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1. p-electrons: quenching of the orbital angular momentum;

Frequently, the lowest orbital level, when split by a crystal field, is a singlet. Because of the
large splitting, this is usually the only level populated. The orbital momentum is then said to be
quenched, since it will make no contribution to the magnetic moment when a field is applied.

We now a simple model of quenching of the orbital angular momentum due to the crystal field.
The electron configuration is given by 1s?2s°2p' (1s?2s* has a closed shell). According to the
Hund’s law, we have L = 1 (degeneracy =2 L+1 =3), S = 1/2 (degeneracy = 25 + 1 =2). Then the
total degeneracy is (2L+1)(25+1) = 2 x 3=6. There is one p-electron. Suppose that this ion is
surrounded by 6 negative ions located at (£a,0,0), (0,£5,0), and (0,0,£c) with a>b>c>. There are

three wave functions: px>, py>, and pz> given by

(rlp) =3, (r|p,) =0/ () (r[p.)=2 (), (1)
with

(p.|p,)=(p,|p.)=(p.p.)=0. )







Fig.1 Angular parts of the wavefunctions for (1) 2px, (2) 2py, and (3) 2p,

n=2,1=1(2p electron)
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with the radial wave function given by
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((Mathematica))

Clear["Global *"];
Table[ {SphericalHarmonicY[1l, m, 6, ¢]},

{m, -1, 1, 1}] // TableForm][#,

TableHeadings -» {{"m=-1", "m=0", "m=1"}}] &
3
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/—3 Cos[6]
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2. 3d-electrons

m=-1
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We now consider the origin of the splitting of the orbital levels by the crystal field. Suppose
that an ion with only one 3d electron (n = 3 and / = 2). It forms wave functions made up of certain
combinations of the 3d hydrogen wave functions. The linear combinations we choose are

o1 2 _y2
%y——l—ﬁ[Yz (0,9)-Y,7(6,9)]
o1 1 -1
V.. —l—ﬁ[Yz (0,9)+Y, (6,9)]
1 1 oyl
sz——ﬁ[fé(ﬁ,ciﬁ) Y, (0,9)] (1)

Ve = 001 (09)

W322 2 = },20 (95 ¢)

or

) =l =il =2.m=2)~[1 = 2.m=2))

) =|w..) :i%[2,l>+ 2,-1)]

) =lv) =75 (121) -[2-1) . @
=y, =75 122)+[2-2)

v =lw.: ) =[20)

Note that the notation of the spherical harmonics used here is the same as that used in the
Mathematica.

((Mathematica)) Spherical harmonics Y," (6, ¢)



Clear["Global *"];
Table[ {SphericalHarmonicY[2, m, 6, ¢]},
{m, -2, 2, 1}] // TableForm[#,
TableHeadings -
{{"m=-2", "m=-1", "m=0", "m=1", "m = 2"}}] &

m=-2 le 21¢\/7 Sin[6]°
m=-1 —; l‘b\/iCos ] Sin[O]
m=0 i\/ﬁ l+3Cos[@]2)
m=1 ;el‘b\/iCos ] Sin[O]
m = 2 _411 Zl‘b\/i Sin|
Table 1 Spherical harmonics {/, m, ¥,"(0,¢)}. [=2.m=2,1,0, -1, -2.

The radial part of the wave function (n =3 and / = 2) is given by

2 1 r
3 2( r)= \/;81 exp(—%) . (3)

There are two types of orbital states: the de orbits  dy, dyz, d=v, the dy orbits: dw,2 and d, ,

The complete wavefunctions are
given as follows.

