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Here we discuss the bound states of deuteron in a three-dimensional (3D) spherical 

(attractive) square well potential with radius (a) and a potential depth ( 0V ). This problem 

is of interest because it is mathematically straightforward and approximate a number of 

real physical situation. This problem is so familiar and has been used as exercises in 

standard textbooks of quantum mechanics. In spite of this fact, we present our results of 

detailed calculations using the Mathematica (ContourPlot) in the this note. It may be 

useful to understanding the role of angular momentum and potential depth in this model. 

The energy eigenvalues of the system are determined as a function of the potential 

depth and angular momentum l  0, 1, 2, 3, 4…. The nature of the wave functions, which 

depend on the depth of potential well and the orbital angular momentum, is also 

examined. To this end, we use the ContourPlot (Mathematica) for the boundary condition 

of the wave functions at the radius a. The boundary condition is given by 
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for l  0, 1, 2, 3,…. (L.I. Schiff). This condition for l = 0. reduces to a simple form 

 

coty x x  . 

 
Notations of this boundary condition will be discussed below. For the first time, we found 

such a form of the boundary condition, in a book, Problems and Solutions of L.I. Schiff 
Quantum mechanics 3rd edition (Yoshioka, 1983) [in Japanese]. 

Typical result derived from this method, is shown below. These results are useful to 
the understanding of the phase shift analysis (of scattering) such as Levinson’s theorem. 
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Fig.1 l = 0. Typical example. E : energy eigenvalue of the bound states which 

is the closest to E = 0 among bound states, but E<0. 0V  is a potential depth 

and a is a radius. The ground state with energy 1E . The first excited state 

with energy 2E . The second excited state with energy 3E . 

1 2 3 0E E E   . 

 

((Levinson’s theorem)) 

Levinson's theorem is an important theorem in non-relativistic quantum scattering 

theory. It relates the number of bound states of a potential to the difference in phase of a 

scattered wave at zero and infinite energies. It was published by Norman Levinson in 

1949.  

https://en.wikipedia.org/wiki/Levinson%27s_theorem 
 

((Deuteron)) 

Nucleus of deuterium (heavy hydrogen) that consists of one proton and one neutron 
(the notation: d or D). Deuterons are formed chiefly by ionizing deuterium (stripping the 

single electron away from the atom) and are used as projectiles to produce nuclear 
reactions after accumulating high energies in particle accelerators. A deuteron also results 

from the capture of a slow neutron by a proton, accompanied by the emission of a gamma 
photon. 
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Fig.2 Deuteron consisting of one proton and one neutron in a nucleus. 
 

The reduced mass of deuteron (neutron and proton) is 
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1. Schrödinger equation for the finite spherical square well 
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Fig.3 Spherical (attractive) square well potential ( )V r  as a function of r. The 

potential depth 0V  and radius a. 0 0V  . 0E E    (bound state). 

 

The Hamiltonian for the deuteron in a finite spherical square well potential is given by 
 



Vector analysis 4 1/26/2021 

)(
2

)1(

2 2

22

rV
r

llp
H r 





ℏ

, 

 

with the radial linear momentum, 
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V(r) is the potential energy for the spherical square well, 
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where r is the distance between proton and neutron, and   is the reduced mass, 
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  (of proton or neutron). 

 

Then the Schrodinger equation can be written as 
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where E is negative and numerically equal to the binding energy. 
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(i) For r<a, 
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We put 
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(ii) r>a, 
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  (for r>a). 

 

 
The effective potential is defined as 
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The normalized effective potential effVɶ  can be rewritten as 
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When / 1r a  ,  
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So that the bound state (negative energy eigenvalue) exists only when  
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We make a plot of 
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as a parameter. 
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Fig.4 l = 0. Effective potential 
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Fig.5 l = 1. Effective potential 
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the bound state. 0r  is changed as a parameter; 0 2  5r   . 0 0.5r  . 
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Fig.6 l = 2. Effective potential 
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the bound state. 0r  is changed as a parameter; 0 2  5r   . 0 0.5r  . 
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Fig.7 l = 3. Effective potential 
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the bound state. 0r  is changed as a parameter; 0 3  6r   . 0 0.5r  . 
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Fig.8 l = 4. Effective potential 
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the bound state. 0r  is changed as a parameter; 0 4  6r   . 0 0.5r  . 

