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Here we discuss the bound states of deuteron in a three-dimensional (3D) spherical
(attractive) square well potential with radius (a) and a potential depth (V). This problem

is of interest because it is mathematically straightforward and approximate a number of
real physical situation. This problem is so familiar and has been used as exercises in
standard textbooks of quantum mechanics. In spite of this fact, we present our results of
detailed calculations using the Mathematica (ContourPlot) in the this note. It may be
useful to understanding the role of angular momentum and potential depth in this model.

The energy eigenvalues of the system are determined as a function of the potential
depth and angular momentum /=0, 1, 2, 3, 4.... The nature of the wave functions, which
depend on the depth of potential well and the orbital angular momentum, is also
examined. To this end, we use the ContourPlot (Mathematica) for the boundary condition
of the wave functions at the radius a. The boundary condition is given by

X1 (X) _ vk (iy)
Ji (%) hl(l)(iJ’)

with  x=4/r> -y’

for /=0, 1, 2, 3,.... (L.L Schiff). This condition for / = 0. reduces to a simple form
y=-xcotx.

Notations of this boundary condition will be discussed below. For the first time, we found
such a form of the boundary condition, in a book, Problems and Solutions of L.I. Schiff
Quantum mechanics 3™ edition (Yoshioka, 1983) [in Japanese].

Typical result derived from this method, is shown below. These results are useful to
the understanding of the phase shift analysis (of scattering) such as Levinson’s theorem.
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Fig.1 [ = 0. Typical example. |E | : energy eigenvalue of the bound states which
is the closest to £ = 0 among bound states, but £<0. V is a potential depth
and a 1s a radius. The ground state with energy E, . The first excited state
with energy E, . The second excited state with energy E, .

E <E,<E <O0.

((Levinson’s theorem))
Levinson's theorem is an important theorem in non-relativistic quantum scattering

theory. It relates the number of bound states of a potential to the difference in phase of a
scattered wave at zero and infinite energies. It was published by Norman Levinson in
1949.

https://en.wikipedia.org/wiki/Levinson%?27s_theorem

((Deuteron))

Nucleus of deuterium (heavy hydrogen) that consists of one proton and one neutron
(the notation: d or D). Deuterons are formed chiefly by ionizing deuterium (stripping the
single electron away from the atom) and are used as projectiles to produce nuclear
reactions after accumulating high energies in particle accelerators. A deuteron also results
from the capture of a slow neutron by a proton, accompanied by the emission of a gamma
photon.
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Fig.2 Deuteron consisting of one proton and one neutron in a nucleus.

The reduced mass of deuteron (neutron and proton) is

MM, M,
H= ~ :
M,+M, 2
1. Schrodinger equation for the finite spherical square well
AV
4 r
E
—V
Fig.3 Spherical (attractive) square well potential V' (r) as a function of ». The

potential depth V, and radius a. -V, <0. E = —|E | <0 (bound state).

The Hamiltonian for the deuteron in a finite spherical square well potential is given by
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2
P n l(l+l)
2u 2ur’

+V(r),

with the radial linear momentum,

V(r) is the potential energy for the spherical square well,

V()= {—(I)/O (r<a)

(r>a)

where r is the distance between proton and neutron, and x is the reduced mass,

M M 1
u=—-=-—-rt ~—M (of proton or neutron).
M +M, 2

Then the Schrodinger equation can be written as

n 1o hl(l 1)

ooVl Sy (V) = Ey (),
Hr

where E is negative and numerically equal to the binding energy.

E<O0,
and
PR )—ﬂir(ﬁlﬁ Wi (r) =~ %W(m.
v
(1) For r<a,
I LGIN! BUHD Gy V() = Ev(r).
T Oor
or
]+ Ry ) -2 E V() =0,
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We put

ry(r)=u(r),
or

dz ()—l(l”) r)+;—‘§l(E+V0)u(r)=0 (for r<a).
(i)  r>a,

dzz u(r) - u(r)+ 24 Butr) =0 (For r>a).

The effective potential is defined as

2
4 h l(l+21)
2ur (r<a)
Ve =
(1 +1) (r>a)
2ur’

The normalized effective potential 17% can be rewritten as

- 2ua2Veﬁ,
eff = hz

2 ua

+I(l+ 1)( ) for r<a

=1+ + 1)(7)2

and

- 2ua’V
V_ILI eff

eff hz
2ua’v
=11 +1)(EY
r

for r >a
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When r/a=1,

2ua’v,
%| = 4]

rla=1""

So that the bound state (negative energy eigenvalue) exists only when
rE>I(+1).

2

~  2ua’
We make a plot of V,, :% as a function of »/a for each /, where 7, is changed
as a parameter.
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Fig.4 [= 0. Effective potential V,, =————. r, >0 for the bound state.
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Fig.5 I = 1. Effective potential V,, =%_ 1, >AJI(1+]1) =2 =1.4142 for

the bound state. 7, is changed as a parameter; r, =2 — 5. Ar, =0.5.

30

248° Very
2o #° |42
10}
rQ \
S 15rla
4
-10+
-20+
-30+
. . . 2#‘121/@7
Fig.6 [ = 2. Effective potential V,, == r, >l +]) = J6 =2.4495 for

the bound state. 7, is changed as a parameter; r, =2 — 5. Ar, =0.5.
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Fig.7 [ = 3. Effective potential V,, :T. 1y >\JI(l +1) =243 =3.4641 for

the bound state. 7, is changed as a parameter; 7, =3 — 6. Ar, =0.5.
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Fig.8 [ = 4. Effective potential V,, :T 7y > AJI([+1) =25 =4.4721 for

the bound state. 7, is changed as a parameter; r, =4 — 6. Ar, =0.5.

