2D isotropic simple harmonics: series expansion Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton

(Date: February 25, 2015)

Here we discuss the wavefunction of the 2D isotropic simple harmonics by solving the second-order differential equation using the series expansion method.

1. Hamiltonian and angular momentum

We consider the eigenvalue problem for the Hamiltonian of the 2D isotropic simple harmonics given by

$$\hat{H} = \frac{\hat{p}_x^2 + \hat{p}_y^2}{2u} + \frac{1}{2}\mu\omega_0^2(\hat{x}^2 + \hat{y}^2).$$

We note that under the rotation around the z axis,

$$\langle \psi' | \hat{H} | \psi' \rangle = \langle \psi | \hat{H} | \psi \rangle$$
,

where

$$|\psi'\rangle = \hat{R}_z(\delta\phi)|\psi\rangle = (1 - \frac{i}{\hbar}\hat{L}_z\delta\phi)|\psi\rangle.$$

and $\hat{R}_z(\delta\phi)$ is the rotation operator around the z axis by the angle $\delta\phi$. Then we have

$$[\hat{H},\hat{J}_z]=0.$$

This means that the state vector $|\psi\rangle$ is the simultaneous eigenket of both \hat{H} and \hat{L}_z (orbital angular momentum).

$$\hat{H}\big|\psi\big>=E\big|\psi\big>\,,\qquad\qquad \hat{L}_z\big|\psi\big>=m\hbar\big|\psi\big>\,.$$

In the cylindrical co-ordinate, the wave function can be expressed by

$$\langle \boldsymbol{r} | \psi \rangle = \psi(\rho, \theta, z)$$
.

From the symmetry of \hat{H} , $\psi(\rho, \theta, z)$ is independent of z. Here we assume that the wavefunction can be expressed by the form of separation variable

$$\psi(\rho,\phi) = R(\rho)\Phi(\phi)$$
.

The differential equation for ψ can be given by

$$-\frac{\hbar^2}{2\mu}\left[\frac{1}{\rho}\frac{\partial}{\partial\rho}(\rho\frac{\partial\psi}{\partial\rho}) + \frac{1}{\rho^2}\frac{\partial^2\psi}{\partial\phi^2}\right] + \frac{1}{2}\mu\omega_0^2\rho^2 = E\psi.$$

using the cylindrical co-ordinates. The angular momentum \hat{L}_z is given by

$$\langle \rho, \phi | \hat{L}_z | \psi \rangle = L_z \psi = \frac{\hbar}{i} \frac{\partial}{\partial \phi} \psi.$$

Then we have

$$\frac{\hbar}{i}\frac{\partial}{\partial\phi}\Phi(\phi)=m\hbar\Phi(\phi)\,,$$

and

$$\Phi(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi},$$

where m is an integer; $m = 0, \pm 1, \pm 2,...$

2. Differential equation for radial wavefunction

The radial wavefunction satisfies the differential equation given by

$$-\frac{\hbar^{2}}{2\mu}\left[\frac{1}{\rho}\frac{\partial}{\partial\rho}(\rho\frac{\partial\psi}{\partial\rho})+\frac{1}{\rho^{2}}\frac{\partial^{2}\psi}{\partial\phi^{2}}\right]+\frac{1}{2}\mu\omega_{0}^{2}\rho^{2}\psi=E\psi,$$

or

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho \frac{\partial R}{\partial \rho}) - (\frac{m^2}{\rho^2} + \frac{\mu^2 \omega_0^2 \rho^2}{\hbar^2} - \frac{2\mu E}{\hbar^2}) R = 0.$$

For convenience, we use the parameter

$$\beta = \sqrt{\frac{\hbar}{\mu \omega_0}} \ .$$

We also introduce a new variable x (dimensionless)

$$\rho = \beta x$$
,

Then the differential equation can be rewritten as follows.

$$\frac{1}{x}\frac{\partial}{\partial x}(x\frac{\partial R}{\partial x}) - (\frac{m^2}{x^2} + x^2 - \frac{2\mu E}{\hbar^2}\beta^2)R = 0,$$

or

$$\frac{1}{x}\frac{\partial}{\partial x}(x\frac{\partial R}{\partial x})-(\frac{m^2}{x^2}+x^2-\lambda)R=0,$$

or

$$R''(x) + \frac{1}{x}R'(x) - (\frac{m^2}{x^2} + x^2 - \lambda)R(x) = 0.$$

where

$$\lambda = \frac{2\mu E}{\hbar^2} \beta^2 = \frac{2E}{\hbar \omega_0}$$
 (eigenvalue).

We now try to find the solution of this differential equation.

(a) In the limit of $x \to \infty$, we have

$$R''(x) - x^2 R(x) = 0$$
.

