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Niels Henrik David Bohr (7 October 1885 — 18 November 1962) was a Danish physicist
who made fundamental contributions to understanding atomic structure and quantum
mechanics, for which he received the Nobel Prize in Physics in 1922. Bohr mentored and
collaborated with many of the top physicists of the century at his institute in Copenhagen.
He was part of a team of physicists working on the Manhattan Project. Bohr married
Margrethe Nerlund in 1912, and one of their sons, Aage Bohr, grew up to be an
important physicist who in 1975 also received the Nobel prize. Bohr has been described
as one of the most influential scientists of the 20th century.

http://en.wikipedia.org/wiki/Niels_Bohr

Erwin Rudolf Josef Alexander Schrodinger (12 August 1887— 4 January 1961) was an
Austrian theoretical physicist who was one of the fathers of quantum mechanics, and is
famed for a number of important contributions to physics, especially the Schrodinger
equation, for which he received the Nobel Prize in Physics in 1933. In 1935, after
extensive correspondence with personal friend Albert Einstein, he proposed the
Schrodinger's cat thought experiment.



http://en.wikipedia.org/wiki/Erwin_Schr%C3%B6dinger

1 Bohr model for hydrogen-like system

We now consider the Bohr model shown in this figure. The system consists of a
charge (Ze) at the center and an electron (-e) rotating around the center. These two
particles are coupled with an attractive Coulomb interaction.



The total energy for the electron with the reduced mass x and charge (-e) orbiting
around a nucleus with the charge (Ze) is
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Bohr-Sommerfeld condition:
pwvr = nh,
where 7 is a positive integer. Then, we have the velocity v, and radius r, as
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where « is the structure fine constant (the definition is given below) and m is the mass of
electron.

((Note)) Physical constant for the hydrogen atom (in CGS units)
(a) Bohr radius



(Bohr radius)

(b) Rydberg constant:

(©) The electron rest mass

(d) The fine structure constant
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hc 4rs hc

(SI units)

a is equal to

((Mathematica)) Physics constant in cgs units



Clear["Global "*"];

rulel = {c »2.99792x 10", A > 1.054571628 1077,
me » 9.10938215 102, ge » 4.8032068 x 10717,
eV -» 1.602176487 x107*?, meV » 1.602176487 x 10713,
keV » 1.602176487 x107°, MeV -» 1.602176487 x 107¢,
a > 7.2973525376 x 1073} ;

Borh radius a0 = 0.529168 A

ﬁZ
a0 = — /. rulel
me qe2

5.29177x10°°
a0 in theunitsof 1A = 10’8 cm

a0/A& /. rulel

5.29177x107°
R

Rydberg constant, R = 13.6061 eV
leV = 1.60217642x 10 % exrg

me qet
—— /. rulel
2h%ev

13.6057

Fine structureoa = (dimensionless)

e
hc
qe?

a=— /. rulel
hc

0.00729737

l1/a// N
137.036
Thus the constant « is close to 1/137.

me c?

/. rulel
MeV

0.510997



((Mathematica)) Physics constant in ST units
Clear["Global *"];

rulel = {me » 9.1093821545x 107>, eV - 1.602176487x 107*?,
ge » 1.602176487 x 1071, ¢ 5 2.99792458 x 108,
10 - 12.566370614x 1077, €0 -» 8.854187817 x10712,
h > 1.05457162853x 107 };

47t e0n?
aB=———— /. rulel

me ge?

5.29177x10

qe?
a=—"T— /. rulel
4relhc

0.00729735

l1/a// N
137.036

((Note-1)) Fine structure constant ¢« ((Basdevant))

We notice that v=e’/h has the dimension of a velocity. Unless the differential
equation had pathologies (which is not the case), it must represent the typical velocity v
of the electron in the lowest energy levels of the hydrogen atom. This velocity must be
compared with the velocity of light ¢, which is the absolute velocity standard in physics.
The ratio between these two velocities is a dimensionless constant o, which is a
combination of the fundamental constants e, 7, and ¢

The smallness of this constant o guarantees that the nonrelativistic approximation is
acceptable up to effects of the order of

2
v

— ~1377=533x10"
Cc

The constant « is called, for (unfortunate) historical reasons, the fine structure constant. A
more appropriate terminology would have been: fundamental constant of electromagnetic
interactions.