3. Solution with / = 0 case
We consider the case when / = 0, for which there is no centrifugal barrier.

d’ 2

—u(r) == 5B+ V) u(r) =~k "u(r) (r<a)
and

d’ 2u 2

Wu(r) = —?Eu(r) =qu(r) (>a)
where

Eay, 1R PPN

"o’ 2

with £ <0 (bound state). This leads to the condition,
2 2_ 24, 5 2
(kya)” +(qa) = ?Voa =7,.

The solution of u(7) is obtained as

u(r) = Asin(k,r) (r<a)

u(ry=Cexp(—qr)  (r>a)
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The continuity of u(r) and u'(r) at » = a, leads to
Asin(kya) = Ce™
Ak, cos(kya) = C(—q)e ™
From these two equations, we have
qa = —kyacot(k,a) (2)
We assume that
qga=y, kya =x
Then we have
y =—xcot(x), 3)

with
=2yt =) @

where 7, is the radius of the sphere. Figure shows a plot of Eqs.(3) and (4) in the x-y

plane.
((Note))
For /=0,
. O
Y (x) _ xcotx, zyi(z;)1 (.zy) _
Jo(x) hy” (iy)

leading to the relation

y=-xcotx
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Fig.9 I = 0. A plot of y=-xcot(x) and x*+ )’ =$—r02 . x=kya .
y =qa. The intersection of two curves leads to the solution (graphically
2 2
solved). £ =—h 9 The curve [ y=—xcot(x)] crosses the y=0 line at
U

x=z(-1,n) =%(2n—l) x= 72,372, 5702.

2 2
There is no bound state for r = 24 ;"a < (%j =2.4674.

2 2
There is a single bound state for (%j <n’< (3—7[j :
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2 2
There are two bound states for (3—7zj <r’< (S—HJ :

4. The binding energy and potential depth for deuteron
A. Goswami Quantum Mechanics second edition (Wavelend, 2003).

The binding energy of deuteron can be evaluated as follows.

M(H"): mass of proton 938.27208816 MeV
M(n): mass of neutron 939.56542052 MeV
M(d): mass of deuteron 1875.612928 MeV
M(e); mass of electron 0.510998950 MeV
Binding energy = M(H") +M(n)-M(d) 2.22458 MeV.
MH") +M(e) = 938.783087 MeV
M(n)- [M(H") +M(e)] = 0.7823335 MeV

The stability of the deuteron is an important part of the story of the universe. In
the Big Bang model it is presumed that in early stages there were equal numbers

of neutrons and protons since the available energies were much higher than the
0.782335 MeV required to convert a proton and electron to a neutron. When the
temperature dropped to the point where neutrons could no longer be produced
from protons, the decay of free neutrons began to diminish their population.
Those which combined with protons to form deuterons were protected from
further decay. This is fortunate for us because if all the neutrons had decayed,
there would be no universe as we know it, and we would not be here!
http://hyperphysics.phy-astr.gsu.edu/hbase/Particles/deuteron.html

It is known that the deuteron bound state has an energy

|E | =2.226 MeV. (we use this value hereafter).

The range of nuclear potential is approximately equal to the Compton wavelength of
the pion, which, to a first approximation, meditates the interaction between nucleons, that
is

Vector analysis 11 1/26/2021



M
where m_=135.0 MeV/c” . Using this value of a, and u = ﬁ, we have

” (zY
Vy=—— (—j = 47.89 MeV
2ua\ 2

which is much larger than |E0| . We make a plot of 7> = 2h—élV0a2 as a function of

2u|E
y=qa= %a . This can be obtained using the ContourPlot of the Mathematica;

y= _\/’”02 -y cot(\/ro2 —%).

e
ro 2 1=0

6 L

4 L

2 L

y=qa
0 L ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 4
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fig.10 The range-depth relation for the square-well potential. The plot of

/2 E
r= 2h—élV0a2 as a function of y =ga = %a . This figure is the same

as that shown by Goswami in his book (Quantum Mechanics, 2™ edition,
Wavelend, 2003), except for the scale along the y axis (7,”).

((Mathematica))
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The radius a:

a=1.46168x10"cm

=1.46168x10""m
=1.46168 fm

The reduced mass y:

1 =836887x10 g
~8.36887x10 ¥ kg

The potential penetration depth V:
V,=47.894 MeV.

We use the cgs unit for Mathematica.
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Clear["Global «"];

rulel = {h » 1.054571628 - 18"’ c -+ 2.99792 - 107,

mp » 1.672621637 - 10 >*, mn - 1.674927211 1«3'M

ge - 4.8032068 - 18°'?, MeV -» 1.602176487 - 18°°

Radius a
bBe
al=——//. rulel
135 MeV

1.46168 10 1°

Reduced mass

mp mn
mp + mn

pul =

/. rulel
8.36887 10 *°

Potential depth VO

2
T p

Ve = 4 //. rulel
2 pul al? MeV

47.894

5. Solution of u(r) for r<a with /
We solve the differential equation for r<a

dz ()—l(l”) u(r) + 2”(E+V)u(r) 0 (for r<a).
or

o) +k? =) =0,

s

where the wave number £, is defined as
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hz
E+Vy=—Fk,.
2u

Now we introduce a dimensionless variable p,
p=kyr.
Then we have

d> I+

[dpz pZ

+1Ju, ,(p)=0.