A suitable asymptotic form of R(x) is obtained as

$$R(x) \approx \exp(-\frac{x^2}{2})$$
.

for which

$$R'(x) \approx -xR(x)$$
, $R''(x) \approx -R(x) - xR'(x) = (x^2 - 1)R(x) \approx x^2R(x)$.

(b) In the limit of $x \rightarrow 0$, the dominant terms are

$$R''(x) + \frac{1}{x}R'(x) - \frac{m^2}{x^2}R(x) = 0$$

We assume that

$$R(x) \approx x^{s}$$
,

where $s \ge 0$. So we have

$$s = |m|$$
.

where |m| = 0, 1, 2,... So R(x) can be expressed by

$$R(x) \approx x^{|m|} \exp(-\frac{x^2}{2}) F(x),$$

3. Series expansion I

We assume that

$$F(x) = \sum_{k=0}^{\infty} C_k x^k = C_0 + C_1 x + C_2 x^2 + \dots$$

This function F(x) satisfies the differential equation,

$$xF''(x) + (1-2x^2+2|m|)F'(x) - x(2-\lambda+2|m|)F(x) = 0$$
.

We apply the series expansion method to find the form of F(x). From the coefficient of x,

$$(4|m|+4)C_2 = (2|m|+2-\lambda)C_0$$
,

From the coefficient of x^2 ,

$$(6|m|+9)C_3 = (2|m|+4-\lambda)C_1,$$

From the coefficient of x^3 ,

$$(8|m|+16)C_4 = (2|m|+6-\lambda)C_2$$
,

From the coefficient of x^4 ,

$$(10|m|+25)C_5 = (2|m|+8-\lambda)C_3$$
,

From the coefficient of x^5 ,

$$(12|m|+36)C_6 = (2|m|+10-\lambda)C_4$$

In general, we get the recursion relation between C_{k+2} and C_k ,

$$(k+2)(k+2+2|m|)C_{k+2} = (2|m|+2k+2-\lambda)C_k$$

The solution consists of even function and odd function which are independent to each other

$$F(x) = (C_0 + C_2 x^2 + C_4 x^4 \dots + \dots) + (C_1 x + C_3 x^3 + C_5 x^5 + \dots).$$

(i) Even function solution.

The series of even function must terminates at k = 2r, when

$$\lambda = 2|m| + 4r + 2.$$

Thus we have

$$C_0 \neq 0, \ C_2 \neq 0, ..., \ C_{2r-4} \neq 0, \ C_{2r-2} \neq 0, \ C_{2r} \neq 0, \ \overline{C_{2r+2}} = 0, \ \overline{C_{2r+4}} = 0, ...$$

and

$$F(x) = C_0 x^0 + C_2 x^2 + \dots + C_{2r} x^{2r}.$$

(ii) Odd function solution.

The series of odd function must terminate at k = 2r - 1, when

$$\lambda = 2|m| + 4r.$$

Then we have

$$C_1 \neq 0$$
, $C_3 \neq 0$..., $C_{2r-3} \neq 0$, $C_{2r-1} \neq 0$, $C_{2r+1} = 0$, $C_{2r+3} = 0$,...

$$F(x) = C_1 x + C_3 x^3 + ... + C_{2r-1} x^{2r-1}$$

In this case, when $x \rightarrow 0$,

$$R(x) = x^{|m|} F(x) \approx C_1 x^{|m|+1}$$

which is different from the predicted behavior of $R(x) \approx x^{|m|}$ in the limit of $x \to 0$. So we need to conclude that

$$C_1 = 0$$
.

leading to $C_1 = C_3 = ... = 0$ from the recursion relation.

In conclusion, we have only the even function wave function given by

$$F(x) = C_0 + C_2 x^2 + ... + C_{2r} x^{2r}$$
.

From the expression of λ ,

$$\lambda = \frac{2E}{\hbar\omega_0} = 2|m| + 4r + 2$$

we have the energy eigenvalue as

$$E = (|m| + 2r + 1)\hbar\omega_0$$

where $r = 0, 1, 2, 3, \dots$ Here we introduce a new quantum number n as

$$n = |m| + 2r$$

So that we have

$$E_n = (n+1)\hbar\omega_0$$
.

which depends only on n.