 

3. Solution with l = 0 case 

We consider the case when l = 0, for which there is no centrifugal barrier. 
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with 0E   (bound state). This leads to the condition, 
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The solution of u(r) is obtained as 

 

)sin()( 0rkAru   (r<a) 

 

)exp()( qrCru   (r>a) 
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The continuity of u(r) and u'(r) at r = a, leads to 

 
qaCeakA )sin( 0  

 
qaeqCakAk  )()cos( 00  

 

From these two equations, we have 

 

)cot( 00 akakqa   (2) 

 

We assume that 

 

yqa  , xak 0  

 

Then we have 

 

)cot(xxy  , (3) 

 

with 
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where 0r  is the radius of the sphere. Figure shows a plot of Eqs.(3) and (4) in the x-y 

plane.  

 

((Note)) 

For 0l  , 
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leading to the relation 

 
coty x x    
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Fig.9 l = 0. A plot of )cot(xxy   and 
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    ; x = /2, 3/2, 5/2. 

 

There is no bound state for    
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There are two bound states for  
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4. The binding energy and potential depth for deuteron 

A. Goswami Quantum Mechanics second edition (Wavelend, 2003). 

 
The binding energy of deuteron can be evaluated as follows. 

 

M(H1): mass of proton  938.27208816 MeV 

M(n): mass of neutron  939.56542052 MeV 

M(d): mass of deuteron  1875.612928 MeV 

M(e); mass of electron  0.510998950 MeV 

 

Binding energy = M(H1) +M(n)-M(d)  2.22458 MeV. 

 

M(H1) +M(e) =  938.783087 MeV 

M(n)- [M(H1) +M(e)] =  0.7823335 MeV 

 

The stability of the deuteron is an important part of the story of the universe. In 

the Big Bang model it is presumed that in early stages there were equal numbers 

of neutrons and protons since the available energies were much higher than the 

0.782335 MeV required to convert a proton and electron to a neutron. When the 

temperature dropped to the point where neutrons could no longer be produced 

from protons, the decay of free neutrons began to diminish their population. 

Those which combined with protons to form deuterons were protected from 

further decay. This is fortunate for us because if all the neutrons had decayed, 

there would be no universe as we know it, and we would not be here! 

http://hyperphysics.phy-astr.gsu.edu/hbase/Particles/deuteron.html 

 
It is known that the deuteron bound state has an energy  

 

2.226E   MeV. (we use this value hereafter). 

 

The range of nuclear potential is approximately equal to the Compton wavelength of 
the pion, which, to a first approximation, meditates the interaction between nucleons, that 

is 
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where 2135.0 MeV/m c  . Using this value of a, and 
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which is much larger than 0E . We make a plot of 2 2
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. This can be obtained using the ContourPlot of the Mathematica; 
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Fig.10 The range-depth relation for the square-well potential. The plot of 

2 2
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2
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ℏ

 as a function of 
2

2 E
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ℏ
. This figure is the same 

as that shown by Goswami in his book (Quantum Mechanics, 2nd edition, 

Wavelend, 2003), except for the scale along the y axis ( 2

0r ). 

 

((Mathematica)) 
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The radius a: 

 
13

15

1.46168 10 cm

1.46168 10 m

=1.46168 fm

a 



 

   

 

The reduced mass  : 

 
25

28

8.36887 10 g

=8.36887 10 kg

 



 


 

 

The potential penetration depth 0V : 

 

0 47.894V   MeV. 

 

We use the cgs unit for Mathematica. 
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5. Solution of u(r) for r<a with l 

We solve the differential equation for r<a 
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where the wave number 0k  is defined as 
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Now we introduce a dimensionless variable , 
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The solution of this differential equation is obtained as 
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where the spherical Bessel function and spherical Neumann function are defined by 
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Note that )(ln  becomes infinity in the limit of 0 . So we choose the first term  

 

, 0( ) ( )k l l lR r A j k r . 

 

where )()( ,, rurrR lklk   and lA  is constant. 