The solution of this differential equation is obtained as
u,(p)=A40,(p)+ A,pn,(p).

where the spherical Bessel function and spherical Neumann function are defined by

jl(p>=1/—2” J (P,

p l+2

n;(p)a/zizv (p).
p HE

Note that n,(p) becomes infinity in the limit of p — 0. So we choose the first term

R, (r) =4, (k).
where 7R, ,(r)=u,,(r) and 4, is constant.

((Mathematica))
Clear["Global *"];
eqi=y ' [x]+ (1- =5 ) yix] = 0;

DSolve[eql, y[x], x]
{{Y[X] %\/;BesselJ{% (L+21L), x} Cl[1] +

\/;BesselY{% (L+21L), X} C[Z]}}
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((Note))
We note that

N (p) >
u(p)ocpJ w)p &; J;%w»

Thus we have

R =" o 1B ).
Yo,

6. Solution of u(r) for r>a with finite /
We solve the differential equation for 7>a

2
d _u(r) - l(l D) ()+;ﬂEu(r) 0, (for r>a).
where
2
E:—h—q ,
2u

where ¢ is the wavenumber.

[(1+1)

fwmwwW— Ju(r)=0.
s

Now we introduce a dimensionless variable p,
p=iqr.
Then we get

d’ z(z + 1)

dp —u  (p)+[1——F"u, ,(p)=0.

The solution of this differential equation is obtained as

Rk,l(r) = B," j,(igr)+ B, 'n,(iqr)
= Blhl(l)(iqr) + Bzh,(z)(iqr)

Vector analysis 16
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where hl(l)(x) and hl(z)(x) are the spherical Hankel function of the first and second kind.

T . .
B () =[S H () = i () + i (x)
2

l+l
2

h? (x)= EH‘” (x) = j,(x) —in,(x) .

The asymptotic forms of 4" (x) and %'”(x) are given by

a e[(xflﬂ'/Z)
h, " (x) = =i T

@) e*i(xflir /2)
h, " (x) = A

in the limit of large x. Then we get

i(igr—Iz/2) e(—qr—[lﬁ/Z)
,- .
h!"(igr) = —i———=~ ;
qr qr
—i(iqr—Iz/2) e(qr+[17r/2)
2y, . .
1D igr) ~ i S—— = ,
qr qr

which means that 4,*(igr) becomes diverging for large r, while 4, (igr) becomes zero

for large . So, we choose 4, (igr) as the solution of R, ,(r) for r>a,
R, ,(r)=Bh " (igr).

where B is constant.

10. Boundary conditions with finite /
Using the boundary condition at » = a, we determine the energy eigenvalues. We note
that the wave function and its derivative should be continuous at » = a.

Aljl (koa) = Bzhz(l) (iqa) 5

Ak, j, (ko) |,-,= B, (iQ)hz(l) 'iqr)|,_,

leading to
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ky

. i e
Ji (ky@) = —L— 1V (iga),

Ji(kya) h"(iga)
where

IO, BO o),

0z 0z

Spherical Bessel function;

Ji(z2)= \/21:J 1 (2) SphericalBesselJ[/, z] (Mathematica)
Spherical Hankel function:

h"(z) = 2—7;H 0 (2) SphericalHankell[/, z] (Mathematica)
Here we use the recursion formula for £,(p) = j,(p), h"(p), ,

TP F0) =2 ).

(@) =U+D [, (p)=QI+D) f,'(p).
From these equations, we have

1= £~ 2 £ )
Leading to the relations,

3@ = (=)

W@ =G - @)
Then, the boundary condition can be rewritten as
Vector analysis 18 1/26/2021



. [+1 . . . [+1 .
kol j, (kya) — kf J,(kya) lq[hl(g (iga)— lq7 hl(l) (iga)]

04 _
Jyky) h? (i)
or
ko (ko) _ ight' (iqa) (1=1,2,3, ).

J, (kya) hl(l)(iqa)

Finally, we get

X, (X) _ vk (iy)
Ji (%) hl(l)(iy)

2 2
x2+y2:r02: I;llza

4

(L.L Schiff, Quantum mechanics)

Note that j ,(x)= cosx

(APPENDIX-A)

In summary, we have

(a) [=0
y=-xcotx for/=0
x(cosxj
‘ O
x]‘,l(x) =\ X :xcotx=M-
Jo(x) Smx hy (1)
X
(b) [=1,2,3,4, ...
. () (s
i, (x) _ v (iy) fori=1,2,3,...

i B Gy

with x* +y* =7, . We make a plot of y* =(ga)’ = 2h—/;|E| a’as a function of 7’

with the use of ContourPlot of the Mathematica.

Vector analysis 19

2p
= FVoaz

1/26/2021



9. The condition for the bound state energy £ =0
Using these boundary conditions, we can determine the values of ¥, and / such that

the energy of the bound state £ becomes zero. We note that the energy £ =0 is
equivalent to y =0. Note that /=0 (s), 1 (p), 2 (d), 3 (f), and 4 (g).

For /=0, we get the condition cos x =0, leading to

7w 37 5
X=—,—,—,...
2°2°2
or
T )
z[O—l,n]:E(Zn—l) withn=1,2,3,.....
and

2ua’v," V4
S —[20-1 m)F =[Z2n-DP (I1=0)
h 2
For/=0,1,2,3,..., we have j, (x)=0. The zeros of j, ,(x) is defined by
x=z(I-1n),

or

277 (0)
3ﬁ%§¢—=va—nmn2

where n =1, 2, 3,,..., VO(O) is the potential depth for £ = 0, [ (=1, 2, 3,...) is the orbital

angular momentum, and ¢(/—1,n,) is the zero of the spherical Bessel function j, ,(x).