Any charge Q is an integer multiple of the elementary charge Q =Ze. Therefore the
fundamental form of Coulomb’s law between two charges O = Ze and Q'=Z'e is
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r
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with Z and Z’ integers, which only involves mechanical quantities. The experimental
determination of the fundamental constant « is a key point in physics: 1/a = 137.0359779
(32). The fact that this is a dimensionless number stirred minds at the beginning. One
cannot change the value of a by changing units. For a long time, after this discovery (i.e.,
the discovery of the universality of Planck’s constant), people have tried to obtain it
starting from transcendental numbers e, z, the Euler constant y, and so on. For instance

2

exp(—%) =1/139.046 or better %7[92”:1/137.33.

The great astronomer Eddington, at the end of his life, had made an arithmetic theory
of a. This constant is encountered in the hydrogen atom, made of a proton and electron.
We live in a four-dimensional space—time, and the proton and electron both have 4
degrees of freedom. Now 4x4 = 16, and if we consider the symmetric real 16x16
matrices, they have 136 different elements, to which we must add spin, hence the number
137. Hans Bethe had replied. The theory of Mr. Eddington is very interesting because it
explains features of ideal gases. Indeed, the simplest ideal gas is molecular hydrogen. If
each of the two atoms in the molecule H> has 137 degrees of freedom, then 2 x 137 =
274, to which we must subtract 1 since the atoms are bound, which gives 273, namely the
temperature of the absolute zero.”

From J.-L. Basdevant, Lectures on Quantum Mechanics (Springer, 2007). p.187.

((Note-2)) My consideration
In the Bohr model, the velocity of electron in the state (n) is given by

" nh

\%

The velocity in the ground state is the largest;

We consider the ration of the velocity of electron in the ground state to the velocity of
light,



2
%, 7
c ch 137

gich is smaller than 1. So, we get the atomic number Z which is always smaller than

((Note)) Fine structure constant
Even Enrico Fermi (one of the greatest physicists) made a mistake of writing the fine

structure const as « =i’/ ec (wrong one), instead of & = e’ / (hic) (correct one)

n=1

— ThHE BRITANNICA GUIDE TO RELATIVITY AND QuaNTuM MECHANICS ——

Italian-born physicist Enrica Fermi explaining a problem in pbysics, ¢. 1950.
National Archives, Washington, D.C.

REFERENCE

E. Gregersen (editor), The Britanica Guide to Relativity and Quantum Mechanics
(Encyclopedia Britannica, 2011).

2 The central-field problem
We consider the infinitesimal rotation

lv') = R(e)|y).



If H is invariant under the rotation,

(A" =(v|H]v),

or
(WIR ) HR@)w) = (v |H]y),
or
R*(&)HR(¢)=H ,
or
HR(¢) = R(e)H,
or

[R(s),H]=0.

We now consider the time-dependent Schrodinger equation given by

lw(an) = (- iAf )| (0)).
Then we have

ly'(an) = (1- iAf ' (0)) = (1- iAf YR()|w (0)).
and

[p(AD) = Ry (An) = Rie)1 - iAf Yy (©).

This means that

[H,R(£)]=0.

Since 1%(5) = l—é(j .n)e , we obtain the following commutation relations.



[H,J.n]=0.

Since n is any unit vector,

Similarly,
[H,J]1=[H,J]1=0.
In the present case, J=1L (orbital angular momentum).

Since [f],l?] = [f],izz] = [f],iz] = [iz,iz] =0, we can find a basis such that

k,l,m> 1sa

simultaneous eigenket of H , I , and iz;

q

k,l,m>=Ek

k,l,m>.

I’:Z

k,l,m)=n1(1+1)

k,l,m).

L.

k,l,m>:hm

k,l,m).

[Ho.L:]

[Ho,L%)

[L%L,]
Ho|nim>=E,|nIm>
L,|nim>=m/Z|nim>

L?|nim>=A°1(1+1)|nim>

Fig.  Simultaneous eigenket of H,, L , I*. Eigenstate is described by |nlm>
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3 Commutation relations (more direct method)
In a central-field potential,

1

H=—DP+V ().
2u
Angular momentum L:
[L.p]=ilp,, [L..p,]=-ilp, [L.,p.]=0

[iz’ﬁxz]zizﬁxz_ﬁxziz
=[iz’ﬁx]ﬁx+ﬁx[iz’ﬁx]
=ih(p,p,+ p.P,)

- A2 r oA 2 A 27

[Lz’py ]=szy _py Lz

=[Lz’ﬁy]ﬁy +ﬁy[Lz’ﬁy]

=—ih(p.p,+ P,p.)
Therefore,
[L..p°1=0 [£,.p°1=0 [£,.p°1=0
Similarly,
[Z.,p°1=0 [Z,,P*]=0 (L, P*]1=0

Thus we have
[, p*]=0.

On the other hand, V(|f|) depends only on |f| (central potential).
[L..%]=ihp, [L..p)=—ih% [L..2]=0.

