aa TT . Unitary operator 
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It is expected from the analogy of classical mechanics that 
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or 

 



 

2 

 

 arara  ˆ)(ˆˆ)(ˆ TT , 

 

leading to the relation 

 

1̂ˆ)(ˆˆ)(ˆ arara  TT , 

 

or 

 

)(ˆˆ)(ˆ)(ˆˆ aaraar TTT  , 
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From this differential equation, we get the form of ˆ( )T a as  
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Using the commutation relation, we get 
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This implies that ra)(T̂  is the eigenket of r̂  with the eigenvalue )( ar  , 

 

arra )(T̂ , 

 

or 
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)(ˆ arar
 T . 

 

Note that 

 

arar  
)(T̂ . 

 

When arr  , we get 

 

raar )(ˆ T , 

 

or 

 

arar )(T̂  

 

(b) 

It is also expected from the analogy of classical mechanics that 

 

 pp ˆ'ˆ'  . 

 

or 

 

 papa ˆ)(ˆˆ)(ˆ 
TT , 

 

leading to the commutation relation 

 

papa ˆ)(ˆˆ)(ˆ  TT , or  0)](ˆ,ˆ[ ap T . 

 

Note that 

 

ˆ ˆˆ[ , ( )] ( ) 0
ˆ

T T
i


 


p a a

r

ℏ
 

 

So that ˆ( )T a  is independent of r̂ .  

We assume that the infinitesimal translation operator is given by 

 

rGr d
i

dT  ˆ1̂)(ˆ
ℏ
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where 

 

1̂)(ˆ)(ˆ 
rr dTdT , 

 

1̂ˆ)(ˆˆ)(ˆ rrrrr ddTdT 
, 

 

prpr ˆ)(ˆˆ)(ˆ  dTdT . 

 

(a) Ĝ  is a Hermitian operator. 
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Then we have 

 

GG ˆˆ   (Hermitian operator) 

 

(b) The commutation relation (I) 

 

0]ˆ1̂,ˆ[  rGp d
i

ℏ
, 

 

or 

 

0]ˆ,ˆ[  Gp   with zyx ,,,  . 

 

(c) The commutation relation (II) 
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i i

d d d     G r r G r r r
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, 
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1̂)ˆ(ˆˆ)ˆ( rrGrrrG d
i

dd
ℏ

 , 

 

or 

 

 





  dx
i

dx
i

dxxG 1̂1̂]ˆ,ˆ[
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, 

 

So we get the commutation relation 

 

1̂]ˆ,ˆ[
i

xG
ℏ

 . 

 

From these results, it can be concluded that 

 

pG ˆˆ  . 

 

3. Infinitesimal translation operator 
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Using the Taylor expansion 
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since 

 

 rpr r
i


ℏ

ˆ . 

 

Then we have 

 

ˆˆ ˆ( ) 1
i

T d d  r p r
ℏ

. 

 

4. Finite translation operator 

The finite translation operator is given by 

 

)ˆexp()ˆ1̂(lim)(ˆ ap
a

pa 
 ℏℏ

i
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i
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N
, 

 

where we use the definition of xe as 
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5. Transformation function 

Using the relation 
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exp( )
i

A r p p r
ℏ

   (A; constant) 

 

We note that 

 

)'(' pppp    

 

Then we have 
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leading to 

 
3/2

(2 )A   ℏ   

 

In conclusion, we have the transformation function as 

 

)exp(
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1
2/3

rppr 
ℏℏ

i


. 

 

6. Translation operator for two-body problem 

We consider a Hamiltonian of two particles at r1 and r2. p1 and p2 are the momentum of 

particles 1 and 2, respectively.  
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The Hamiltonian is given by 

 

)ˆˆ(ˆ
2

1
ˆ

2

1ˆ
21

2

2

2

2

1

1

rrpp  V
mm

H , 

 

where )ˆˆ( 21 rr V  is the interaction between two particles with mass m1 and m2. This is so-called 

the central field problem. 