 

((Mathematica)) 

 

Clear "Global` " ;

eq1 y'' x 1
L L 1

x2
y x 0;

DSolve eq1, y x , x

y x x BesselJ
1

2
1 2 L , x C 1

x BesselY
1

2
1 2 L , x C 2
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((Note)) 

We note that 
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6. Solution of u(r) for r>a with finite l 

We solve the differential equation for r>a 
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where 
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where q is the wavenumber. 
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Now we introduce a dimensionless variable , 
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The solution of this differential equation is obtained as 
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where )(
)1(

xhl  and )(
)2(

xhl  are the spherical Hankel function of the first and second kind. 
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The asymptotic forms of (1) ( )lh x  and (2) ( )lh x  are given by 
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in the limit of large x. Then we get 
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which means that (2) ( )h iqr
ℓ

 becomes diverging for large r, while (1) ( )h iqr
ℓ

 becomes zero 

for large r. So, we choose (1) ( )h iqr
ℓ

 as the solution of )(, rR lk  for r>a, 

 
(1)

, ( ) ( )k l l lR r B h iqr . 

 

where B1 is constant. 

 

10. Boundary conditions with finite l 

Using the boundary condition at r = a, we determine the energy eigenvalues. We note 

that the wave function and its derivative should be continuous at r = a. 
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Spherical Bessel function; 
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    SphericalBesselJ[l, z]  (Mathematica) 

 

Spherical Hankel function: 
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   SphericalHankel1[l, z] (Mathematica) 

 

________________________________________________________________________ 

Here we use the recursion formula for (1)( ) ( ),  ( ),l l lf j h    ,  
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Then, the boundary condition can be rewritten as 
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(L.I. Schiff, Quantum mechanics) 
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In summary, we have 
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coty x x      for l = 0 
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(b) l = 1, 2, 3, 4, … 
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with the use of ContourPlot of the Mathematica. 
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9. The condition for the bound state energy 0E   

Using these boundary conditions, we can determine the values of 0V  and l such that 

the energy of the bound state E becomes zero. We note that the energy 0E   is 

equivalent to 0y  . Note that l = 0 (s), 1 (p), 2 (d), 3 (f), and 4 (g).  

For l = 0, we get the condition cos 0x  , leading to 
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For l = 0, 1, 2, 3,…, we have 1( ) 0lj x  . The zeros of 1( )lj x  is defined by 
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or 

 
2 (0)

20

2

2
[ ( 1, , )]

a V
z l n


 

ℏ
  

 

where n = 1, 2, 3,,…, (0)

0V  is the potential depth for E = 0, l (=1, 2, 3,…) is the orbital 

angular momentum, and ( 1, , )l n   is the zero of the spherical Bessel function 1( )lj x . 

 

Table 1: Zeros of the spherical Bessel functions. 

 

Number 

of zero; 0 ( )j x  1( )j x  2 ( )j x  3( )j x  4 ( )j x  

n 

1 3.14159 4.49341 5.76346 6.98793 8.18256 

2 6.28319 7.72525 9.09501 10.4171 11.7049 

3 9.42478 10.9041 12.3229 13.6980 15.0397 

4 12.5664 14.0662 15.5146 16.9236 18.3013 

5 15.7080 17.2208 18.6890 20.1218 21.5254 

 

___________________________________________________________________ 
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Table 2: Zeros of the spherical Bessel functions. 

 

Number 

of zero 0 ( )j x  1( )j x  2 ( )j x  3( )j x  4 ( )j x  

n 

1   1.4303  1.83457  2.22433  2.60459  

2 2  2.4590  2.89503  3.31587  3.72579  

3 3  3.4709  3.9225  4.36022  4.78727  

4 4  4.4774  4.9385  5.38696  5.82547  

5 5  5.4815  5.9489  6.40497  6.85175  

 

((Mathematica)) 

Zeroes of the Spherical Bessel functions 
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Here we make a plot of 
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 where E = 0, as a function of l and n. 
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Fig.11(a) (b) Plot of 
2 (0)

20
02

2 a V
r




ℏ
 where E = 0, as a function of l and n: l = 0, 1, 2, 

3,…. n = 1, 2, 3, 4, ….. Note that the bound state (negative energy 

eigenvalue) exists only when 2

0 ( 1)r l l   from the discussion of the 

effective potential. 