Table 1: Zeros of the spherical Bessel functions.

Number

of zero; Jo(x) Ji(x) J2(x) J5(x) Ja(x)

n

1 3.14159 4.49341 5.76346 6.98793 8.18256
2 6.28319 7.72525 9.09501 10.4171 11.7049
3 9.42478 10.9041 12.3229 13.6980 15.0397
4 12.5664 14.0662 15.5146 16.9236 18.3013
5 15.7080 17.2208 18.6890 20.1218 21.5254
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Table 2: Zeros of the spherical Bessel functions.

Number

of zero Jo () Ji(x) Jo (%) J3(x) J4(x)

n

1 V4 1.4303 7 1.83457 2.22433 2.60459
2 2 245907 2.89503 « 331587« 3.72579
3 3z 34709« 39225« 436022 478727
4 4 44774 7 493857 5.38696 5.82547
5 Sx 548157« 5.9489 6.40497 6.85175 7
((Mathematica))

Zeroes of the Spherical Bessel functions

Clear["Global «"];
X[L , n ] :=Module[{gl, x1}, gl = BessellZero[L +9.5, n];
x1=gl];

fm = Prepend [Table[{©®, n, (x/2) (2n-1) // N}, {n, 1,5, 1}],
{"L=-1", " n", "z[L=-1,n]"}] // TableForm;

0 = Prepend [Table[{©®, n, x[@, n] // N}, {n, 1,5, 1}],
{"L=06", " n", "z[L=©,n]"}] // TableForm;

fl = Prepend [Table[ {1, n, x[1, n] // N}, {n, 1,5, 1}],
{"L=1", " n", "z[L=1,n]"}] // TableForm;

f2 = Prepend [Table[ {2, n, x[2, n] // N}, {n, 1, 5, 1}],
{"L=2", " n", "z[L=2,n]"}] // TableForm;

f3 = Prepend [Table[{L =3, n, x[3, n] // N}, {n, 1,5, 1}],
{"L=3", " n", "z(L=3,n)"}] // TableForm;

f4 = Prepend [Table[{L =4, n, x[4, n] // N}, {n, 1,5, 1}],
{"L=4", " n", "z(L=4,n)"}] // TableForm;

Grid[{{fm}, {f0}, { f1}, {f2}, {f3}, {f4}}, Frame - All]
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-1 n z[L=-1,n]
1.5788
4.71239
7.85398
18.9956
14.1372
& n z/[L=8,n]
3.14159
6.28319
9.42478
12 5664
15.788

1 n z[L=1,n]
4.49341
7.72525
18.9841
148662
17.2268
2 n z[L=2,n]
5.76346
9.89581
12.3229
15.5146
18.689

3 n z(L=3,n)
6.98793
18.4171
13.698
16.9236
28.1218
4 n z{L=4,n)
8.18256
11.7849
15.8397
18.3813
21.5254

o0 O ®
0 T N VR NC

0 T N NV NC

0 T AR UV Y

[0 T S VR N

F N O - o BT R WY I NV IR WA WY R ol I ST N R R R R e B R i i i et A= B B~ R v B+ M
[V [ U N

0 T O FTR Y

27,(0)

Here we make a plot of ZHA S0

P where E = 0, as a function of / and n.
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100 p=-=== ===~

248

50 f---------

Fig.11(a) (b) Plot of
3,....

1=2 1=3 1=4 I=5
(b)
2 a2 ©® '
'UC;—ZVO:rOZ where E = 0, as a function of / and n: /=0, 1, 2,
n=1,2 3,4, .... Note that the bound state (negative energy

eigenvalue) exists only when 7, >/(/+1) from the discussion of the

effective potential.

(a) [=0:
n
1
2
3
4
5
(b) [=1:
n
1
2
3
4
5
(c) [=2:

Vector analysis

CoOSz

j,(2)= 0 cosz=0
z

z(0—1,n) [z(0-1,n)]

7 12(=Co1) 2.46740

37712 (=Co2) 22.2066

57 /2 (=Co3) 61.6850

T/ 2(=Cos) 120.903

97 /2 (=Cos) 199.859

jo(z)=smz=0; sinz=0

z(1-1,n) [z(1-1,n)]

7 (=Cn) 9.86960

27 (=C12) 39.4784

37 (=C13) 88.8264

4z (=Cia) 157.914

57 (=Cis) 246.740

Ji(2)=0—>z=2z(2-1,n)
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z2(2-1,n) [z2-1,n)]

n

1 4.49341 (= Co1) 20.19073

2 7.72525 (= £22) 59.6795

3 10.9041(= C») 118.8994

4 14.0662 (= C24) 197.8580

5 17.2208 (= C25) 296.5560
(d) [=3: J,(2)=0—>z=z(3-1Ln);

n z(3-1,n) [z(3—1, n)]2

1 5.76346 (= C31) 33.2175

2 9.09501(= C32) 82.7192

3 12.3229 (= C33) 151.854

4 15.5146 (= C34) 240.703

5 18.6890 (= C35) 349.279
(e) [=4: J(2)=0>z=2z(4-1,n);

n z(4-1,n) [z(4-1,n)]

1 6.9879 (= C41) 48.83075

2 10.4171(= Ca2) 108.5160

3 13.6980 (= C43) 187.6352

4 16.9236 (= C4s) 286.4082

5 20.1218 (= Las) 404.8868
9. Solution with /= 0 (s-wave)

We now discuss the solution of the Schrodinger equation with /=0 (s wave). We
have the wave function,

u(r) = Asin(k,r) = Asin[(k,a)—] = Asin(ax) for r<a.
a
u(r)=Cexp(—qr) = Cexp[—(qa) 1] = C exp[—fx] for r>a
a
a=kya, f=qa

a’ + B =(ka) +(qa)’ = il—élVOaz =7

The boundary condition:
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Asin(k,a) = Cexp(—qa) ,

Asin(a) = Cexp(=f),

Ak, cos(kya) = C(=gq)exp(—qa), Acccos(ar) =—Cpexp(=f),
B =—-acota.