Then

or

11



[L.,7*]=0.
Thus iz commutes with a potential energy that is s function of the magnitude of the
radius vector. Therefore we have a relation

[H,0)=[H,L )=[H,L]=[LL]=0,
for the central potential.

((Mathematica))
Clear["Global "];

<< VectorAnalysis";
SetCoordinates[Cartesian[x, y, z]]’;

ux = {1, 0, 0}, uy={0,1, 0};uz={0, 0, 1}; r={x, y, z};

rr=x2+y2+zz;

Lx := (ux. (-1 ACross[r, Grad[#]]) &) // Simplify;
Ly := (uy. (-1 2 Cross[r, Grad[#]]) &) // Simplify;
Lz := (uz. (-1 A Cross[r, Grad[#]]) &) // Simplify;

px := (ux. (-1 hGrad[#])) &, py := (uy. (-1 hGrad[#])) &;
Pz := (uz. (-1 hGrad[#])) &;

Lz[px[¥[x, y, z]]]-px[Lz[¥[x, y, 2z]]]-2apy[¥[x, v, 2]] // Simplify

0

Lz[py[¥[x, v, z]]]-pylLz[¥[x, y, z]]] +2npx[¥[x, vy, 2]] // Simplify

0

Lz[pz[¥[x, y, 2z]]]-pz[Lz[¥[x, y, 2]]] // Simplify
0

12



Lz[px[px[¥([x, v, z]]]] +Lz[py[py[¥[x, v, 2z]]1]1] +Lz[pz[pz[¥[x, vy, 2]]1]]-
px[px[Lz[¥[x, y, z]]]]-pylpy[Lz[¥[x, ¥y, 2]]]]-
pz[pz[Lz[¥[x, y, z]]]] // Simplify // Simplify

Lx[px[px[¥[x, v, z]]]] +Lx[pylpy[¥[x, y, 2z]]1]1] +Lx[pz[pz[¥[x, ¥y, 2]]1]] -
px[px[Lx[¥[x, y, z]]]] -pPylpy[lx[¥[x, v, z]]1]]-
pPzlpz[Lx[¥[x, vy, 2]]1]] // Simplify // Simplify

Ly[px[px[¥[x, vy, z]]]1] +Lylpylpy[¥[x, vy, 2z]11]1] +Ly[pzlpz[¥[x, ¥y, z]11]1]-
px[px[Ly[¥[x, v, z]]]]-pylpy[Ly[¥[x, v, 2]]1]1] -
pz[pz[Ly[¥[x, v, 2z]]11] // Simplify // Simplify

Lz[Lz[px[px[¥[x, vy, z]]]]] +Lz[Lz[py[py[¥[x, vy, Z]]]]]+
Lz[Lz[pz[pz[¥[x, vy, z]]]]]-px[px[Lz[Lz[¥[x, vy, z]]]]]-
py[py[Lz[Lz[¥[x, vy, z]]1]1]]-pzl[pz[Lz[Lz[¥[x, y, 2]]]]] // Simplify //

Simplify

0

Lz[x¢[x, v, z]] -xLz[¢¥[x, y, z]] // Simplify

iyhylx, y, z]

LZ[Y*II[X/ A\ Z]] 'yLz[df[x/ ' Z]] // Simplify
-ixhy(x, v, z]

Lz[zy[x, v, z]] -zLz[¢[x, y, z]] // Simplify
0

Lz[rrdf[x/ Y/ Z]] 'rrLz[df[x/ Yy, Z]] /1 Simplify
0

4 Schrodinger equation in a central potential

A

<r|§—ﬂllﬂ> (P (#lv) = E(rly),

or

13



1o e Hrlw)

2007 or or (rEw)+ V) (rly) = Elrlw)

2pr
or

L PN i ()]

2uror or 2ur’ Y )]< |l//> <r|l/j>.

Here we assume that
(rlw)=w(r) = Ry ()Y (0.9),

(separation variable) with
(n[t,m) = (6,

R; ,(r) depends only on £ and /, but not on m. Y," (8,¢) is the spherical harmonics. The

)=1"(0.9).

differential equation for R, ,(r),

10, 0 hll+1
2100, D,
2uror or

+V(r )]REl(r) EREl(r)

We assume that

Then, we have

l(l+l) 2ule, +V(r)]
"

u'(r)—[ lu(r)=0.

We further assume a Coulomb potential given by

V(r) __ZTe'

Then

l(l+l) 2;1(51 zZe’ Ir)
n’

u'(r)=[ lu(r)=0.