 

(a) l = 0:  1

cos
( ) 0

z
j z

z
    cos 0z    

 

n   (0 1, )z n   2[ (0 1, )]z n  

1  / 2 (=  2.46740 

2  3 / 2 (=  22.2066 

3  5 / 2 (=  61.6850 

4  7 / 2 (=  120.903 

5  9 / 2 (=  199.859 

 

(b) l = 1:  0

sin
( ) 0

z
j z

z
  ; sin 0z   

 

n   (1 1, )z n  2[ (1 1, )]z n  

1    (= 9.86960 

2  2 (= 39.4784  

3  3 (= 88.8264 

4  4 (= 157.914 

5  5 (= 246.740 

 

 

(c) l = 2:  1( ) 0 (2 1, )j z z z n      
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n   (2 1, )z n    2[ (2 1, )]z n  

1  4.49341(=   20.19073 

2  7.72525(=   59.6795 

3  10.9041(=    118.8994 

4  14.0662(=   197.8580 

5  17.2208(=   296.5560 

 

(d) l = 3:  2 ( ) 0 (3 1, )j z z z n    ; 

 

n   (3 1, )z n    2[ (3 1, )]z n  

1  5.76346(=   33.2175 

2  9.09501(=   82.7192 

3  12.3229(=   151.854 

4  15.5146(=   240.703 

5  18.6890(=   349.279 

 

(e) l = 4:  3( ) 0 (4 1, )j z z z n    ; 

 

n   (4 1, )z n    2[ (4 1, )]z n  

1  6.9879 (=    48.83075  

2  10.4171(=   108.5160 

3  13.6980(=   187.6352 

4  16.9236(=   286.4082 

5  20.1218 (=   404.8868 

 
9. Solution with l = 0 (s-wave) 

We now discuss the solution of the Schrödinger equation with l = 0 (s wave). We 
have the wave function, 

 

0 0( ) sin( ) sin[( ) ] sin( )
r

u r A k r A k a A x
a

     for r a . 

 

( ) exp( ) exp[ ( ) ] exp[ ]
r

u r C qr C qa C x
a

        for r a  

 

0k a  , qa   

 

2 2 2 2 2 2

0 0 02

2
( ) ( )k a qa V a r


     

ℏ
 

 

The boundary condition: 
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0sin( ) exp( )A k a C qa  , 

 

sin( ) exp( )A C   , 

 

0 0cos( ) ( )exp( )Ak k a C q qa   ,  cos( ) exp( )A C      , 

 

cot    . 

 
Normalization: 

 
2 2 2

2 20

2 2

0

sin ( ) exp( 2 )
1 4 4

a

a

A k r C qr
r dr r dr

r r
 

 
   , 

 

or 
 

2 2
2 2 20

02

0 0

2

sin ( )
4 4 sin ( )

2 sin(2 )
4 [ ]

4

a a
A k r

r dr A k r dr
r

A a

 

 









 
 

 
2

2 2

2

2
2

exp( 2 )
4 4 exp( 2 )

4
2

a a

C qr
r dr C qr dr

r

e
C



 




 




 



 
 

 

or 
 

2
2 22 sin(2 )

1 4 4
4 2

e
A a C a

 
 

 

         
, 

 

sin( ) exp( )A C   , 

 

22 sin cos 2 ( sin )
A a



      


  
, 

 

2

sin

2 sin cos 2 ( sin )

e
C a

  

      


  
. 

 

10. The energy eigenvalue E  vs potential depth with l = 0. 
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We now use the ContourPlot to determine the relation of 2y  vs 2

0r , from the equation 

 
2 2 2 2

0 0cot coty x x r y r y        with 
2 2

0x r y   

 

which depends only on 2y  and 2

0r . Figure 12 shows the scaled energy eigenvalue 

2
2 2

2

2
( )

a
y qa E


 

ℏ
, as a function of scaled potential depth 

2
2 0

0 2

2 a V
r



ℏ

 for l = 0. 
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Fig.12 l = 0. 
2

2 2

2

2
( )

a
y qa E


 

ℏ
 vs 

2
2 0

0 2

2 a V
r



ℏ

. 