 

((Definition of Central-force Problem)) 

In classical mechanics, the central-force problem is to determine the motion of a particle 

under the influence of a single central force. A central force is a force that points from the particle 

directly towards (or directly away from) a fixed point in space, the center, and whose magnitude 

only depends on the distance of the object to the center.  

 

We consider the two particles (denoted by particle 1 and particle 2) located at r1 and r2, 

respectively. The position ket vector for these two particles is expressed by 

 

221121, rrrr  , 

O

VH»r1-r2»L

VH»r1-r2»L

O

r2

r1

a

a
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using the Kronecker product  . Note that we have the commutation relations, 

 

ijji ipx ℏ]ˆ,ˆ[ 11 , ijji ipx ℏ]ˆ,ˆ[ 22 , 

 

0]ˆ,ˆ[ 21 ji px , 0]ˆ,ˆ[ 12 ji px . 

 

which means that the operators for particle 1 and particle 2 are completely independent each 

other. 

The total momentum is defined by 

 

21
ˆˆˆ ppP  . 

 

Using the closure relation, we can define the wave function as 

 

  212121 ,, rrrrrr dd . 

 

We now show that 

 

0)](ˆ)(ˆ),ˆˆ([ 2121  aarr TTV  

 

((Proof)) 
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,)(

,)ˆˆ(,)(ˆ)(ˆ)ˆˆ(

V
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. 

 

Then we have 

 

212121212121 ,)(ˆ)(ˆ)ˆˆ(,)ˆˆ()(ˆ)(ˆ rraarrrrrraa TTVVTT   

 

or 

 

0)]ˆˆ(),(ˆ)(ˆ[ 2121  rraa VTT . 
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Since 

 

0]ˆ
2

1
ˆ

2

1
),(ˆ)(ˆ[

2

1

1

2

1

1

21  ppaa
mm

TT , 

 

we get the commutation relation 

 

0]ˆ),(ˆ)(ˆ[ 21 HTT aa . 

 

This means that there is a simultaneous eigenket   of both )(ˆ)(ˆ
21 aa TT  and Ĥ , such that 

 

 EH  ,   )(ˆ)(ˆ
21 aa TT . 

 

We also note that 

 

aPaPaa   ˆ1̂)ˆexp()(ˆ)(ˆ
21

ℏℏ

ii
TT . 

 

For any a , we have 

 

0]ˆ,ˆ[ PH , 

 

leading to 

 

0)(]ˆ,ˆ[)()(ˆ)(  tHt
i

tt
dt

d
 PP

ℏ
.  (Ehrenfest theorem) 

 

This implies the conservation of the total momentum. In other words, the total momentum is a 

constant of motion. 

 

((In summary)) 

What is the physical meaning of the above result? 

 

From  EH  , the wave function of the Schrödinger equation is given by 

 

 2121 ,),( rrrr  . 
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From  )(ˆ)(ˆ
21 aa TT , we have 

 

),(),(,)(ˆ)(ˆ, 2121212121 rrararararaarr  TT . 

 

Suppose that 02  ar  (a can be chosen arbitrarily). Then we get 

 

),()0,( 2121 rrrr   . 

 

In other words, the wave function ),( 21 rr  is only dependent on the relative coordinate  

 

21 rrr  , )(),( 21 rrr   . 

 

The total momentum is a constant of motion. 1 2 P p p  

 

((Note))  

The use of Kronecker product for the translation operators. (see the APPENDIX). 

 

Instead of the use of 1 2
ˆ ˆ( ) ( )T Ta a , we can it using the Kronecker product  

 

1 2 1 2
ˆ ˆˆ ˆ ˆ ˆ( ) ( ) exp[ ( 1 1 ) ]

i
T T      a a p p a

ℏ , 

 

where we define 

 

1 2
ˆ ˆˆ ˆ ˆ1 1   P p p , 

 

instead of using the expression of 

 

1 2
ˆ ˆ ˆ P p p . 