7,’2 *



de(ty,)

1 2xy r
r|d =—— ¢ e — \/5
(rldy) s1a”” 3, n «/ §1a.7 P3NV

1 2yz r
rld.)=——e exp(——W3
(rldx) s1a” 3, e \/ 81a.77 P3N

1 2zx r
rid, )=——5e¢ exp(—— 3. ,
< zx> 81ao7/2 )/_ /_816107/2 Xp( 3a0) zx
dy(e,)

1 roox’ -y’ 2 1 r \/g(xz—yz)
rid, .)= exp(— = exp(—
(o) =g = T g )
< ‘ >: 1 exp( 32 2 1 exp( r )322—r2
Wl 8l1a," «/ " Jox 814, 3a,” 2

4)
zx> =V, <r

dxz,y2>:‘//4a

xy>=l//1’ <r‘dyz>=l//2’ <r

<r‘d3227r2> =, . The complete wavefunctions are given by

For convenience, we use the notations: <r
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Fig.2 Angular parts of the wavefunctions for (1) dx, (2) d,-, (3) d=, (4) dx2_y2 ,and(5) d, .

SUPPLEMENT: ContourPlot3D of s-orbit, d-orbit, and f-orbit

S-1 p-orbitals
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p.)=U,,|L1),
|p,)=U,,1,0),
p.)=U,,|L-1)

under the basis of

1
L)=|0/,
0
and
0
0 2 0 (unitary operator)
1 .

with
UU=1
The probability density for the electron in the 2p orbit is defined by

2

b

[R,, ()] (6,910, |1 = 2,m)

where m =2, 1, 0, -1, -2. We make a ContourPlot3D of the probability density using the
Mathematica program in the 3D (x, y, z) space. We also make a ContourPlot of

‘Rzp (r)‘2 ‘(0, @ Uzp |Z = 2,m>‘2 with x =0 (y-z plane), or, y =0 (x-y plane), or z= 0 (x-y plane

in the 2D plane.
(a) px> state
1 —r/2

The sign of px is determined by a factor x.
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N

Figl(a)  ContourPlot3D of R, (") [(8.4]U,, [1=Lm=1) " x.
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Fig.1(b) ContourPlot of ‘Rz , (r)‘2 ‘(0,¢

indicated on each of them is that of the wave function (which is real).

0,,|1=1.m=1) withy=0 (z-x plane). The sign

(b) ‘ p y> state

1 —r/2

. e
Poydoz 7

The sign of py is determined by a factor y.
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A 2
Fig.2(a) ContourPlot3D of [R, , ()| \(9,¢ U, |l1=1,m= o)\ Ly
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Fig2(b) ContourPlot of ‘Rz , (r)‘2 ‘(94) U, |1=1,m= 0>‘2 with z = 0 (x-y plane). The sign
indicated on each of them is that of the wave function (which is real).
(©) pz> state
1 —r/2

The sign of p; is determined by a factor z.
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Fig.3(a) ContourPlot3D of ‘Rz , (r)‘2 ‘(0, ¢

0,,|1=1.m=0) : z
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-5 0 b

Fig.3(b) ContourPlot of ‘Rz , (r)‘2 ‘(6‘,¢

indicated on each of them is that of the wave function (which is real).

0,,|1=1.m=~1) with x =0 (- plane). The sign

Shape of p-Orbital

The p orbitals are formed like dumbbells.

The p orbital node is located at the nucleus’s center.

Because of the presence of three orbitals, the p orbital can occupy a maximum of six electrons.
Each p orbital is made up of two parts known as lobes that are located on either side of the plane
that runs across the nucleus.

Each p orbital has parts known as lobes on either side of the plane that runs across the nucleus. At
the plane where the two lobes intersect, the likelihood of finding an electron is nil.

The three orbitals are known as degenerate orbitals because they have the same size, shape, and
energy.
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The sole difference between the orbitals is the orientation of the lobes. Because the lobes are
orientated along the X, y, or z-axis, they are given the names 2,x, 2py, and 2p,. The formula n -2 is
used to calculate the number of nodes.

Similarly to s orbitals, the size and energy of p orbitals rise as the primary quantum number
increases (4p > 3p > 2p).