0E  at 0 ( 1 0 1, );r z l n     where 1 0( ) 0j r  .  

0 01 02 03 04

3 5 7
,  ,  ,  

2 2 2 2
r

   
        ,… 

 

As is shown From Fig.10, there is no bound state for 

 
22

0

2

2

2

V a    
 ℏ

.  
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There is a single bound state (ground state) for 

2 22

0

2

2 3

2 2

V a        
   ℏ

. There are 

two bound states (ground state and the first excited state) for 

 
2

2

2

0

2

2

72

2

5














 
ℏ

aV
.  

 

There are three bound states  (ground state, the first excited state, and the second excited 

state) for  

 
2 22

0

2

27 9

2 2

V a        
   ℏ

. 

 

Here we define the minimum energy eigenvalue E  among the allowed states for fixed 

0V . The value of E  is the closest to E = 0 (but E<0). We make a plot of the minimum 

eigenvalue E  as a function of potential depth 0V .  
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Fig.13 The energy eigenvalue ( E ) of the bound states which is the closest to E = 

0 among bound states, but E<0. The minimum energy (
2

2

2 a
y E



ℏ

) as a 

function of the potential depth (
2

2 0
0 2

2 a V
r



ℏ

). 
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        ,… 

 

11. Wave function for l = 0. 

(a) The wave function ( )u r  of the ground state for l = 0. 
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Below we show the plot of the wave function ( )u r  as a function of /r a  for the 

ground state for l = 0 (s wave). The two nucleons have a substantial probability of being 

separated by a distance that is greater than the range of the potential well. The shape of 

the wave function is, correspondingly, not very sensitive to the detailed nature of the 

potential. The wave function for s = 1.0 ( 0
2

r s


 )is similar to the figure obtained by 

Bethe and Morrison. For the ground state with l = 0,  

 

( ) exp( ) exp[ ( ) ]
r

u r C qr C qa
a

      for r a  

 

The quantity 1/ ( )qa  can be taken as a measure of the size of the deuteron (the effective 

radius of the deuteron). It is shown that the effective radius is considerably larger than the 

range of nuclear force. 

 

1
1

qa
 . 

 

Thus, most of the area under ( )u r  occurs for / 1r a  . 
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Fig.14 l = 0. Wave function ( )u r  for the ground state (s = 1 -3) as a function of 

/r a . 
2

2 0
0 2

2 a V
r



ℏ

. 0
2

r s


 . s is changed as a parameter. 1 3s   . 

0.2s  . 
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Fig.15 l = 0. Wave function ( )u r  for the ground state (s = 3 -5) as a function of 

/r a . 
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2 a V
r



ℏ

. 0
2

r s


  and s is changed as a parameter; s = 3.0 – 

5.0, s 0.2. 
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Fig.16 l = 0. Wave function ( )u r  for the ground state (s = 5 - 7) as a function of 

/r a . 
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r



ℏ
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2

r s


  and s is changed as a parameter; s = 5.0 – 

7.0, s 0.2. 
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Fig.17 l = 0. Wave function ( )u r  for the ground state (s = 7 - 9) as a function of 

/r a . 
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r



ℏ

. 0
2

r s


  and s is changed as a parameter; s = 7.0 – 

9.0, s 0.2. 

 

(b) The wave function ( )u r  of the first excited state for l = 0. 

The wave function ( )u r  of the first excited state for 0l   is shown below, as a 

function of /r a , where 0r  is changed as a parameter. The wave unction ( )u r  with 

0

3

2
r ≃ , is similar to the figure obtained by Bethe and Morrison. Since the energy 

eigenvalue of the first excited state is still negative (bound state), but is very close to 

zero. So that, the wave function does not decay over a distance much longer than the 

radius a.  
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Fig.18 l = 0. Wave function ( )u r  for the first excited state (s = 3 -5) as a function 

of /r a . 
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ℏ
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r s


  and s is changed as a parameter; s = 3.0 – 

5.0, s 0.2. 
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Fig.19 l = 0. Wave function ( )u r  for the first excited state (s = 5 - 7) as a function 

of /r a . 
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  and s is changed as a parameter; s = 5.0 – 

7.0, s 0.2. 
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Fig.20 l = 0. Wave function ( )u r  for the first excited state (s = 7 - 9) as a 

function of /r a . 
2
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2 a V
r



ℏ

. 0
2

r s


  and s is changed as a parameter; 

s = 7.0 – 9.0, s 0.2. 