We now introduce a new variable

14



2h*n?
where
ZZ 4 ZZ 2
& = élez = ez )
2h°n 2an
hZ
a=—,
ue
Z
K=—0.
na
Since
p —_ ZLZ — ZIG/' ,
na
we have
d_dpd , d
dr dr dp dp’

2 2
iz =2/<i(2z<i) = 4x’ d =,
dr dp dp dp

and
Il +1 4
au(p) - D e -y =0,
P P
where

2 4
—'zfl(e1 —7e /r)y= K‘z(l ——n).
h p

Finally, we get

w(p) - e

n

15



or

& Id+) n 1o
[dpz_ 2 +p IA(2)=0, (M

Using Mathematica, the solution of Eq.(1) can be solved as
u(p)= Cexp(—g +11n p)LaguerreL[-1+n—11+2l,p].

LaguerreL[n, a, x]: generalized Laguerre polynomials [= L (x)].
((Landau-Lifshitz))

We have the following differential equation for R(p) with p = 2xr.

& 2d 1 n I(+1)
s+——+(C—+——-—5
dp”  pdp 4 p p

[ NR(p)=0,

which is given by Landau and Lifshitz.

5. Comment on the reason for the choice of the number of 1/4 in the differential
equation of radial part wave function

The differential equation for the radial part is given by

2u(s, - 7
" [(l+1 L
(’”)—[( 2 )+ e L Ju@)=0.
Suppose that
p=ar,

where « is constant to be determined (not the fine structure constant). Since

d_dpd _,d & d o d L

=« a —,
dr dp dp dp

dr dr dp dp

b

Then we get

2 2 2
e d u(;o) _[a l(lz+ 1) N 2us, 2ulea

=0.
dp » e 7y Ju(p)

16



or

2 2
dz_l(ltl)u_2é1€;u+2;€e 4=0
dp P ah ah”p

In the above text, we choose the parameter p as

2ue, 1 2ue, 8ue,
p="t8 o= L;:\/#
ah” 4 ph h
When the energy & is given by
2 4
& = 1 e (from the Bohr model)

o

then the differential equation can be rewritten as the Whittaker differential equation,

2
d I/; +[—l+£—l(ltl)]u _0,
dp 4 p p
since
2uZe’ ’ B 41°7%" B 4u°7%" 1’ B uz’e’ _ 2
ah’ a’h’ nt o 8ug 2h’s '
((Note))

According to Schiff (Quantum Mechanics), “the particular choice of p = 1/4 is
arbitrary but convenient for the following development.” But I am not convinced about
this comment. I will check the validity of the choice of p = 1/4 using the Mathematica
here.

We note that using the Mathematica, the solution of the Whittaker differential equation

2
du_l0+n 1 n

can be obtained as the linear combination of the two functions

WhittakerM[ 7, ”22[ ol

17



WhittakerW[ 7, ”221 o]

We now discuss why we need to choose p = 1/4. The solution of

d’u n [(l+1)
tp+ - =0,
dp’ p P

is given by the linear combination of

WhittakerM[ 1+—221 , 2\/; ol

n
2p’

WhittakerW[ —" ”—221 2/ppl

2p’

For convenience, we choose » = 2 and / = 1. We make a plot of the function

WhittakerM[ " 1+—2l, 2\/; p] as a function of p, where p is changed between p =

2Jp’ 2

0.247 and 0.253 around p = 1/4.

f(p)
4L 0.273

Fig. Plotof f(p) vs p where p is changed as a parameter. p = 0.247 - 0.253. When p
=0.25, f(p) tends to zero in the large value of p.

18



We also make a plot of the function f(p)=WhittakerM[ 2:/1_ , 1+—221, 2\/;,0] with
p

fixed p (=50), as a function of p between between p = 0.247 and 0.253 around p = 1/4.
Here we calculate f(p), where n =4,1=3, 2, 1, 0. We find that f(p) becomes zero

only for p = 1/4 in the limit of p — .

150000
100000 -
50000 -
0 L . e e —————
[ 0.248 0.249 0.250 0.251 0.252 0.253

—~50000 F
—100000 -
—150000 -
Fig. f(p) vspwheren=4,/=0 (red), 1, 2, 3 (green). p=50.
From the above discussion we find that p should be equal to 1/4.
6. Comment on the Radial equation
((Note)) L.L Schiff, Quantum Mechanics: solution of the radial equation of the

Coulomb potential of hydrogen atom.

