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Here we discuss the wavefunction of the 2D isotropic simple harmonics by solving the second-
order differential equation using the series expansion method.

1. Hamiltonian and angular momentum
We consider the eigenvalue problem for the Hamiltonian of the 2D isotropic simple
harmonics given by
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We note that under the rotation around the z axis,
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where
)= R(6plw) = -~ Caply).

and ﬁz (69) is the rotation operator around the z axis by the angle 6¢. Then we have
[H,J,]1=0.

This means that the state vector )| t//> is the simultaneous eigenket of both H and I:Z (orbital
angular momentum).

Hly)=Ely), Clw)=maly).
In the cylindrical co-ordinate, the wave function can be expressed by
(rly)=v(p.0.2).

From the symmetry of H, w(p,0,2) is independent of z. Here we assume that the wavefunction
can be expressed by the form of separation variable



w(p,9) =R(p)D(4) .

The differential equation for  can be given by
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using the cylindrical co-ordinates. The angular momentum I:Z IS given by
~ h
(polLlw)=Ly="——v.

Then we have
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where mis an integer; m =0, £1, £2,...

2. Differential equation for radial wavefunction
The radial wavefunction satisfies the differential equation given by
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For convenience, we use the parameter

p= |-
Haoy,




We also introduce a new variable x (dimensionless)
p=pX,

Then the differential equation can be rewritten as follows.
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We now try to find the solution of this differential equation.
@) In the limit of X — o, we have

R"(x) - x’R(x) =0.

A suitable asymptotic form of R(x) is obtained as
X2
R(x) = eXD(—;) :
for which

R'(x) ® —xR(X) , R"(x) ® —R(x) — XR'(X) = (x* —=1)R(X) = X’R(X) .

(b) In the limit of X > 0,
the dominant terms are



R*()+ LR~ R(x) =0
X X

We assume that
R(x) ~ x°,
where s>0. So we have
s=|m|.

where [m| =0, 1, 2,... So R(x) can be expressed by

R(X) = X" exp(—x—;)F(x) ,

3. Series expansion |
We assume that

F(X) =Y Cx =Cy +Cx+C,x* +...

k=0
This function F(x) satisfies the differential equation,
XF"(X) + (L= 2x2 + 2m)F'(x) = x(2 - A + 2m)F (x) =0.

We apply the series expansion method to find the form of F(x).
From the coefficient of X,

(4m|+AC, = (2m[+2-2)C,,
From the coefficient of x?,

(6jm|+9)C; = (2m|+ 4 - 2)C,,
From the coefficient of x°,

(8m|+16)C, = (2m|+6-2)C,,



From the coefficient of x*,
(10jm|+ 25)C; = (2Jm|+ 8- 2)C;,
From the coefficient of x°,
(12|m|+36)C, = (2Jm[+10-2)C,
In general, we get the recursion relation between C, ., and C, ,
(k +2)(k + 2+ 2m)C,,, = (2m|+ 2k + 2 - 2)C, .
The solution consists of even function and odd function which are independent to each other
F(X)=(C, +C,x* +C,x*...4+..) + (CX+Cx} + C.x° +...).

Q) Even function solution.
The series of even function must terminates at k = 2r , when

A=2m|+4r+2.
Thus we have

C,#0, C,#0,..., C,, ,#0, C,_,#0, C,. #0, C,,,,=0, C,.., =0,...
and

F(X) =CoX° + C,X* +...+ C,, X*" .

(i) Odd function solution.
The series of odd function must terminate at k = 2r —1, when

A =2m|+4r.
Then we have
C,#0,C#0...,C,. . #0,C, %0, C,.,,=0,C, ,=0,...

F(X)=Cx+Cx>+...+C,, x>



In this case, when x =0,
R(x) = x"F(x) ~Cx""

which is different from the predicted behavior of R(x) ~ x™ in the limit of X — 0. So we need
to conclude that

C,=0.

leading to C, =C, =...=0 from the recursion relation.
In conclusion, we have only the even function wave function given by

F(X)=C, +C,x* +...+C, x*".
From the expression of A,

2E
hao,

A= :2|m|+4r+2

we have the energy eigenvalue as
E = (Im[+ 2r + 1)he,
where r=0, 1, 2, 3, .... Here we introduce a new guantum number n as
n=|m+2r.
So that we have
E. =(n+1ha,.
which depends only on n.
@) Forn=0, the degeneracy =1 E, = 7w,
r=0 |m=0

(b) Forn=1, the degeneracy =2  E, = 2hw,
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4, Series expansion 11
We start with

XF"(X) + (1—2x* + 2m))F'(x) - x(2— 2 + 2m) F(x) = 0.

For simplicity we use the variable y as

X2 =y, x=4ly, F(x)=f(x*)=f(y)
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Then we get

(A—2-2jm))
- f =
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yd—2f+(1—y+|m|)if 0
dy? dy

Suppose that
f(y)=C,+C,y+...+C,y" +....

