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The confining circle is the 2D analog of the spherical box and is also the zero-height, 2D version
of the cylindrical box considered

1. Cylindrical co-ordinate system
The position of a point in the space having Cartesian coordinates X, y, and z may be
expressed in terms of cylindrical co-ordinates

X=pC0S¢, y=psing, z=1

The position vector r is written as

r=pcosge, + psinge, +ze,
3

dr=>e;h;dq, =e,dp+e,pdgp+e,dz
j=1
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The unit vectors are written as
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The above expression can be described using a matrix A as
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The differential operations involving V are as follows.
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where V is a vector and is a scalar.

2. Schraédinger equation in the Confining circle (the 2D plane)
We consider the Schrodinger equation

hZ
—-— V% +Vy=Ey,
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where the wavefunction depends only on pand ¢,

y=y(p,9)
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The potential energy is defined by

V=0 for p<bh, V =w for p>b,

Using the cylindrical co-ordinate, the differential equation for y can be written as
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The angular momentum I:Z is defined by
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We note that under the rotation around the z axis,

where
)= Rlw) =@ 3.59)w).

Then we have
[H,J,]1=0.

So the wavefunction is the simultaneous eigenket of both H and L: (orbital angular momentum)
v(p,9) =R(p)P(9), (separation variable)

with
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where mis an integer; m = 0, 1, +2,... The radial wavefunction satisfies the differential equation

given by
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where the boundary condition is given by R(b)=0.

((Note)) We put x =kp. Then we get

d> 1d m?
— +=2 41-TH)R(X) =0
(dszrxder xz) ()

The solution of this differential equation is J,(x),and N, (x).

Then the solution of the differential equation is given by
R(p)=C,J, (ko) +C,N,, (ko).

where J . (x) is the Bessel function and N, (x) is the Neumann function. Note that Nm(x)
becomes infinite at x = 0. Thus we remove the Neumann function from the solution. Then we have

R(p)=C.J, (ko).

This function satisfies the boundary condition such that
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Table values of Z_, =k b thatyield J (k,b)=0

Emk = 2—lubzzmk2

k m=0 m=1 m=2 m=3

1. 2.40483 3.83171 5.13562 6.3801¢
2. 5.52008 7.01559 8.41724 9.76102
3. 8.65373 10.1735 11.6198 13.0152
4. 11.7915 13.3237 14.7%¢6 16.2235
5. 14.9309 16.470¢6 17.9598 19.4094
6. 18.0711 19.6159 21.117 22.5827
7. 21.2116 22.7601 24.2701 25.7482
8. 24,3525 25.9037 27.4206 28.9084
9. 27.4935 29.0468 30.5692 32.0649
10. 30.634¢6 32.1897 33.7165 35.2187
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Fig.  Plot of the normalized energy — foreach m. m =0, £1, 2, 3, #4,....

i Bound states in the 2D square well
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It is shown that a 1D square well potential has a bound state for any positive V,a*, and that a
272
3D square well potential has a bound state only for V,a* >

8 What is the analogous situation
U
for a 2D square well potential? What, if any, is the physical significance of these results?

We start with the Schrodinger equation

2
R
where
V(p)=-V, for p<a,and0for p>a.
(@ p<a

We have the differential equation
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The wavefunction is the simultaneous eigenket of both H and L..
v(p,9)=R(p)D(s), (separation variable)
with
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where m is integer; m = 0, +1, £2,... The radial wavefunction satisfies the differential equation
given by
2 2
&1 ko)R(e) =0 for 0< p<a
dp® pdp

The solution of this differential equation is obtained as



R(p) =Cpd, (kp). (1)
(b) p>a
We have the differential equation
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((Note)) We put x =kp. Then we get
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dx2+xdx x2) ()
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The solution of this differential equation is I, (x), and K _(x), which are the modified Bessel
function of the first and second kind. Bessell[n,x]. BesselK[n,x].

The solution of this differential equation is obtained as the modified Bessel function
R(p) = Ayl (xp) + B, K, (x0) .

Note that only K, (xp) becomes zero for large xp . So our solution for p > a is given by
R(p) =B, K, (xp) .

Using the boundary condition at p = a, we determine the energy eigenvalues. We note that
the wave function and its derivative should be continuous at p = a.

A (ka) =B, K, (p)



Ak, '(ka) = B xK, " (xp),

or
1 aJ,(x 1 oK, (x
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J.(xX) ox K,(x) ©ox
where
& =Kka, n=xa.
From the conditions of
2 2
E :-h—xz, and E+V, :h—kz,
2u 2u
we have
(ka)® + (xa)" = 2;‘2/0 a’=r’,
or
& vif =2at ! @

We solve the problem using the graphs. These graphs can be drawn in the (&, 7) plane by using
the Mathematica (ContourPlot), where the radius ro is changed as a parameter.