Here we follow the discussion given by Schiff, on the solving the radial equation of
hydrogen atom. To this end, we start with a second-order differential equation for the
radial part of hydrogen atom (Schiff),

[(I+1)

2
r

%[FRM (")]- [7R,, (1)]+ ;—f[E =V (IR, (r)]=0. (1)

Using the relation.

l"z anl (l")

dr)

d’ 1d
- R -
dr2 [l" nl(r)] 7 dl"(

19



Eq.(1) can be rewritten as

ii[rz R, ()
rdr dr

10+ 1)

- DR o+ 2“ 21N E V(IR () =0, ®)

ze :
where we use E = —|E | (bound state) and V(r) = _Le (Coulomb potential). By
r

introducing variable p = ¢,r (dimensionless), we have

1 d dR I(I+1 a,Ze’
LA Ry D ) 2E g+ 2ZE R (p) =0
p-dp dp P’ a,’h

With the use of new parameters,
2ulE] 1 Quze*  Zé* s
T A=— =7 G
a4 ayh 2|E|

we have the final form
1 d dR I(1+1
L4 dRulp)y WD g >+<—— DR =0, ®)
pdp dp

Using the relation

d . ,dR,(p) d’

dp(p i) )=p e [oR,(p)]

Eq.(2) can be written as

LR (o0~ "D R (o) (—— DR, (p)=0
pdp

or
PRI PR (0)+( = PR, (9) =0
0

or

20



@)D oy =Ly o) =0, @)
dp P p 4
where u,(p)=pR,(p).

In his book of Schiff, Schiff gives the following comment. that the particular choice of
the number 1/4 for the eigenvalue term is arbitrary but convenient. When I encountered
this comment for the first time, I did not understand why Schiff choses the factor "4 (such
a specified factor). I found that Eq.(2) is used as a radial equation in many textbooks (see
References)
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Lo Revisit: Derivation of the factor 1/4
Here the radial equation is discussed again. I will show that the factor 1/4 comes out
automatically. We use

R =ur), V)=

The radial equation is given by

g;uU}]a+u

u(r) +;—‘§l(E +Z—ez)u(r) =0

2
r

21



First, we assume that

xX=a,r (a dimensionless variable)

d _dcd _d d  d _d__,d

—=a,—a,—=2q,
0 0 0
dr? dx dx dx?

_ _ao
dr dr dx dx

b

The parameter ¢, will be determined later. We also use E = —|E | (bound state). Thus,

we get
d>  I(+1) 2 Ze'a,
2 2
A
or
’ 1 2uE| 2uZe’
d—zu—@uvt(— ,uz| 2|+ ,uze u=0.
dx X o, h” ofx
We define a parameter y and A, as
2u|E 2u|E
=—2| 2| >0) or a, = |2 |
o, h vh
and
2uze’
2, =22
a,h
_2/JZ€2 yh’
" 2,u|E|
_Ze |2y
ho\ ||

Thus, we have

4 Id+D

A
dxzu > u+(7°—7)u=0

22



Here we define 4, = 2\/;1 with

zZe’ | u

a=to o
2y h\2|E|

Furthermore, we assume that

= 2\/;x (a new variable)

d _dpd dd d d &
dp d 54 PN P L
dx dv dp */_ dx dx \/;dp \/;dp oy
and
(+1) 1(+1)
7 —47,
X
A

4
——y=(—-1y
x P

Thus, we have

du 4D, A L
s ( ) =0

with

ze :
A= i ’|L; | (E; energy eigenvalue, bound state)

The relation between » and p is

23



p= 2\/;0501”

2u\lE
:2\/; le |r

_ [8u(E]
= 7]/‘

In conclusion. the factor 1/4 can come out automatically in the radial equation.

2
d‘;—l(ltl)w(i—l)u:o
dp~ p p 4
with
2 2
e () a2 |1
8|E| h \2|E|
((Solution))

@ pox

The solution of this equation is

u(p)=e""? (asymptotic form)
(b) p=0
We assume that u =gq,p’ (a,#0).

o w2 A a1
a[s(s=1)p' > =11+ 1)p 2+(;p I—Zp N+...=0

The coefficient of p*:
s(s—1)—I(I+1) =0 (s+1)(s—1-1)=0

Since s>0, we get s =[+1.

24



From these discussions, we get the form of u(p) as

u(p)=pe?F(p).

So, we need to determine the form F(p). We use the Mathematica for the radial equation

2
LES TN Ny
dp’*  p p 4
with
u — Function[p, p'"'e " F(p)],
leading to
2 _ _]_
4F(p) Q+2-p) dF(p) C=l=D gy
dp p dp
((Mathematica))

Clear["Global "];

o L (L+1)
eql=u''[p] - ——— u[p] +
Jol
(& l)u :
> 2 [P]3
rulel =

{u - Function[p, ottt Exp[%] F[P]]}i
eq2 = eql //. rulel // Simplify

~e ??p" ((1+L-2x)Flp] +
(-2-2L+p) Fp] -pF'[p])

25



The series expansion method can be used to determine the form F(p).