Normalization:

a 2 2 0 2
1= I—A sin” (kr) 47rr2dr+.[—c exp(=24r) Arridr,
o r r

or
a 42 - 2 f
J'ALz(kor)Mz’rzdr = 4ﬂAszin2 (kor)dr
0 r !
= 47ZA2G[M]
4
0 ~2 — i
PN 41y = 47 ex(-2qmr
28
— 42 S
24
or

_si 25
l=4rA’a 2a =sin(2a) +472C%| £ — ,
4a 25

Asin(a) = Cexp(—f),

ANa = Jep

\/;\/—2,Bsinacosa +2a(B+sin’a)

CJa - e’ Jaf sina '
\/;\/—2,8sinozcosoz+205(,8+sin2 a)

10.  The energy eigenvalue |E| vs potential depth with /= 0.
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We now use the ContourPlot to determine the relation of y* vs 7,°, from the equation

y=-xcotx= —\/ro2 -y’ cot\/ro2 -y’ with  x=4r’ -y’

which depends only on y* and 7,>. Figure 12 shows the scaled energy eigenvalue

2ua’ : : 2ua’v,
vy’ =(qa)’ = ;l f |E , as a function of scaled potential depth 7> = £ ;2 % for /=0.
100F | ‘ ‘ ‘
RILST: / 1=0
80}
60}
40r 11 |1E2l
20¢
2 i a®
ro’= > Ve
V7
of ]
G2 2Ty (L2
272 2 2
-20t ‘ | | g
0 50 100 150 200
. 2ua’ 2ua’V,
Fig.12 [=0.y" =(qa) = e |E| vs 1} = = 2.
|E|=0atr, =z(/-1=0-1,n); where j_(1,)=0.
T 3z 5w Tr
Ty = So1 :Ea So :7’ So3 :75 Soa :7,...

As is shown From Fig.10, there is no bound state for

2V’ (@ ’
—<|= -
h 2
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2 2 2
There is a single bound state (ground state) for (%J < 2y;)a < (377[} . There are

two bound states (ground state and the first excited state) for

2 2 2
T 2V (T
2 h 2

There are three bound states (ground state, the first excited state, and the second excited
state) for

2 2 2
) 2t (9m)
2 h 2

Here we define the minimum energy eigenvalue |E | among the allowed states for fixed

V, . The value of |E | is the closest to £ = 0 (but £<0). We make a plot of the minimum

eigenvalue |E | as a function of potential depth V.

50f 5 =0
y2= =
40+
30r
20+ |E
[=
10f 2
3 2
lEr/‘ ey,
6 2;;) 4‘0 6;0 E;O 160 ;20
T
_S;,)z ()2 (7")2 @2 (7")2 (3m)2 (7")2
Fig.13 The energy eigenvalue (|E |) of the bound states which is the closest to £ =
.. 2ua’
0 among bound states, but £<0. The minimum energy (y =——, |E |) as a
h
) ) 2ua’V,
function of the potential depth ( ro2 = Q ).
h
R NS )
0 01 27 02 2 ’ 03 2 ) 04 2 se e

11.  Wave function for /= 0.
(a) The wave function u(7) of the ground state for /= 0.
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Below we show the plot of the wave function u(7) as a function of r/a for the

ground state for / = 0 (s wave). The two nucleons have a substantial probability of being
separated by a distance that is greater than the range of the potential well. The shape of
the wave function is, correspondingly, not very sensitive to the detailed nature of the

potential. The wave function for s = 1.0 (7, :%s)is similar to the figure obtained by

Bethe and Morrison. For the ground state with / =0,
u(r)=Cexp(—gqr) = Cexp[—(qa)i] for r>a
a

The quantity 1/(ga) can be taken as a measure of the size of the deuteron (the effective

radius of the deuteron). It is shown that the effective radius is considerably larger than the
range of nuclear force.

i>>1.

qa

Thus, most of the area under u(r) occurs for r/a>1.

Ground state

ro=(7712)s

rfa
05 1.0 1.5 20 25 30
Fig.14 [ =0. Wave functionu(r) for the ground state (s = 1 -3) as a function of
2ua’v, :
rla. :%. 7 :%S' s 1s changed as a parameter. s =1-3.
As=0.2.
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Fig.15

Fig.16

147

1.2} Ground state

1.0F

0.8r

06+
04r

0.2H
ria
05 1.0 15 20 25 3.0

[ = 0. Wave functionu(r) for the ground state (s = 3 -5) as a function of

2 2/v‘ano

V4 :
rla.r = . r,=—s and s is changed as a parameter; s = 3.0 —
‘ o2

5.0, As =0.2.

