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1. Derivation 

Free particle wave function   satisfies the Schrödinger equation 
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is the energy of the particle, and k is the wave number. This equation can be rewritten as 
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This equation is solved in a formal way as 
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(separation variables), where L is the angular momentum: 
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((Note)) 

In the limit of r →∞, we have 
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Then we get 
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  (outgoing and incoming spherical waves) 
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Now we put x  kr  (dimensionless) 
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where 
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Note that the differential equation has of the Sturm-Liouville-type, 
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The solution of this equation is the Bessel functions; 
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Then R(x) is expressed by the spherical Bessel functions; 
 
(i) Spherical Bessel function, 
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(ii) Spherical Neumann function, 
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Since the spherical Neumann function )(xn diverges at x =0, it cannot be chosen as a 

solution. Finally we get 
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((Mathematica)) 
 
Clear"Global`";

eq1  x2 DR{x, x, 2  2 x DR{x, x  x2  { {  1 R{x;

rule1  R{  J


& ;

eq11  eq1 . rule1  FullSimplify

4 x2  1  2 {2 Jx  4 x Jx  x Jx
4 x

DSolveeq11  0, Jx, x
Jx  BesselJ1

2
1  2 {, x C1  BesselY1

2
1  2 {, x C2

 
 
_______________________________________________________________________  
2 Recursion relation 
(a)   0  
First we consider the case of   0 . The differential equation is given by  
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So that the solution of rR are 
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Next we consider the case of   0  
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where we know the solution )(xjR l . When we put 
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we have the differential equation, 
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If we differentiate this equation with respect to x, we obtain 
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which is in fact the equation satisfied by 1(x). Thus the successive function 1(x)is 
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Since R  j(x), we have the spherical Bessel function as 
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((Mathematica)) 

Clear"Global`"; OP1 :
1

x
D, x &;

Jl_, x_ : xl NestOP1,
Sinx

x
, l

Tablel, Jl, x, l, 0, 7  Simplify  TableForm

0 Sinx
x

1 x CosxSinx
x2

2 
3 x Cosx3x2 Sinx

x3

3
x 15x2 Cosx3 52 x2 Sinx

x4

4
5 x 212 x2 Cosx10545 x2x4 Sinx

x5

5
x 945105 x2x4 Cosx15 6328 x2x4 Sinx

x6

6 
21 x 49560 x2x4 Cosx10 3954725 x2210 x4x6 Sinx

x7

7
x 135 13517 325 x2378 x4x6 Cosx7 19 3058910 x2450 x44 x6 Sinx

x8

OP2 :
1

x
D, x &; Hl_, x_ : xl NestOP2,

Cosx
x

, l

Tablel, Hl, x, l, 0, 7  Simplify  TableForm

0  Cosx
x

1  Cosxx Sinx
x2

2
3x2 Cosx3 x Sinx

x3

3
3 52 x2 Cosxx 15x2 Sinx

x4

4 
10545 x2x4 Cosx5 x 212 x2 Sinx

x5

5 
15 6328 x2x4 Cosxx 945105 x2x4 Sinx

x6

6
10 3954725 x2210 x4x6 Cosx21 x 49560 x2x4 Sinx

x7

7
7 19 3058910 x2450 x44 x6 Cosxx 135 13517 325 x2378 x4x6 Sinx

x8  
 



Vector analysis 7 7/5/2015 

________________________________________________________________________ 
3. Spherical Hankel functions 

We define the spherical Hankel functions as 
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where the spherical Bessel function and spherical Neumann function are given by 
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Fig. jn(x) with n = 0, 1, 2, 3, 4, 5, and 6. 
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Fig. nn(x) with n = 0, 1, 2, 3, 4, and 5. 
 
________________________________________________________________ 
4 Rayleigh formulas 
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________________________________________________________________________ 
5 Asymptotic forms 

The asymptotic values of the spherical Bessel functions and spherical Hankel 
functions may be obtained from the Bessel asymptotic form. 
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6. The behavior near the origin 
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7. Energy eigenvalue of particle in an infinite spherical well (spherical quantum 
dot 

We discuss the wave function of a particle in an infinite spherical well in three 
dimensions. The wave function is given by 
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The energy eigenvalue is dependent on the value of l. Suppose that x(l, nr) is the nr-th 
zero points where jl(x) becomes zero, where nr = 1, 2, 3, ..... (integer). The energy 
eigenvalue is 
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Spherical Bessel functionl = 0
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Fig. The plot of )(xj  as a function of x. The values of x when 0)( xj  are denoted 

by the blue arrows. 
 