S-2 d-orbitals

de lye

|d(x))=U,, 2,2):—%[ 2,2)-2,-2)1,
[d02)) = Uy [2.1) = =l[2.0)+[2.-1),

; 1
|d(zx)) = U, 2,—1>=—$[ 2,1)—|2,-1)],

dy e,
; 1

a2 -y?)=0,, 2’_2>:E[2’2>+ 2,-2)1,
|a(3z> -r*)=U,,|2.0)=|2,0)

- 0 0 0 1

0 i 0 -10
U3d =L 0O O \/E 0 0 (unitary operator)

V2|

0 i 0 1 0

i 00 0 1

i 0 0 0 —i

0 - 0 —i 0
A
U,, =50 0 V2 0 0

0 -1 0 1 0

10 0 o0 1

with  U*U =1, under the basis of
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1 0 0
0 1 0
[1=2,m=2)=|0], 2,1)= 01|, 2,0)=|1
0 0 0
0 0 0
0 0
0 0
2,-1)=| 0], 2,-2)=]0|,
1 0
0 1
Note
322_r2=222_x2_y2=(Z2_x2)_(y2_22)
Since

(* =y)+ (' =2)+(z° =x) =0

we pick up two independent states; d(x* —y*) and d(3z> —r*).
The probability density for the electron in the 3d orbit is defined by

2

R, (] (0.0]0s, |1 =2,m)

b

where m =2, 1, 0, -1, -2. We make a ContourPlot3D of the probability density using the
Mathematica program.

@ |dw)=U,

2,2)=—

2,2)—

2,-2)]

L
72

(r|d(xy))= %\/% CXP(—% r)(xy)
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2

U3d|l:2,m=2>‘ Xy

Fig.4a ContourPlot3D of |R3 4 (r)|2

(0.4
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Fig.4b ContourPlot of |R3 4 (r)|2 ‘<H,¢ U,, |l =2,m= 2>‘ with z = 0 (x-y plane).

2,1)+

(b) |d(yz)> = U}d 2, _1>]

2,1y=

|
7

(r|d(y=)) = é\/% exp(=37)(0%)
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U3d|l:2,m:1>‘ vz

Fig.5a ContourPlot3D of |R3 4 (r)|2

(0.4
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Fig.5b ContourPlot of R, () [(6.4[U,, |1 = 2.m = 1)\2 with x = 0 (y-zplane).
(© |dz0)=U, 2,-1):-%[ 2,1)-]2,-1)1,

(rld(r2)) = é\/% exp(=3 7)(z1)
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Fig.6a ContourPlot3D of |R3 4 (r)|2

U3d|l=2,m=—1>r: zxX

(0.4
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Fig.6b ContourPlot of [R;, (r)|2 ‘(9,¢ Uy, |l=2,m= —1>‘ with y = 0 (z-x plane).
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@ |d*-y")=U,,

2,-2)=

2,2)+

2,-2)],

<r‘d(x2 —y2)> = 81\}5 GXP(—%”)()C2 )
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Fig.7a ContourPlot3D of |R,, (r)|2 ‘(9,¢ U, |l=2,m= —2)‘2 D xt -y’
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Fig.7b ContourPlot of |R;, (r)|2 ‘(9,¢ Uy, |l=2,m= —2)‘ with y = 0 (z-x plane).

A

© |d3z-r)=0,

2,0)=

2,0)

exp(—2r) (222 2 =)

2 a1
(r|aG2* =)= 816r 3
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Fig.8a ContourPlot3D of |R3 4 (r)|2 <0,¢

0,,|1=2.m=0)": 322~
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Fig.8b ContourPlot of |R3d (r)|2 ‘(6‘,¢ U3d |Z =2,m= 0>‘2 with x = 0 (y-z plane).