1.5¢
Vj Ground state

1.0

0.5r

ria
2.0 25 3.0

[ = 0. Wave functionu(r) for the ground state (s =5 - 7) as a function of

2ua’y, :
rla. = ﬂ; LA :%s and s is changed as a parameter; s = 5.0 —

7.0, As =0.2.
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Ground state

Iy :(/T/2)S
o ‘ ‘ rla
05 10 15 20 25 30
Fig.17 /= 0. Wave function u(r) for the ground state (s = 7 - 9) as a function of
2ua’ :
rla. = ﬂanO A =25 and s is changed as a parameter; s = 7.0 —
h
9.0, As =0.2.

(b)  The wave function u(7) of the first excited state for /= 0.
The wave function u(r) of the first excited state for /=0 is shown below, as a
function of r/a, where r, is changed as a parameter. The wave unction u(r) with

A 227[, is similar to the figure obtained by Bethe and Morrison. Since the energy

eigenvalue of the first excited state is still negative (bound state), but is very close to
zero. So that, the wave function does not decay over a distance much longer than the
radius a.

First excited state

-0.5r
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Fig.18

Fig.19

Vector analysis

[ = 0. Wave functionu(r) for the first excited state (s = 3 -5) as a function

2ua’V :
of ria.rn’ = ﬂ; A :%s and s is changed as a parameter; s = 3.0 —

5.0, As =0.2.

First excited state

r/a

-15}

1.5

-05¢F

-10}

4. u(r)

25 3.0

r0=(/T/2)S

[ = 0. Wave functionu(r) for the first excited state (s =5 - 7) as a function

2ua’ :
of r/a. =ﬂh+V°. A :%s and s is changed as a parameter; s = 5.0 —
7.0, As =0.2.

First excited state

r/a

15 2.0 25 3.0

roz(/T/Z)S
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Fig.20 [ = 0. Wave function u(r) for the first excited state (s = 7 - 9) as a

. 2ua’v V2 .
function of r/a. 1, = 72 % Ty = Es and s is changed as a parameter;

h2
s=7.0-9.0, As =0.2.

(c) The wave function u(7) of the second excited state for / = 0.

Second excited state

Fig.21 [ = 0. Wave function u(r) for the second excited state (s =5 - 7) as a

. 2ua’v, Va .
function of r/a. 1’ - Es and s is changed as a parameter;

h? 0
§=5.0-7.0, As =0.2.

YL Namun Second excited state

100 [
0.5 X7 0 ro=(712)s
‘ r/a
1lo 1.5 20 25 30

-05}

-1.0}

-15%4
Fig.22 [ = 0. Wave function u(r) for the second excited state (s = 7 - 9) as a

) 2ua’v, Va .
function of r/a. 7, = £ —>. 7, =—s and s is changed as a parameter;
h 2

s=7.0-9.0, As=0.2.
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Third excited state

Fig.23 [ = 0. Wave function u(r) for the third excited state (s = 7 - 9) as a
2ua’v,

function of r/a. 1, = P

V4 :
r, =—s and s is changed as a parameter;
2

s=7.0-9.0, As=0.2.

12. ContourPlot of y vs x for /

14}

121

10t
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Fig.24 ContourPlot for the boundary condition. y vs x. / = 1. E=0 at
ry=z(1-1=0,n), at which j,(7,)=0. %, =6, G»> Si3> Sia

3 .
[ ~
14+

12

10

[}
[}
Y
~ A ' vo
~ N )
A 3 Y [} 1
\ A ' 1
. 1 ' '
' 1 1 !
or ' -
1 1 1 1 1 1 1
0 2 6

Fig.25 ContourPlot for the boundary condition. y vs x. [ = 2. E=0 at
n,=z(2=1=Ln),at which () =0. 1, =6,, 61> Sp35 G-

Vector analysis 35 1/26/2021



8

Fig.26 ContourPlot for the boundary condition. y vs x. [ = 3. E=0 at
r,=z(3—=1=2,n), at which j,(5)=0. 7, =63, 63, G135 Gag-
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----._~
-
-

oy
-
-
-

Fig.27 ContourPlot for the boundary condition. y vs x. /=4 . E=0 at
ry=z(4-1=3,n), at which j,(r)=0. 71, =¢,,, Gi> Gus-

13.  The energy eigenvalue |E | vs potential depth with /=1, 2, 3, and 4.

We now use the ContourPlot of

2 2

() _ DA e T
- 0

G B Gy)

2 ua? )
£ |E | as a function of scaled

We get the scaled energy eigenvalue y* =(qa)’ = P

2
potential depth ro2 = % for/=1,2,3,and 4.

2
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100 | |

b 1/ a°
y2={qa)’= //;2 |E|
80+
60 +
401}
20+
/ fo’ = pa
ol / C 270
0 20 40 60 80 100
2ua* 2ua’v,
Fig.28 12 =(qa)’ = ;‘f E| vs 1= ”;2 O for / = 1, 2, 3, and 4.

|E|=0atr, =z(/-1,n), at which j,_ () =0
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20}’
2//32
2 2
yi=(ga)* 4= F-IE
15+
10 |=
5,
0,‘ ‘ ‘ ‘ ‘,
0 10 20 30 40
2ua’ 2ua’
Fig.29 12 =(qa)’ = ;‘f IE| vs r02=ﬂh+V0 for [ = 0, 1, 2, 3, and 4.

|E|=0atr, =[z(/-1,n)], at which j,_ () =0
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100

80r

60 -

40

20

0 20 40 60 80 100 120

2UT ) g g = 2K

h2

Fig.30(a) I=1. y>=(qa)’ =

(vertical blue lines).
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100f

80r

60 -

40+

20

Fig.30(b)

Vector analysis

2_

1=2.y" =(qa)’ =

(vertical blue lines).