 

6. Two-body problems: Classical mechanics 
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Lagrangian: 

 

|)(|)(
2

1
)(

2

1
21

22
2

21
1 rr

rr
 V

dt

d
m

dt

d
mL , 

 

dt

d
m 1

11

r
p  ,  

dt

d
m 2

22

r
p  . 

 

Center of mass: 

 

21

2211

mm

mm
G 




rr
r . 

 

Relative coordinate: 

 

21 rrr  , 

 

O

C.M.

O

r2

rG
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m2

m1
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1
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m
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r
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1
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mm

m
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r

rr . 

 

The Lagrangian L can be written in terms of Gr  and r 

 

)()(
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1
)(

2

1
),,(

2

21

1
2

2

21

2
1 rrrrrrrr V

mm

m
m

mm

m
mL GGG 





 ɺɺɺɺɺ , 

 

or 

 

)(
2

1

2

1
),,(

22
rrrrrr VML GG  ɺɺɺ   

 

where the total mass is defined by 

 

21 mmM  , 

 

and the reduced mass is defined by 

 

21

21

mm

mm


 .  

21

111

mm



. 

 

Lagrange equations: 

 

rr 











 LL

dt

d

ɺ
, 0
















GG

LL

dt

d

rrɺ
. 

 

Since ),,( GL rrr ɺ is independent of Gr , we find that the conjugate momentum 

 

212211 pprrr
r

p 



 ɺɺɺ
ɺ

mmM
L

G

G

G , 

 

is a cyclic (time-independent) (which means the momentum conservation because of no external 

force). The conjugate momentum is given by 

 

1 2( )
L

 


   


p r r r
r

ɺ ɺ ɺ
ɺ

. 

 



 

14 

 

or 

 

1 2

1 2

1 2 2 1 1 2

1 2 1 2

2 1 1 2

1 2
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m m
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m m m m
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m m

 











p p
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where 
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2
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 ɺɺɺ , 

 

Since the momentum of the center of mass is given by 

 

21 ppp G , 

 

we get 

 

G
mm

m
ppp

21

1
1 

 ,  G
mm

m
ppp

21

2
2 

 . 

 

The Hamiltonian H can be written as 
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)](
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1

2

1
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rrrrprp
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where 

 

GG
M

pr
1

ɺ ,  pr

1
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The total orbital angular momentum: 
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1 2

1 1 2 2

2 1 1 2

1 2 1 2 1 2 1 2

( ) ( ) ( ) ( )

T

G G G G

G G

m m m m

m m m m m m m m

 

   

        
   

   

L L L

r p r p

r r
r p p r p p

r p r p

 

 

or 

 

LLL  GT  

 

with 

 

GGG prL  .  prL   

 

7. Quantum Kepler problem 

We now consider the quantum mechanics of the central force problem.  

 

(i) The relative co-ordinate operator: 

 

21
ˆˆˆ rrr  , 

 

(ii) The relative momentum operator: 

 

21

2112
ˆˆ

ˆ
mm

mm





pp

p . 

 

(iii) The co-ordinate operator for the center of mass: 

 

21

2211
ˆˆ

ˆ
mm

mm
G 




rr
r . 

 

(iv) The momentum operator for the center of mass: 

 

21
ˆˆˆ ppp G . 

 

Note that 1 2
ˆˆ ˆ ˆ

G   p p p P  (total momentum) 

 

(v) The total angular momentum operator for the system: 
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LLL ˆˆˆ  GT , 

 

with 

 

GGG prL ˆˆˆ  . 

 

prL ˆˆˆ  . (internal angular momentum) 

 

The reduced mass is defined as 

 

21

21

mm

mm


 . 