Shape of d-Orbital

For d orbitals, the magnetic orbital quantum number is given as (2, 1, 0, -1, -2). As a result, we
can claim there are five d-orbitals. These orbitals are denoted by the symbols dxy, dyz, dxz, dx*—y?,
and d,>.The forms of the first four d orbitals are similar to each other, which differs from the d.?
orbital, but the energy of all five d orbitals is the same.

f-orbit

The unitary operator
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5 B3 0 0 0 -3 -if5
0 0 22 0 =242 0 0
o B0 0 0 W5 -3
Uy=g| 0 0 0 4 0 0 0
35 0 0 0 W5 -3
0 0 22 0 22 o0 0
S5o-B 0 0 0 -3 -iaf5
5 0 3o 3 0o 45
B30 50 5 0 -3
A o 22 0 0 0 242 o0
Uy =yl 0 0 0 4 0 0 0 ——
0 242 0 0 0 -i2v2 0
N3 0 —i5 0 -5 0 i3
N5 0 i3 0 i3 0 5
U4f+04f =1

((K. Yosida))
K. Yosida, Theory of Magnetism (Springer-Verlag, 1996)

3,3) =—(—/5|3,3)+3[3,1) - ) -3)) x(5x* =3r%)
3’2>:411 313,3) ++/5[3,1) =/5]3,-1)—~/3|3,-3)) x(y* -2%)
U,, 3,1):% ,2)+(3,-2)) z(x* = y?)
U,,|3.0)=|3,0) 2(52° =3r7)
0., 3,—1):% ~[3,2)+[3,-2)) B
)=y BRI BRY R BB )
0., [3,-3) == L6333+ BN BB+ B33 MErR=a)

The probability density for the electron in the 4f orbit is defined by
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R, ([ [(0.4]0,,|1=3.m)[

where m =3, 2, 1, 0, -1, -2, -3. We make a ContourPlot3D of the probability density using the
Mathematica program.

A

U,,

3,3):  x(5x"-3r%)

2 A 2
Fig.9 ContourPlot3D of R, , (r)| \(9,¢ U, |1=3,m= 3>\ : x(5x° = 3?)

4 |3:2) x(y*—z%)
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Fig.10 ContourPlot3D of ‘R4 ; (r)‘2 ‘(6’, ¢

U4f|l=3,m=2>‘2:x(y2—zz)

4 |3:0) z(x* —y?)
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2 A 2
Fig.11 ContourPlot3D of [R, ([ [(6,4[U,, |1 =3,m =1)[ : 2> =y?)

A

U,

3, 0> z(52° -3r?)
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Fig.12

ContourPlot3D of ‘R4 ; (r)‘2

(0.4

U4f|l=3,m:0>‘2: z(5z° =3r%)
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Fig.13 ContourPlot3D of ‘R4 ; (r)‘2 ‘(6’, ¢

~ 2
U4f|l:3,m:—l>‘ D xyz

A

U,

3,-2)  y(z*-x%)
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Fig.14 ContourPlot3D of ‘R4 s (r)‘2 ‘(0, 1/

O, |1=3m=-2): ¥z -x).

A

U,,

3,-3) w5y -3r)
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Fig.15 ContourPlot3D of ‘R4 ’ (r)‘2

O, |1=3.m=-3)[ : 55> =3r*)

(0.4

Discussion
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%
— =
3d ¢_rz_y1
Puz. Pox
de <

Pry
cubic symmetry tetragonal symmetry

First, having in mind an ionic crystal with the NaCl-type structure, we assume that the magnetic
ion is surrounded octahedrally by O anions, For the five independent 3d wave functions, we have
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de: dxy), d(yz), d(zx)
dy: d(x-y) d(3z*- 1)
The electron transfer Hamiltonian combines these wave functions with the p-orbitals on

neighboring O% ions. As a result, the 3d orbitals are mixed with the appropriate combinations of
the p orbitals of surrounding anions. We define three p orbitals of O* as

p(x), (), p(2)

from symmetry, they mix with the 3d orbitals. As is evident from the figure, the d¢ and dy
orbitals mix differently with the p orbitals and consequently the d¢ and dy orbitals have different
energies.