60

41

P2 2ua’Vy

2 2 2
=621 5 G2 5 S23
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100}
2ua’
801
60}
40t
20t
07\ L 1 1 1 1 1
0 20 40 60 80 100 120
) 2ua* 2ua’v,
Fig-30 () I=3 y2 :(qa)2 - /7;112 |E| Vs r02 :%' r02 :§312a gszza 9'332

(vertical blue lines).

Vector analysis 42 1/26/2021



70}

y =——"I|El

60

50

40+

30

20r

10r

0 20 40 60 80 100

’”02 _ 2lua2Vo 2

Fig.30d) [=4. y*=(qa)’ = P

lines).
As is shown From Figs.30, there is no bound state for

200 L.

There is a single bound state (ground state) for

2yVa

[z(I-1,D] < <[z(I-1,2).

There are two bound states (ground state and the first excited state) for

uVa

[z(I-1,2)] < <[z(I-1,3)T.

120

1’ =¢,, ¢, (vertical blue

There are three bound states (ground state, the first excited state, and the second excited

state) for
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[z(-1,3)] < 2“% <[z(I-1,4)T.

Here we define the minimum energy eigenvalue |E | among the allowed states for fixed
V, . The value of |E | is the closest to £ = 0 (but £<0). We make a plot of the minimum

eigenvalue |E | as a function of potential depth V.

14. The effect of the angular momentum
The minimum value of Voa? for the p-wave binding (/ = 1) is larger than that for the s-
wave binding (/= 0), and so on.

2uV.a
"hf >¢,) (1=0)
2uV.a*
/uhzo = 9'112 (=1,
2uV.a*
"hf >, (1=2),
2uV.a*
"hf ¢, (1=3),
2uV.a*
"hf >¢, (1=4),
where
Cor =%, . =7, ¢, =4.49341=1.4302977,
G, =5.76346 =1.83457r, G, =6.9879=2.224327

Physically, the meaning of this is very clear. In the case of / =1, there exists a centrifugal
barrier and, therefore, a particle requires stronger attraction for binding. In fact, it can be

shown that the strength of the spherical potential well, ¥,a”, required to bind a particle of

arbitrary / increases monotonically with /. This system does not show any degeneracy in
the / quantum number. (Das).

15.  The use of Heisenberg’s principle of uncertainty.
David Bohm, Quantum Theory (Dover, 1079).
The fact that no bound states are possible unless
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2ua’v, T
Q > (_)2 ,
/] 2

is easily understood in terms of the Heisenberg’s principle of uncertainty. To have a
bound state, a particle must be localized roughly within the radius of the well a. To have
a wave function large only in a region of the size of the well, there must also be a range
of momenta p =#%/a and, therefore, the energy is

1, 1 hy,

2yp _2u a

Before a particle can be trapped within the well, the potential energy given up when the
particle enters the well must be greater than the kinetic energy that the particle obtains
merely because it is localized within the radius a. Thus, no bound states at all are possible
unless

2

5 Pe >1 (bound state)
U a

If V, is barely great enough to provide the kinetic energy necessary to localize the
particle within the well, then the binding energy |E | will be very small.

If V, is increased, the binding energy becomes greater, and eventually 7, becomes so

great that it can supply the kinetic energy necessary to make the wave function oscillate
once within the well. At this point, a new bound state becomes possible. If V, is made

greater still, eventually a third oscillation becomes possible, then a fourth, etc. Thus, the
number of bound states depends on how much deeper the well is than the minimum
amount needed to contain the particle within the well. We now apply the Heisenberg’s
principle of uncertainty to the case of / =1,2,3,4,.... Suppose that the linear momentum

is approximated as
h
PR—4,
a
where 4, is on the order of unity. Then energy E is evaluated as
hz

E= > [A, +1(I+D]-V,.

pa’
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The bound state with £ <0, appears, only if

2ﬂano 2 2
T=r0 > A HI({+)> (1 +]1).

which is consistent with the condition that the effective potential at » = a is negative.
r2>I(+1).

We make a plot of ”02 = 2yan0 / h* as s function of / (/ =0, 1, 2, 3, and 4).

S0F 2 °
L 0 —_—
40 n*
30
20} .
10¢ .
: /
1 2 3 4
. 2 2,Ua2Vo . 2
Fig.31 ry = o vs the orbital angular momentum /. ¢,,” =2.4674..

6,  =9.8696. ¢,> =20.1907. ¢, =33.2175. ¢, > =48.8307.

As shown in Fig.31, the smallest value of 7,” = 2ua’V, / h* for which exists a bound state

(ground state) with / = 1, is greater than the corresponding value of 7, =2ua’V, /> for

[=0. This is due to the additional repulsive centrifugal potential energy. A particle
possessing angular momentum requires a stronger attractive potential to bind it than a
particle with no angular momentum number. Indeed, it turns out that the minimum square
well potential strength 7> =2ua’V, / h* required to bind a particle of orbital angular

momentum quantum number / increases monotonically with increasing /.

16. Summary

Although the spherical square well is not a realistic model for the internuclear
potential it does give us some useful information on the nuclear force. We note that the
proton and neutron have spin 1/2. In fact, the deuteron has an intrinsic spin (S = 1), but
not 0;
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D, x Dy, =D, +D,.