The energy levels of the infinite spherical well is shown for each l (= 0, 1, 2, 3, 4,...)  
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8. Nuclear shell model: Magic number for nucleus 

We consider one particle on the spherical shell. It is just like a quantum box for the 
one dimension. The particle is free inside the spherical shell. Outside the shell, the 
potential energy is infinite. We consider either proton or neutron. As the first 
approximation, there is no repulsive Coulomb interaction. These particles are both spn-
1/2 particles. These particles obey the Pauli’s exclusion principle. First we determine the 
energy eigenvalues for the one-particle system. This problem is just like the quantum box 
for the one dimension. According to the Paili’s exclusion principle, there are two states in 
the ground state with the spin-up state and spin-down state. When the two states are 
occupied, the first excited state will be occupied next.  

In nuclear physics and nuclear chemistry, the nuclear shell model is a model of the 
atomic nucleus which uses the Pauli exclusion principle to describe the structure of the 
nucleus in terms of energy levels. The first shell model was proposed by Dmitry 
Ivanenko (together with E. Gapon) in 1932. The model was developed in 1949 following 
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independent work by several physicists, most notably Eugene Paul Wigner, Maria 
Goeppert-Mayer and J. Hans D. Jensen, who shared the 1963 Nobel Prize in Physics for 
their contributions. 

The shell model is partly analogous to the atomic shell model which describes the 
arrangement of electrons in an atom, in that a filled shell results in greater stability. When 
adding nucleons (protons or neutrons) to a nucleus, there are certain points where the 
binding energy of the next nucleon is significantly less than the last one. This observation, 
that there are certain magic numbers of nucleons: 2, 8, 20, 28, 50, 82, 126 which are more 
tightly bound than the next higher number, is the origin of the shell model. 
(http://en.wikipedia.org/wiki/Nuclear_shell_model). 
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((Our model)) 
 
We now try to make a nucleus by filling the energy levels with protons and neutrons. 
Protons and neutrons are both spin 1/2 particles (fermions). According to the Pauli's 
exclusion principle, there are more than two particles in each energy level. Suppose that 
we fill the levels with just protons. The first level is a (1s) level where 2 protons can 
occupy. The second level is a (1p) level where 6 protons can occupy. The third level is a 
(1d) level where 10 protons can occupy. In such a way, we see that the energy levels will 
be completely filled when the number of protons is 
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(1s)2   2 
(1p)6   2+6=8 
(1d)10   2+6+10=18 
(2s)2   2+6+10+2=20 
(1f)14   2+6+10+2+14=34 
(2p)6   2+6+10+2+14+6=40 
(1g)18   2+6+10+2+14+6+18=58 
(2d)10   2+6+10+2+14+6+18+10=68 

 
with a similar sequence of neutrons. Note that real nuclei exhibits the magic numbers 
such that 
 

2, 8, 20, 28, 50, 82, and 126. 
 
The difference between the observed magnetic numbers and those in the simple model 
arises there is a strong inverted spin-orbit coupling that shifts the energy levels. 
 
________________________________________________________________________ 
((Maria Goeppert-Mayer, nuclear shell model)) 

Maria Goeppert-Mayer (June 28, 1906 – February 20, 1972) was a German-born 
American theoretical physicist, and Nobel laureate in Physics for proposing the nuclear 
shell model of the atomic nucleus. She is the second female laureate in physics, after 
Marie Curie. 
 

 
 

Goeppert-Mayer's model explained why certain numbers of nucleons in an atomic 
nucleus result in particularly stable configurations. These numbers are called magic 
numbers. She postulated that the nucleus is a series of closed shells, and pairs of neutrons 
and protons tend to couple together in what is called spin orbit coupling.  

 
http://en.wikipedia.org/wiki/Maria_Goeppert-Mayer 
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((Note)) 
Magneic number: 
 
   2  
   8=2+6  
   20=2+6+12  
   28=2+6+12+8  
   50=2+6+12+8+22  
   82=2+6+12+8+22+32  
  126=2+6+12+8+22+32+44  
  184=2+6+12+8+22+32+44+58 
 
N: the number of neutron 
Z: the number of proton. 
These are fermion with spin 1/2, obeying the Pauli exclusion principle. 
 
Either N or Z equal to the magic number 
Both N and Z are equal to the magic number (double magic number)\ 
 

He4
2 : N = 2, Z = 2   (double magic number) 
 

O16
8 : N = 8, Z = 8   (double magic number) 

 
Ca40

20 : N = 20, Z = 20   (double magic number) 

 
Sn119

50 : N = 69, Z = 50   (magic number) 
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Fig. Graph of isotope stability 
http://en.wikipedia.org/wiki/Magic_number_%28physics%29 
 
________________________________________________________________________ 
((Mathematica-1)) 
The roots [zero point, x(l, nr)] of the spherical Bessel function for l = 0, 1, 2, 3, 4. 
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xJ
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; k = 1 (first zero), k = 2 (second zero), k = 3 (third zero),... 