 

(c) The wave function ( )u r  of the second excited state for l = 0. 
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Fig.21 l = 0. Wave function ( )u r  for the second excited state (s = 5 - 7) as a 

function of /r a . 
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  and s is changed as a parameter; 

s = 5.0 – 7.0, s 0.2. 
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Fig.22 l = 0. Wave function ( )u r  for the second excited state (s = 7 - 9) as a 

function of /r a . 
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  and s is changed as a parameter; 

s = 7.0 – 9.0, s 0.2. 
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Fig.23 l = 0. Wave function ( )u r  for the third excited state (s = 7 - 9) as a 

function of /r a . 
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  and s is changed as a parameter; 

s = 7.0 – 9.0, s 0.2. 

 

12. ContourPlot of y vs x for l 
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Fig.24 ContourPlot for the boundary condition. y vs x. l = 1. 0E   at 

0 (1 1 0, )r z n   , at which 0 0( ) 0j r  . 0 11 12 13 14,  ,  ,  r        
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Fig.25 ContourPlot for the boundary condition. y vs x. l = 2. 0E   at 

0 (2 1 1, )r z n   , at which 1 0( ) 0j r  . 0 21 22 23 24,  ,  ,  r     . 
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Fig.26 ContourPlot for the boundary condition. y vs x. l = 3. 0E   at 

0 (3 1 2, )r z n   , at which 2 0( ) 0j r  . 0 31 32 33 34,  ,  ,  r     . 
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Fig.27 ContourPlot for the boundary condition. y vs x. 4l  . 0E   at 

0 (4 1 3, )r z n   , at which 3 0( ) 0j r  . 0 41 42 43,  ,  r    . 

 

13. The energy eigenvalue E  vs potential depth with l = 1, 2, 3, and 4. 

We now use the ContourPlot of  
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1 1

(1)

( ) ( )

( ) ( )

l l
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xj x iyh iy

j x h iy
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We get the scaled energy eigenvalue 
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potential depth 
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Fig.28 
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 for l = 1, 2, 3, and 4. 

0E  at 0 ( 1, )r z l n  , at which 1 0( ) 0lj r     
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Fig.29 
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Fig.30(a) 1l  . 
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(vertical blue lines). 
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Fig.30(b) l = 2. 
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Fig.30 (c) l = 3. 
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Fig.30(d) l = 4. 
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As is shown From Figs.30, there is no bound state for 
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There is a single bound state (ground state) for 
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There are two bound states (ground state and the first excited state) for 
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There are three bound states (ground state, the first excited state, and the second excited 

state) for  
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Here we define the minimum energy eigenvalue E  among the allowed states for fixed 

0V . The value of E  is the closest to E = 0 (but E<0). We make a plot of the minimum 

eigenvalue E  as a function of potential depth 0V .  

 

14. The effect of the angular momentum 

The minimum value of V0a
2 for the p-wave binding (l = 1) is larger than that for the s-

wave binding (l = 0), and so on. 
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where 

 

01
2


  , 11  , 21 4.49341 1.430297   , 

31 5.76346 1.83457   ,  41 6.9879 2.22432    

 

Physically, the meaning of this is very clear. In the case of 1l  , there exists a centrifugal 

barrier and, therefore, a particle requires stronger attraction for binding. In fact, it can be 

shown that the strength of the spherical potential well, 2

0V a , required to bind a particle of 

arbitrary l increases monotonically with l. This system does not show any degeneracy in 

the l quantum number. (Das). 

 

15. The use of Heisenberg’s principle of uncertainty. 

David Bohm, Quantum Theory (Dover, 1079). 