 

8. The commutation relation: 

We assume that 

 

0]ˆ,ˆ[ 11 ji xx ,  0]ˆ,ˆ[ 22 ji xx , 

 

0]ˆ,ˆ[ 11 ji pp ,  0]ˆ,ˆ[ 22 ji pp , 

 

We note that 

 

ijji ipx ℏ]ˆ,ˆ[ 11 , ijji ipx ℏ]ˆ,ˆ[ 22 , 

 

for the same particle, and 

 

0]ˆ,ˆ[ 21 ji px ,  0]ˆ,ˆ[ 12 ji px , 

 

0]ˆ,ˆ[ 21 ji xx ,  0]ˆ,ˆ[ 21 ji pp , 

 

for the different particles, where i = x, y, z, and j = x, y, z.  

Based on the above relations, we discuss the commutation relations between ,ˆ,ˆ,ˆ,ˆ GG prpr as 

follows. 
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We note that the original Hamiltonian  

 

)ˆˆ(ˆ
2

1
ˆ

2

1ˆ
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2
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2

2

1

1

rrpp  V
mm

H , 

 

can be rewritten as 
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|)ˆ(|
2

ˆ

2

ˆˆˆˆ
22

r
pp

V
M

HHH G
relG 


 . 

 

with 

 
2ˆˆ ˆ(| |)

2
relH V 


p

r . 

 

((Mathematica)) 

Using the commutation relations, we can directly show that 

 




2

ˆ

2

ˆ
ˆ

2

1
ˆ

2

1 22
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2

2

1

1

pp
pp

Mmm
G . 

 

 
 

9. Reduction of the two-body problem 

We note that 

 

0]ˆ,ˆ[ relG Hp ,  

 

and 

 

0]ˆ,ˆ[]ˆ,ˆˆ[]ˆ,ˆ[  GrelGrelGG HHHH ppp . 

Clear@"Global`∗"D; p1 = 8p1x, p1y, p1z<;

p2 = 8p2x, p2y, p2z<; µ =
m1 m2

m1 + m2
; M1 = m1 + m2;

p =
m2 p1 − m1 p2

m1 + m2
;

pG = p1 + p2;

K1 =
pG.pG

2 M1
+

p.p

2 µ
êê FullSimplify;

K2 =
p1.p1

2 m1
+

p2.p2

2 m2
êê Simplify;

K1 − K2 êê Simplify

0
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Then relĤ  and Gp̂  can all be simultaneously diagonalized. In other words, there exists a 

simultaneous eigenstate rG E,p . 

 

ˆ , ,G G r G G rH E E Ep p , rGrrGrel EEEH ,,ˆ pp  , 

 

and 

 

rGrGrGrelGrG EEEEHHEH ,)(,)ˆˆ(,ˆ ppp  . 

 

We note that  

 

GGG
G

GG E
M

H pp
p

p 
2

ˆ
2

, 

 

where 

 

M
E G

G
2

2
p

 . 

 

The wave function can be described by 

 

rGrG E  pp  ,  or  ,G rE  p  

 

where 

 

rrE  . 

 

10. The representation of rrrr  GG ,  

Based on the commutation relations,  

 

1̂]ˆ,ˆ[ ijGjGi ipx ℏ , 1̂]ˆ,ˆ[ ijji ipx ℏ , 

 

we can use the basis  

 

rrrr  GG , , 
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for both the center-of mass co-ordinate and relative co-ordinate, corresponding to the basis for the 

momentum basis 

 

,G G p p p p . 

 

The transformation functions are defined by 

 

)exp(
)2(

1
2/3 GGGG

i
rppr 

ℏℏ
, 

 

and 

 

)exp(
)2(

1
2/3

rppr 
ℏℏ

i


. 

 

The wave function in the position representation can be described by 

 

rGrG E  pp  . 

 

The representation of the wave function in the positional representation 

 

rGGrGGG

i
r 


 rrpprrr )exp(

)2(

1
,

2/3


ℏℏ
. 

 

11. Ehrenfest theorem for Gp̂  

We note that 

 

0]ˆ,ˆ[ GH p . 

 

From the Ehrenfest theorem, we have 

 

0]ˆ,ˆ[
1

ˆ  H
idt

d
GG pp

ℏ
, 

 

leading to Gp̂ =constant of motion. For simplicity, we assume that 
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0ˆ Gp . 