 
________________________________________________________________________ 
l = 0 
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Clear"Global`";

Tablek, NBesselJZero12, k, k, 1, 9 
TableForm

1 3.14159
2 6.28319
3 9.42478
4 12.5664
5 15.708
6 18.8496
7 21.9911
8 25.1327
9 28.2743  

________________________________________________________________________ 
l = 1 
 

Tablek, NBesselJZero32, k, k, 1, 9 
TableForm

1 4.49341
2 7.72525
3 10.9041
4 14.0662
5 17.2208
6 20.3713
7 23.5195
8 26.6661
9 29.8116  

 
________________________________________________________________________ 
l = 2 
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Tablek, NBesselJZero52, k, k, 1, 9 
TableForm

1 5.76346
2 9.09501
3 12.3229
4 15.5146
5 18.689
6 21.8539
7 25.0128
8 28.1678
9 31.3201  

 
_______________________________________________________________________ 
l = 3 
 

Tablek, NBesselJZero72, k, k, 1, 9 
TableForm

1 6.98793
2 10.4171
3 13.698
4 16.9236
5 20.1218
6 23.3042
7 26.4768
8 29.6426
9 32.8037  

 
_______________________________________________________________________ 
l = 4 
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Tablek, NBesselJZero92, k, k, 1, 9 
TableForm

1 8.18256
2 11.7049
3 15.0397
4 18.3013
5 21.5254
6 24.7276
7 27.9156
8 31.0939
9 34.2654  

 
____________________________________________________________________ 
7 Plane wave expression 

The wave function  can be described by 
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We consider the plane wave rk ie , which is one of the solution of the Schrödinger 
equation. 
 




 

 
0

)(),(
l

l

lm
l

m
llm

i krjYae rk  

 
We choose the direction of k along the z direction. 
 

),0,0( kk ,  coskr rk  
 
We note that cosikri ee rk  is independent of . ),( m

lY  is independent of   only for m 

= 0. 
 

)(cos
4

12
),(0 


 l

m
l P

l
Y


  

 
Then we get 
 






 
0

cos )()(cos
l

lll
ikri krjPcee rk  

 



Vector analysis 21 7/5/2015 

where 
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or 
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This formula is especially useful in scattering theory. For kr>>1, we get 
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___________________________________________________________________ 
8 Bessel-Fourier transform 
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This means that (apart from constant factor) the spherical Bessel function )(krjl  is the 

Fourier transform of the Legendre polynomial Pl(x). 
 
________________________________________________________________________ 
9 Green's function for the spherical Bessel function 

We consider the Green's function given by 
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The solution of the Green's function is given by 
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where r is the variable and r' is fixed. 
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Note that 
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The possible solutions of Gl are jl(kr), nl(kr), hl
(1)(kr), hl

(1)(kr), or a linear combination of 
these functions.  
 

)(krAjG lIl  ,   for r<r' (region I) 

 

)()1( krBhG lIIl  ,  for r>r' (region II) 
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choose )()1( krhl ; 
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(i) The continuity of Gl at r = r' 
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(ii) The discontinuity of drdGl /  at r = r'. 
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We need to calculate the Wronskian 
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________________________________________________________________________ 
((Note)) We can calculate W by using Mathematica. 
 

WronskianSphericalBesselJl, x,

SphericalHankelH1l, x, x


x2  
________________________________________________________________________ 
Thus we get 
 

C = ik. 
 
In general, we have 
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This means that 
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We also get 
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________________________________________________________________________ 
APPENDIX 
Mathematica 
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Bessel functions 
 

BesselJ[n,z]   for Jn(z) 
BesselI[n,z]   for In(z) 
BesselK[n,z]   for Kn(z) 
BesselY[n,z]   for Nn(z) (or Yn(z)) 

 
Hankel functions 
 

HankelH1[n,z]   for Hn
(1)(z) 

HankelH2[n,z]   for Hn
(2)(z) 

 
Spherical Bessel functions 
 

SphericalBesselJ[n,z]  for jn(z) 
SphericalBesselI[n,z]  for in(z) 
SphericalBesselK[n.z]  for kn(z) 
SphericalBesselY[n,z]  for nn(z) 

 
Spherical Hankel functions 
 

SphericalHankelH1 [n,z] for hn
(1)(z) 

SphericalKankelH2[n,z] for hn
(2)(z) 
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