8. Form of the wave function
n: the principal quantum number.
l: the azimuthal quantum number.
m: the magnetic quantum number.

For the fixed n (=1, 2, 3, 4, ...),

| =n-1, n-2,..... , 1,and 0.

/=0 sharp (s)
m=0

[ =1 principal )
m=1,0,-1

[ =2 diffuse (d)

m=2,1,0,-1,-2

[ =3 fundamental )
m=3,2,1,0,-1,-2, -3

[=4 (&)
m=4,3,2,1,0,-1,-2,-3, -4.

There are (2/+1) solutions to the Schrodinger equation corresponding to the same energy
eigenvalue E.

Degeneracy:

E, 2(21+1) 2= e,

((Note)) Including spin degeneracy of states is 27,

n / m ms
Is 1 0 0 +1/2
2s 2 0 0 +1/2
2p 2 1 0, +1 +1/2
3s 3 0 0 +1/2
3p 3 1 0, +1 +1/2
3d 3 2 0,+1,,+2 +1/2
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4s
4p
4d
4f

B
W N = O

0

0, +1
0,+1,+2
0,+1,+2, 43

+1/2
+1/2
+1/2
+1/2

The solution of the above differential equation is given by

where

rR,(r)=u,(r) = Ae

p:

2Kr .

Then we have

A is determined from the condition of normalization.

Here we use the formula:

R,(r)==—"—

/2 1+1 y21+1
7 +Ln:rlfl(p)’

P

nl(r) A o P2l I

() =24Kke" P (p).

1= j [R, (")) #dr =— j L (o) dp.

[e]

0

Note that

p=n—-Il-1,qg=2l+1,p+q=n+l,and 2p+q+1="2n.

0

Then we have

!

e CIL L (Pl dp =

(n—1-1)!

(n+1)!

Using this formula, Eq.(1) can be rewritten as

or

A (n+])

2% (n—1-1)!

(2n

)

27
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e Z”2 ,(n [— 1)'
(n+1)!

Thus we get

R,(r)=R,(p)

:223/2 (n—=1-1)! LoP2 121+1( )’
n’a’? (n+1)! n-l-1

R,(r) =R (p)=4,e""0L" (p),

2272 [—I-D!
Anl_ 2 3/2 (”l+l)'

This function satisfies the differential equation

or

with

d? 24 (_1 n_ z(z+1)
dp’ pdp 4 p

[ IR, (p)=0.

We also have

_ Zl/z (n—1-1)! 7,0/2 I+1 72141
u,(r)=u,(p)= 1/ (n+1)! e L= (p).

Here we introduce a new function. We assume that

DI(p)=e P 2L (p).
Then

Z”2 (n—1-1)!
(n+ 1)

;5 (p).

nl(p) =

This function satisfies the differential equation

& _10+)) n
o p° p

[ ——]unz(p) 0,
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or

> I+ n 1. .,
e R GRS

[
dp~ p

This equation is rewritten as

d (¢-1) 2p+g+1 1
e o CHEI
dp 4p 2p 4

9. Average values <r">

We consider the average distance for the state |/, m>. The wave function is
normalized as

1= [y (r|dordr,

where 21is the solid angle.

y(r) =R, (r)Y"(0.9),

lz.[drr2 2,

R, ()| [dft @.9) = [drr

R, (1)
We define P dr as

Pdr=7"|R(r)[ dr.
The average <r‘“> is defined by

<r'>= .[drrz [R,(MN]'F = .[drr”z[Rnl(r)]z :
0 0

where

2n’a
The average <r“> is obtained as
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b

r,4> _ Z[3n* =11 +1)]
w’atl(l+1/2)I+D[21( +1)-3/2]

p— Z3

Cntal(l+1/2) 1+ 1)

)
,2> zZ’
)

2

a
) =En2[5n2 +1-31(+1)],

3
a

87°

n’[35n" +3(1 = DI+ D) +2) - 51> (61(I +1) - 5)].