 

The we have the final form of the Hamiltonian as 

 

)ˆ(
2

ˆˆˆ
2

r
p

VHH rel 


 . 

 

The Schrodinger equation is given by 

 

rrr EV  


)]ˆ(
2

ˆ
[

2

r
p

 

 

or 

 

rrrr EV  rrr 


 )](
2

[
2

2
ℏ

. 

 

12. Rotation operator in Quantum mechanics 

After the geometrical rotation; 

 

'rrr  ,   (geometrical rotation) 

 

we assume that the state vector changes from the old state   to the new state ' . 

 

 R̂'  , 

 

or 

 
 R̂'  , 

 

where  ̂R  is a rotation operator in the quantum mechanics. It is natural to assume that 

 

 rrr ˆ'ˆ'ˆ'  , 

 

or 

 

 rr ˆˆˆˆ 
RR , 
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or 

 

rr ˆˆˆˆ  RR . (1) 

 

The rotation operator is a unitary operator. 

 

 '' , 

 

or 

 
 ̂R 
  ̂R   ̂R  ̂R 

   ̂1  (Unitary operator) 

 

From Eq. (1), 

 

rr ˆˆˆˆ  RR . 

 

Here we calculate 

 

rrrrrrrr RRRR ˆˆˆˆˆˆ  . 

 

rR̂  is the eigenket of r̂  with the eigenvalue r . So that we can write 

 

rr R̂ . 

 

When 

 

0rr  , 

 

or 

 

0

1rr  , 

 

00

1ˆ rr R , 

 

or 
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00

1 ˆ rr   R . 

 

For any r , 

 

rr   R̂1
, 

 

rrrr   11ˆˆˆ RRR . 

 

In summary, we have 

 

(1)  ̂R 
  ̂R   ̂R  ̂R 

   ̂1 . 

 

(2) rr R̂ . 

 

(3) rr 
R̂ . 

 

(4) rr 1ˆ  R . 

 

(5) rr 1ˆ R . 

 

13. Rotation matrix 

Suppose that the vector r is rotated through  (counter-clock wise) around the z axis. The 

position vector r is changed into r' in the same orthogonal basis {e1, e2}. 
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In this Fig, we have 

 





sin'

cos'

21

11





ee

ee
, 





cos'

sin'

22

12





ee

ee
 

 

We define r and r' as 

 

''''' 22112211 eeeer xxxx  , 

 

and 

 

2211 eer xx  . 

 

Using the relation 

 

)''()''('

)''()''('

22112221122

22111221111

eeeeeere

eeeeeere

xxxx

xxxx




 

 

we have 

 





cossin)''('

sincos)''('
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xxxxx
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eee
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or including the x3 axis, 
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We note that 
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z , 

 

and 
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100

0)cos()sin(

0)sin()cos(

)(
1 





z . 

 

_______________________________________________________________ 

14. Infinitesimal rotation matrix around the z axis 

We assume that  d (infinitesimally small angle); 
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where we use the Taylor expansion and the angular (orbital) momentum is defined by 

 

ˆ L z  ˆ x ̂  p y  ˆ y ̂  p x . 

 

Then we have the expression of the infinitesimal rotation operator as 
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15. Positional-space representation of L in spherical co-ordinates 

We also use the ket vector  ,,rr , where r, , and are the spherical coordinates. 
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thus we have 
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On the other hand, we get 
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16. Finite rotation 
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where 
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In general, we have the rotation operator 
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In the case of an arbitrary quantum mechanical system, using the general angular momentum Ĵ  

instead of L̂ : 
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APPENDIX-I 

We show the following theorem (see Steeb) 

 

Theorem: 
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From this theorem we also get 
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APPENDIX-II 

Product of the translation operators 
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where 
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since 1p̂ and 2p̂  are the momenta of particles 1 and 2, respectively.  

 