We apply the series expansion method to find the form of f(y).
From the coefficient of v,

—%m—z+qmmg+azqug=o

From the coefficient of y?,
—%a0—1+2mmcz+a3+m$c3=o

From the coefficient of y°,
—%a4—ﬂ+ﬂmm%+4M+m$C4=0

From the coefficient of y*,
—%a8—1+2mmc4+a5+mmcs=o

In general case, we get the recursion relation
—%Q+4k—z+2m@qﬁxk+nw+1ﬂmeﬂ=o

or

_(2+4k-2+2m)
U AR+ 1)k +1+|m])




The series of f(y) must terminate at k =r, when
A=2+4r+2m=2+2(2r+|m)=2+2n (eigenvalue)
with
n=2r+|m|.

In this case, we have

B ... =0. C..=0..

and
f(y)=C,+C,y+..+C,y".

When 4 =2+2n, f(y) satisfies the differential equation as
2 —
yd—zf +(1—y+|m|)if +(n_|m|)f =0.
dy dy 2

The solution of this differential equation is given by

f = L‘rrln_“m‘ (y) = L‘rT_“m‘ (XZ)
2 2

Then we have

where
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The orthogonality takes the form as
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which reduces to

By = [ XOXP, ()P, ()
0

L™

Lo ‘m‘)(x ) is the associated Laguerre function, the associated Laguerre polynomial is given

L7 (x) LaguerreL[5, o, X]  (Mathematica)

@) Forn=0, the degeneracy =1 E, =ha,

r=0 |m=0 I_‘:_“m‘ () =L3(x?) =1
2
(b) Forn=1, the degeneracy =2  E, = 2%a,
m[=1 L 0¢) = L (x*) =1
2

(c) Forn=2, the degeneracy =3, E, =3ha,



r=0 |m=2 L‘ﬂ‘m‘ (x*)=L(x*) =1
2

r=1 |m=0 L‘ﬂ‘m‘ ) =L(x*)=1-x
2

(d) Forn=3, the degeneracy =4, E, =4ho,

r=0 |m=3 L () = (") =1
2

r=1 |m=1 L ) = LX) =2-x°

2

(e) Forn=4, the degeneracy =5, E, =5k,

r=0 |m=4 L‘;'[“m‘ (x3) = L} (x?) =1-x
2
r=1 |m=2 L‘ﬂ‘m‘ (x*)=L2(x*)=3-x
2
r=2 |m=0 L (%) = Lg(x2)=%(2—4x2 +x4

2

()] Forn=5, the degeneracy =6, E; =6haq,

2
r=1 |m/=3 L‘ﬂ‘m‘ (xX*)=L(x)=4-x
2
r=2 |m=1 L () = () = %(6 —6x% + x*)
=

(@  Forn=6, the degeneracy =7, E; = Tha,



r=0 |m=6 L () = () =1

2

r=1 |m=4 I_‘r']’f“m‘(xz)zL;‘(xz):S—x2
2
r=2 |m=2 L (%) = Li(xz):%(12—8x2 +x%)
2
r=3 |m=0 U (6¢) = 150¢) =%(6—18x2 £ Ox¢ — )
2

5. Probability density plot
1= [xdX[P, , ()T
0

where

(I
X[P, (O =2(-)""" mexp(—xz)x“‘“u;“m E9l
A 2
2

The classical limit of x is obtained from the energy conservation that
— _ 1 2 2 _ 1 2
E=hwo,(n+1) =K +§/1a)0 p =K +Eha)ox
with the kinetic energy K = 0. Since
2

ho,(n+1) = %ha)oxc,

we het the classical limit X,

Xy =v2n+2.



Here we make a plot of the probability density x[P, . (X)J? as a function of x and the line of the
classical limit for each n and |m| by using the Mathematica.
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APPENDIX Mathematica



Clear["Global "] ;

(n-Abs[m] 1

DU = 2 DT ey SRl
> !
- 2
(LaguerreL[D__égﬁlml’ Abs[m], Xz]) -

gl[n_] := Module[{hl, h2, ni}, nl=n;
hl==Graphics[{Text[Style["x", Black, 12, Italic], {4.5, 0.03}],
Text[Style["x Pj ", Black, 12, ltalic], {0.3, 0.8}] }];
h2 =
Graphics[{Blue,'Thick,

Line[{{v2n1l +2, 0}, {v2n1 +2, 0.9}}]}]]:

N=0; m=0;
fl=Plot[P[n, m, x], {x, 0, 5}, PlotStyle » {Red, Thick},
PlotLabel -
Style[Framed[{ "'n="" <> ToString[n], "|m|=""<> ToString[m]}],
16, Blue, Background -» Lighter[Yellow]]];
Show[fl, gl[n]]
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n=1; m=1;

f1l=Plot[P[n, m, x], {x, 0, 5}, PlotStyle - {Red, Thick},
PlotLabel -»
Style[Framed[{ "'n=""<> ToString[n], "|m|=""<> ToString[m]}],
16, Blue, Background -» Lighter[Yellow]]];
Show[f1l, gl[n]]
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