The fact that no bound states are possible unless 
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, 

 

is easily understood in terms of the Heisenberg’s principle of uncertainty. To have a 

bound state, a particle must be localized roughly within the radius of the well a. To have 

a wave function large only in a region of the size of the well, there must also be a range 

of momenta /p a ℏ  and, therefore, the energy is 

 

2 21 1
( )

2 2
p

a 


ℏ
. 

 

Before a particle can be trapped within the well, the potential energy given up when the 

particle enters the well must be greater than the kinetic energy that the particle obtains 

merely because it is localized within the radius a. Thus, no bound states at all are possible 

unless  
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ℏ
,  or 

2
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a V


ℏ
  (bound state) 

 

If 0V  is barely great enough to provide the kinetic energy necessary to localize the 

particle within the well, then the binding energy E  will be very small.  

If 0V  is increased, the binding energy becomes greater, and eventually 0V  becomes so 

great that it can supply the kinetic energy necessary to make the wave function oscillate 

once within the well. At this point, a new bound state becomes possible. If 0V  is made 

greater still, eventually a third oscillation becomes possible, then a fourth, etc. Thus, the 

number of bound states depends on how much deeper the well is than the minimum 

amount needed to contain the particle within the well. We now apply the Heisenberg’s 

principle of uncertainty to the case of 1, 2,3,4,l  …. Suppose that the linear momentum 

is approximated as 

 

0p
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, 

 

where 0  is on the order of unity. Then energy E is evaluated as 
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The bound state with 0E  , appears, only if 
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. 

 

which is consistent with the condition that the effective potential at r a  is negative. 

 
2

0 ( 1)r l l  . 

 

We make a plot of 2 2 2

0 02 /r a V ℏ  as s function of l (l = 0, 1, 2, 3, and 4). 
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Fig.31 
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 vs the orbital angular momentum l. 2
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As shown in Fig.31, the smallest value of 2 2 2

0 02 /r a V ℏ  for which exists a bound state 

(ground state) with l = 1, is greater than the corresponding value of 2 2 2

0 02 /r a V ℏ  for 

0l  . This is due to the additional repulsive centrifugal potential energy. A particle 

possessing angular momentum requires a stronger attractive potential to bind it than a 

particle with no angular momentum number. Indeed, it turns out that the minimum square 

well potential strength 2 2 2

0 02 /r a V ℏ  required to bind a particle of orbital angular 

momentum quantum number l increases monotonically with increasing l. 

 

16. Summary 

Although the spherical square well is not a realistic model for the internuclear 

potential it does give us some useful information on the nuclear force. We note that the 

proton and neutron have spin 1/2. In fact, the deuteron has an intrinsic spin (S = 1), but 

not 0; 
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1/2 1/2 1 0D D D D   . 

 

This indicates that the nuclear force is spin dependent. The deuteron has a magnetic 

moment and an electric quadrupole moment (Q = 0.0027 x 10-24 cm2). The existence of 

the quadrupole moment tells us that the system is not strictly expressed by a spherically 

symmetric force. However, the departure of spherical symmetry turns out not to be large. 

The ground state of the deuteron is a mixture of 96 % ( 0l  ) and 4% ( 2l  ) states. This 

mixing is due to a spin-orbit coupling in the nucleon-nucleon interaction which is 

neglected in our simple model. Further discussion will be given elsewhere. 
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APPENDIX-1 

Spherical Hankel function of the first kind 
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Spherical Bessel function 
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Recursion formula: 
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Rayleigh formula: 
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Mathematica 

 

( )lj z :  SphericalBesselJ[l,z] 

 
(1) ( )
l

h z : SphericalHankelH1[l,z] 

 

((Note)) Derivation of the expression of 1( )j x  and (1)

1 ( )h x   

Using  
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we get 
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We also get 
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Plot of 1 0 1( ),  ( ),  ( )j x j x j x  as a function of x 
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Fig.A-1 Plots of 1 0 1( ),  ( ),  ( ),j x j x j x  as a function of x. 

 

Plot of 
1 0

(1) (1)( ),  ( )ih ix h ix


 as a function of x 
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Fig.A2: Plots of 
1 0

(1) (1)( ),  ( )ih ix h ix


 as a function of x. 

 

APPENDIX-2 Mathematica 

 

((Mathematica-1)) 

 

l = 1 
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((Mathematica-2)) 
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