~
w
~
Il

10. Form of the wave function
For the plot by using Mathematica, we use the radial wave function as

27°"7 /(n—l—l)! } .
Rnl(r) = Rnl(p) == n2a3/2 (n —|—l)' e p/zplLil,llfl(p) s

where
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Clear["Global *"];

rwave[n , /7 , r ] :=

1 3 _zir 3 2Zr
— (21"/ a2 ean n’27"% (n-7-1)1 LaguerreL[—1+n—/, 1+27/, ])
V(n+7)! an

listl = Table[rwave[n, ¢/, r], {n, 1, 3}, {¢/, 0, n-1}] //
TableForm[#, TableHeadings » {{"n=1", "n=2", "n=3"}, {"/=0", "/=1", "¢=2"}}] &

=0 =1 =2
_rz 32
2e a 17
n=1 —_—
2372
r7z
- rz
) e 2a g3/2 (27I—Z) e 23 r75/2
n= _ —a —5
2+/2 a3/2 276 ab/2
Lz 2 52 s, 2r8 2 22 a0
3 2ei3aZ3/2(27a2—18arZ+2r2Z2) fedarz (4*3a) 2[5 e3arz
n=
81/3 a’/2 272572 81a’/2
. . . 27Zr
Radial wave function intermsofp : p =
an
anp
pwave[n , 7/ , p ] := rwave[n, /, r] /. {r-> } // PowerExpand

pwave[n, !, p]

2 e P/273/2 pf 4/ (-1+n-/)! LaguerreL[-1+n-/, 1+2{, p]
a’3’2n2~(n+4)!

listl = Table[pwave[n, /, p], {n, 1, 3}/ {4, 0, n-1}]1 // Slmpllfy 1/
TableForm[#, TableHeadings - {{"n=1", "n=2", "n=3"}, {"/=0", "/=1", "/=2"}}] &

=0 =1 {=2
2 e P/233/2
n=1 7
Ho /2332 (pup) e0/2 73/2
- 242 a3/2 246 a3/2
o3 e P/233/2 (6-6 p+o?) /232 L4up) e 0/273/2 2
573 2372 5V 2372 5750 2372
((Mathematica))
Plot of the probability of the wave function
y
(1) r*rwave[n,l,r]* vs rla, where a = 1 and Z =1.

() <r>= %[3;12 —I(+1)], wherea=1andZ=1.
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average[n , 7 ] := (3n2—/ (/ +1)) /. {a>1, 2> 1};

22z
h[n , 7 , r ] :=Which[0 < r < average[n, /], 1, r > average[n, /], 0]

pll[n ] := Plot[Evaluate[Table[r2 rwave[n, ¢/, r]*2 /. {a»1, Z->1}, {¢, O, n—l}]] ,
{r, 0.01, 7n}, PlotStyle » Table[{{Thick, Hue[0.21i]} }, {i, 0, 10}],

PlotRange - {{o, 70}, {o, 0.55 n%}}, AxesLabel - {"r/a", "Pr"}];

pl2[n_] := Plot[Evaluate[Table[h[n, /, ], {¢/, 0, n-1}]], {r, 0.01, 7 n},
PlotStyle -» Table[{{Thick, Hue[0.2i]} }, {i, 0, 10}], PlotRange » {{0, 7n}, {0, 1}},
AxesLabel » {"r/a", "Pr"}];

gl = Graphics|[{Text[Style["n=1", Black, 15], {3, 0.4}], Text[Style["/=0", Black, 15], {2, 0.3}],
Text[Style["<r>/a", Blue, 15], {1.5, 0.5}]1}1;
Show[pll[1l], p12[1], gl]

For the 1s state,

Pr

0.5}
0.4+
0.3

0210

0.1

r/a

Fig. 1s (n=1,/=0). The straight line denotes the average value (<r>/a).

For the 2s, 2p states
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Pr

0.20
0.15
0.10

0.05)

0.00 4

‘ r/a
14

Fig. 2s(n=2,1=0). 2p (n =2, 1= 1). The straight lines denote the average value
(<r>/a).
For the 3s, sp, and 3d states,

Pr

0.14}
i n=3
0.12+

O.IOi
| /

0.08 - /

0.06 -
0.04 |

VAN

0.00

10 15 20

Fig. 3s(n=3,/=0).3p(n=3,/=1).3d (n=3,1=2). The straight lines denote the
average value (<r>/a).
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For the 4s, 4p, 4d, and 4f states,

Pr
0.10+

0.08 n=4

0.06 -

.

I
N =

% %4

0.02} /4 \‘Q
0.00 ¢ L/ / NS ‘ ‘ t/a

0 5 10 15 20 25

Fig. 4s(n=4,1=0).4p n=4,1=1).4d (n=4,1=2). 4f (n =4, [ = 3). The straight
lines denote the average value (<r>/a).