((Mathematica))
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ContourPlot3D
dxy, dyz, dzx, dx2y2, d3zr

Clear["Global %"];

r2xRule = {r >t +y? 2%, 0 ArcCos[

¢ - ArcTan[x, y] };

yi
]
\/x2+y2+z2

rwave[n , 7 , r_] :=
1

‘\/(n+/)!
3 r

[21*’ a® "2 e @nn2r A (n-/-1)1

.
LaguerreL[-1+n-/,1+2/, ])/.a@-»l;

aon

Combination of spherical harmonics for d orbitals

dxy[é , # ] :=

-1
T (-SphericalHarmonicY([2, 2, &, #] +
2

SphericalHarmonicY[2, -2, &, #¢]) // Simplify;
dyz[e , ¢ ] :=

1
—— (SphericalHarmonicY[2, 1, &, #] +
2

SphericalHarmonicY[2, -1, &, #¢]) // Simplify;
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dzx[e , &4 ] :=

1
—— (-SphericalHarmonicY[2, 1, &, #] +
2
SphericalHarmonicY[2, -1, &, #]) // Simplify;
dx2y2[e , # ] :=
1
T (SphericalHarmonicY[2, 2, &, #] +
2
SphericalHarmonicY[2, -2, &, #]) // Simplify;
d3zr[e , ¢ ] :=SphericalHarmonicY[2, 0, &, #] // Simplify;

al = 14;
CountourPlot 3D of probability density

oxy[r , & , ¢ ] :=rwave[3, 2, r]?Abs[dxy[&, #]]1%;
eyz[r , 6 , ¢ ] :=rwave[3, 2, r12 Abs[dyz[&, #11%;
ozx[r , & , # ] :=rwave[3, 2, r]?>Abs[dzx[&, #]1%;
ox2y2[r , 6 , ¢ ] :=rwave[3, 2, r]*Abs[dx2y2[&, #]1]1%;
e3zr[r , 6 , ¢ ] :=rwave[3, 2, r]2Abs[d3zr[e, 4]]1%;
Kxy = ContourPlot3D[Evaluate [®xy[r, 6, ¢] //. r2xRule],
{x, -al1, al}, {y, -al, al}, {z, -al, al}, PlotPoints - 20,
ContourStyle - {Green}, Boxed - False, Axes - False];
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Kyz = ContourPlot3D[Evaluate[®yz[r, 6, ¢] //. r2xRule],
{x, -al1, a1}, {y, -al, al}, {z, -al, al}, PlotPoints - 20,
ContourStyle -» {Green}, Boxed - False, Axes - False];
Kzx = ContourPlot3D[Evaluate[®zx[r, 6, ¢] //. r2xRule],
{x, -al1, a1}, {y, -al, a1}, {z, -al, al}, PlotPoints - 20,
ContourStyle -» {Green}, Boxed -» False, Axes - False];
Kx2y2 = ContourPlot3D[Evaluate[®x2y2[r, 6, ¢] //. r2xRule],
{x, -al1, a1}, {y, -al, al}, {z, -al, al}, PlotPoints - 20,
ContourStyle -» {Green}, Boxed - False, Axes - False];
K3zr = ContourPlot3D[Evaluate[®3zr([r, 6, ¢] //. r2xRule],
{x, -al1, a1}, {y, -al, a1}, {z, -al, al}, PlotPoints - 20,
ContourStyle -» {Green}, Boxed - False, Axes - False];
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1 = {0, 0, 16};

f1 = Graphics3D[{Red, Thick, Arrowheads[0.04], Arrow[{{-X1,)
Blue, Arrow[{{-Y1, Y1}}], Black, Arrow[{{-Z1, Z1}}],
Text [Style["x", Black, Italic, 15], {17, 0, 0}],
Text[Style["y", Black, Italic, 15], {o, 17, 0}],
Text[Style["z", Black, Italic, 15], {0, 0, 17}1}1];

Show[Kxy, f1, PlotRange - All]

V4

A
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Show[Kyz, f1, PlotRange - All]

V4

\
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