4. 2D square well withm =0
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The bound state of the 2D square well can be found

2NV,
hz

a’=r,>(0.6)2=0.36, (2D case)

for m = 0. This is in contrast with the case of the bound state for the 3D square well with m = 0.
The bound state occurs when

2 2
2“;’3"" > [%j =2.4674. (3D case)

As shown in the APPENDIX, the bound state of the 1D square well can occur for any positive
value of Vo;

2
24 V2°a >0. (1D case)
h
5. 2D square well withm =1 and 2
@) m=1
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APPENDIX-I
The bound state of 1D symmetric square well
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Fig.  Graphical solution. One solution with even parity for 0<f<#/2. One solution with even
parity and one solution with odd parity for 772</<xz. Two solutions with even parity and
one solution with odd parity for #z<f<372. Two solutions with even parity and two
solutions with odd parity for 342<p<2z n=~tané for the even parity (red lines).
n =-&coté for the odd parity (blue lines). The circles are denoted by &% +n° = 2. The
2 E 2 2
parameter gis changed as =1, 2, 3,4,and 5. g = M .E= u :77_2:1_5_2. &=
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APPENDIX-11 Vector analysis in the cylindrical co-ordinates
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((Mathematica)) Cylindrical co-ordinates
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Vector analysis
Angular momentum in the cylindrical coordinates
Here we use the angular momentum operatior in
the unit of A=1

Clear["Global "]1; r1="V z?+p?;

uy = { Sin[¢], Cos[¢], O}; uz= {0, O, 1};

- 1 =
r={o, 0, z}; ur = = {p, 0, 2};

Gra :=

Grad[#, {po, ¢, 2z}, "Cylindrical™] &;
Lap :=

Laplacian[#, {p, ¢, Z},

“"Cylindrical'] &;

Curla :=

Curl[#, {p, ¢, 2z}, "Cylindrical™] &;
Diva :=

Div[#, {p, ¢, 2}, "Cylindrical"] &;

Vector analysis in the cylindrical coordinate

15



eql = Lap[¥[p, ¢, z]1]1 // Simplify

0,2,0)
002 (5 6 2] 4 W [ﬂ;, ¢, Z] .
o)

%0 (p, ¢, 2]
Jo)

Ly @005 0, z]

eq2 = Gral¥[p, ¢, z1] // Simplify
[y 10, 9, 21,

y 01016 ¢, 2]
o)

LY 0, 6, 21}

B={Bolo, ¢, z], Bolp, ¢, 2],

Bz[p, ¢, Z1};
eq3 = Curla[B] // Simplify

Bz(®-1.9 o, ¢, 2]

{-B0®% [0, 0, 2] +
&)

Bo %M [p, ¢, 2] -BzHY [p, 0, 2],

%(Bcb[p, 0, 2] -Bp O (p, ¢, 2] +

08600 o, ¢, 2])}

eqd4 = Diva[B] // Simplify

Bz %%V (p, ¢, z] +
Bolo, ¢, z] +Bp @10 (o, ¢, z] .

0

Bo %9 (p, ¢, z]

Angular momentum in the cylindrical coordinate
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L = (-1 Cross|[r, Gra[#]]) &;

Lx = (ux.L[#] &) // Simplify;
Ly = (uy.L[#] &) // Simplify;
Lz = (uz.L[#] &) // Simplify;

Ll¥lp, ¢, 211 // Simplify

0.1, 15, ¢, z]

{]iZl[/<
o)
i (o @™V (0, 0, 2] -2y 0, ¢, 2]),

-1y [0, 9, 2]}

LX[¥[p, ¢, z]1] // FullSimplify

i |-oSin[e] ¢y @Y, 0, z] +

zCos[¢] ¥ [p, ¢, 2] |
0

zSin[¢] ¢y 390 [0, ¢, z]
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Ly[¥[e, ¢, 2z]1]1 // FullSimplify

1 |oCos[d] y(0:0-1) (0, ®, Z] +

zSin[¢] ¥ %19 (p, ¢, 2]
0

zCos[¢] y %9 (o, ¢, z]

Lx[¥[p, ¢, z]1] +iLy[¥[o, ¢, 211 //
FulISimplify

1
se (U™ p, 0, 2] 4

izy V00, 0,21+zou™%Y [0, ¢, 2])

Lx[¥[p, ¢, 211 -dLy[¥[p, ¢, 211 //
FulISimplify

%e” (P2 @V [0, 0, 2]+

izy OtV 0, 0,21 -zpy*"V (0, ¢, 2])
Lz[¥[p, ¢, 211 /7 Simplify
-1yt 0, ¢, 2]

The commutation of the angular momentum in the
cylindrical coordinate

eqo =
LX[Ly[¥[p, ¢, 2Z]]1] - LY[LX[¥[p, &, Z]]] -
ilz[¥[p, ¢, 211 // Simplify
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L2 inthe cylindrical coordinate

eqo6 =
LX[LX[¥[p, ¢, Z]]1] +
Ly[Ly[¥[p, &, Z1]1] +
Lz[ Lz[¢¥[p, ¢, 2]1] // FullSimplify

2zy %Y o, 0, 2] +

1
e (-0* 2 10, ¢, 2] -

<22 +02> w20 10, ¢, 2] +
0 ((—22+02) y00 o0, 2] +
zo (204 %Y (o, ¢, 2] -
zy %% (p, ¢, 2])))
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