APPENDIX-A

Al. Derivation of the differential equation
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Differential equation for the Radial component
Clear["Global %"]; Op :=D[r #, r] &;
n? 1 n2¢ (¢ +1)
eql = -— — D[Op[R[x]], ] + | ——— +V[r] | R[r] = e R[r] // Simplify;
2u r 2u r?
Rulel = Solve[eql, R” [r]] // Simplify // Flatten;
Reql =R [r] - (R”[r] /. Rulel) ==0/. & » -¢l

R[r] (2rfelpu+f (1+f) A®+2x? uvir])-2rh’ R [r] .
B r2 p? '

ufr]

R[r] =
r

ul#]

arulel = {R - ( &)}; Req2 = Reql /. arulel // Simplify;

"
Req3 = Solve[Req2, u”' [r]] // Flatten; Req4 =u’’ [r] - (u'[r] /. Reqg3) ==0;

%2 &]},.

Reg5 = Req4 /. Replacel

Replacel = {V -

(-2e?ru+2r?elp+fn?+70%) ulr]

2 p?

A2. Mathematica
LaguerreL[n,a,x]
gives the generalized Laguerre polynomial L (x)

We use the Laguerre polynomial as 2™, (p), for the quantum state |n,/,n>.
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When this operator is applied to a differential equation Eq of the function ¥ [x],
it changes the variable from x to z where x = £[z] .

h
r=——p

V8uel
vchange[Eq , 4 , x , z , £] :=

5g /. {D1v1x1, {x, n_}] =+Nest[( D[#, z] &), v1z], 0|, ¢1x] = 4[2], x> £}

D[f, z]

h
Ueql = vchange [Req5, u, r, p, p] // PowerExpand // FullSimplify
V8uel
-22 e?Vel pupulp) +e1Vu n (47 (1+4) +0?) ulp] -40° v [p]) .
ph B
Ueq2 = Solve[Ueql, u’’[p]] // PowerExpand // Flatten;
n? e?2 1
Ueq3 =u"'[p] - (u[p] /. Ueq2) == 0; substitution = {u - —, gl —}-
ae? 2n? a

Ueq4 = Ueq3 /. substitution // PowerExpand // Simplify; Ueq4l = Solve[Ueq4, u” [p]];
Ueq42 =u”' [p] - (u'[p] /. Ueqd4l[[1]]) == 0 // Simplify
(4/+4/2+p (—4n+p)> ulp]

u”[p] = 1,02

f+1

-0
Glo ] :=Exp[7] o T Flel;

Ueq43 =Ueq42 /. u~> G // Simplify

e pl ((1-n+f) Flp]+ (-2-2¢+p) F'[p] ~pF’[p]) =0

Ueqg5 = DSolve[Ueq43, F[p], o] // Flatten

{F[p] - C[1] HypergeometricU[l-n+/, 2+27, p] +C[2] LaguerreL[-1+n-4, 1+2¢, p]}
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14\ —r-1)1
norm = {C[l] 50, C[2] » 2'*1 (—] _fn-f- Y };
an a

3nt (n+?)!

pwave[n , 7/ , o ] :=G[p] /. Ueq5 /. norm // PowerExpand // Simplify;
pwave[n, ¢, p]

3.
21+ 572~ gp/2 n-2- ol (-1+n-¢)! LaguerreL[-1+n-{, 1+2/{, p
g

V(n+f) !
h V8uel e? 72 a2
—— p=r, 0rp= ——r, el = , U= ——
V8uel h 2an? ae?
V8uel e? B2
pl= — r /. {el - TR —} // PowerExpand // Simplify;
h 2 an? ae
pwave[n, ¢, p] 2r
rwave[n , /7 , r ] = /. {p - —} // PowerExpand
r an

S _r
22421 57272 ¢"an n32/¢[(-1+n-/4)! LaguerreL|[-1+n-/¢, 1+27¢, %&
g
Vin+{)!

APPENDIX-B Balmer series

Balmer’s formula was purely empirical, with no model of an underlying physical
mechanism. This does not dimmish its value, though, for when a phenomenon can be
fitted into a simple arithmetic scheme one is justified in having hope that a deeper
understanding may not be far off. Balmer’s formula was a key clue for Niels Bohr’s
development of the first really successful theory of atomic structure.

Johann Balmer (1885)
E, :—13;6 (eV)
n
hc 1 1 n*—4
hw=—=E —FE , =—-13.6(——-—)=13.6 eV
Z« n n-2 (nz 4) (4}’12 )

2
n —

2
/1=364.50682[ " jnm
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https://en.wikipedia.org/wiki/Balmer_series

((Experimental results))
Balmer series

A=656.279 nm (H,) n=3-2
A=486.135 nm (H ) n=4-2
A=434.0472 nm (H,) n=5-2
A =410.1734 nm (H,) n=6-2

(red line at the right)
(Aqua)

(blue)

(violet)

The visible hydrogen emission spectrum lines in the Balmer series.
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