This indicates that the nuclear force is spin dependent. The deuteron has a magnetic
moment and an electric quadrupole moment (Q = 0.0027 x 102* cm?). The existence of
the quadrupole moment tells us that the system is not strictly expressed by a spherically
symmetric force. However, the departure of spherical symmetry turns out not to be large.
The ground state of the deuteron is a mixture of 96 % (/ =0) and 4% (/ =2) states. This
mixing is due to a spin-orbit coupling in the nucleon-nucleon interaction which is
neglected in our simple model. Further discussion will be given elsewhere.
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APPENDIX-1
Spherical Hankel function of the first kind

ix

h) (x) = °. (which will be derived below)
X

w1
B (x) = —ie™ —.
x

o[22
X

P .
KO (x) = ie’{—x o3 J .
X
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3 .2 .
o X7 +6ix" —15x—15i

X

Spherical Bessel function

Jo(x) =231 (which will be derived below)
X
) sin x
]0 (x) = ’
X
. Sin x — X cos x
LX) =—F—,
X
. 3—x%)sinx —3xcosx
JZ ()C) = ( ) 3 ’
X
. 3(5-2x")sinx + x(=15+ x*)cosx
() = ( ) : ( ) _
X
Recursion formula:
. . I .
Ja )+ ji(x)= ;]o(x) .
Rayleigh formula:
. 1 d sinx
Ji() =D x (=)
xdx x
WO () = i1 (-
xdx x
Mathematica
Ji(2): SphericalBesselJ[1,z]
h(z): SphericalHankelH1[1,z]
((Note)) Derivation of the expression of j  (x) and /") (x)
Using
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) / T 2
Jl (x) = _Jl+1/2 (x) 5 J*l/Z (x) = —COS X 5
2x X

. / T T |2 COS X
J—l(x) = —J71/2 ()C) =44 [— COSX = .
2x \ 2x \ 7x X

We also get

we get

J@ =) () = S5
X X

ix

1 e
R (x) ==hy" (x) - B" (x) =—.
X X

Plot of j (x), j,(x), j,(x) as a function of x

1.0k
05/
1(X) Jotx) J1
2 Vid 372
Fig.A-1 Plots of j ,(x), j,(x), j,(x), as a function of x.

Plot of ik (ix), 4" (ix) as a function of x
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0.4}
02!
ool
_04)
Fig.A2: Plots of iA" (ix), h'"(ix) as a function of x.
APPENDIX-2 Mathematica

((Mathematica-1))

=1
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Clear["Global +"];
X SphericalBessell[L -1, x]

eql =
SphericalBessell[L, x]

iy SphericalHankelH1[L -1, ivy]
H

SphericalHankelH1[L, i y]

sl = ContourPlot [Evaluate[eql /. L > 1], {x, ©, 15},
{y, ©, 15}, ContourStyle » {Red, Thick}];
gl =
Graphics|
{Text[Style["x=kpsa", Italic, Black, 15],
{14, 6.5} ],
Text [Style["y=qga", Italic, Black, 15], {1, 13}],
Text [Style["1=1", Italic, Black, 15], {12, 12}],
Text [Style["rp=7", Italic, Black, 12], {2, 2}],
Text [Style["rp=2x", Italic, Black, 12], {5, 3.3}1,
Text [Style["ry=3x", Italic, Black, 12],
(8.3, 4.3},
Text [Style["rp=3x", Italic, Black, 12],
{11.1, 5.1}]1, Black, Thin,
Table[Line[{{n, @}, {nm, 15}}], {n, 1, 4, 1}1}1;
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s2 = ContourPlot|

Evaluate[Table[x* +y? == ro?,

{re, n/2, 97/2, n/2}]|], {x, @, 15},

{v, @, 15},

ContourStyle » Table[{Black, Dashed}, {i, @, 2}] ];
s3 = ContourPlot|

Evaluate[Table[x” +y® == r@®, {re, =, 4x, n}]],

{x, @, 15}, {y, @, 15},

ContourStyle -» Table[ {Green, Thick}, {i, ©, 4}] ];
Show[sl, s2, s3, gl]

)
\
)

s S
4-—"+|‘

N
o

-
4--”‘
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((Mathematica-2))

Clear["Global +"];

eq@ =y = -\ 50 -y° COt[\l‘SB—yz] /e y—ﬂfy_;

g0 = ContourPlot[Evaluate[eq@®], {s©, 0, 200},
{ye, @, 100}, ContourStyle -» {Red, Thick},
PlotPoints -» 100] ;

Bin[L ] :=Module[{eq1, gl},

\/se -y? SphericalBessell [f_ -1, \se-y? ]
SphericalBessel] [L, \ s@ - y? ]

iy SphericalHankelH1[L -1, iy]
/e y->Nye;
SphericalHankelH1[L, i y]
gl = ContourPlot [Evaluate[eql], {s@, @, 200},
{ve, e, 1ee},
ContourStyle -» {Hue[©.251], Thick}]];

eql =
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rl =

Graphics[{ﬂlack, Thick,

Table[Line[{{(E n){,a}, {(E n)?,laa}}],

o 1, 53]}

t1 =
Graphics[
{Text[Style[“razzz;az Vo", Black, 12, Italic],
(80, 53,
2;4&2

Text[Style[“yZ:{qa}Z: |E|", Black, 12,

ﬁz

Italic], (20, 99}], Black, Thin,
Line[{{©, @}, {100, ©}}], Line[{{0, ©}, {0, 100}}],
Text[Style["1=06", Black, 12, Italic], {47, 41}],
Text[Style["1=1", Black, 12, Italic], {56, 41}],
Text[Style["1=2", Black, 12, Italic], {67, 41}],

Text [Style["1=3", Black, 12, Italic], {79, 41}]}];.

Show[g@, Bin[1], Bin[2], Bin[3], rl, t1,
PlotRange » { {0, 100}, {0, 160}}]
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