(a) For n = 0, the degeneracy = 1 $E_1 = \hbar \omega_0$

$$r = 0$$
 $|m| = 0$

(b) For n = 1, the degeneracy = 2 $E_2 = 2\hbar\omega_0$

$$r = 0$$
 $|m| = 1$

(c) For
$$n = 2$$
, the degeneracy = 3, $E_2 = 3\hbar\omega_0$

$$r = 0$$
 $|m| = 2$

$$r = 1$$
 $|m| = 0$

(d) For
$$n = 3$$
, the degeneracy = 4, $E_3 = 4\hbar\omega_0$

$$r = 0$$
 $|m| = 3$

$$r=1$$
 $|m|=1$

(e) For
$$n = 4$$
, the degeneracy = 5, $E_4 = 5\hbar\omega_0$

$$r = 0$$
 $|m| = 4$

$$r=1$$
 $|m|=2$

$$r=2$$
 $|m|=0$

(f) For
$$n = 5$$
, the degeneracy = 6, $E_5 = 6\hbar\omega_0$

$$r = 0$$
 $|m| = 5$

$$r=1$$
 $|m|=3$

$$r=2$$
 $|m|=1$

4. Series expansion II

We start with

$$xF''(x) + (1-2x^2+2|m|)F'(x) - x(2-\lambda+2|m|)F(x) = 0$$
.

For simplicity we use the variable y as

$$x^{2} = y, x = \sqrt{y}, F(x) = f(x^{2}) = f(y)$$

$$\frac{d}{dx} = \frac{dy}{dx}\frac{d}{dy} = 2x\frac{d}{dy} = 2\sqrt{y}\frac{d}{dy},$$

$$\frac{d^{2}}{dx^{2}} = 2\sqrt{y}\frac{d}{dy}(2\sqrt{y}\frac{d}{dy}) = 4\sqrt{y}\frac{d}{dy}(\sqrt{y}\frac{d}{dy})$$

Then we get

$$y\frac{d^{2}}{dy^{2}}f + (1 - y + |m|)\frac{d}{dy}f + \frac{(\lambda - 2 - 2|m|)}{4}f = 0$$

Suppose that

$$f(y) = C_0 + C_1 y + ... + C_r y^r +$$

We apply the series expansion method to find the form of f(y). From the coefficient of y,

$$-\frac{1}{4}(6-\lambda+2|m|)C_1+2(2+|m|)C_2=0$$

From the coefficient of y^2 ,

$$-\frac{1}{4}(10 - \lambda + 2|m|)C_2 + 3(3 + |m|)C_3 = 0$$

From the coefficient of y^3 ,

$$-\frac{1}{4}(14 - \lambda + 2|m|)C_3 + 4(4 + |m|)C_4 = 0$$

From the coefficient of y^4 ,

$$-\frac{1}{4}(18 - \lambda + 2|m|)C_4 + 5(5 + |m|)C_5 = 0$$

In general case, we get the recursion relation

$$-\frac{1}{4}(2+4k-\lambda+2|m|)C_k+(k+1)(k+1+|m|)C_{k+1}=0$$

or

$$C_{k+1} = \frac{(2+4k-\lambda+2|m|)}{4(k+1)(k+1+|m|)}C_k$$

The series of f(y) must terminate at k = r, when

$$\lambda = 2 + 4r + 2|m| = 2 + 2(2r + |m|) = 2 + 2n$$
 (eigenvalue)

with

$$n=2r+|m|.$$

In this case, we have

$$C_0 \neq 0, \ C_1 \neq 0, ..., \ C_{r-2} \neq 0, \ C_{r-1} \neq 0, \ C_r \neq 0, \ C_{r+1} = 0, \ C_{r+2} = 0, ...$$

and

$$f(y) = C_0 + C_1 y + ... + C_r y^r$$
.

When $\lambda = 2 + 2n$, f(y) satisfies the differential equation as

$$y\frac{d^{2}}{dy^{2}}f + (1 - y + |m|)\frac{d}{dy}f + \frac{(n - |m|)}{2}f = 0.$$

The solution of this differential equation is given by

$$f = L_{\frac{n-|m|}{2}}^{|m|}(y) = L_{\frac{n-|m|}{2}}^{|m|}(x^2)$$

Then we have

$$\psi_{n,m}(x,\phi) = \frac{1}{\sqrt{\pi}} (-1)^{\frac{n-|m|}{2}} e^{im\phi} \sqrt{\frac{\left[\frac{(n-|m|)}{2}\right]!}{\left[\frac{(n+|m|)}{2}\right]!}} \exp(-\frac{x^2}{2}) x^{|m|} L_{\frac{n-|m|}{2}}^{|m|}(x^2)$$

$$= \frac{1}{\sqrt{2\pi}} e^{im\phi} P_{n,m}(x)$$

where

$$P_{n,m}(x) = (-1)^{\frac{n-|m|}{2}} \sqrt{2 \frac{\left[\frac{(n-|m|)}{2}\right]!}{\left[\frac{(n+|m|)}{2}\right]!}} \exp(-\frac{x^2}{2}) x^{|m|} L_{\frac{n-|m|}{2}}^{|m|}(x^2)$$

The orthogonality takes the form as

$$\delta_{n,n'}\delta_{m,m'} = \int dx x d\phi \psi_{n',m'}^{*}(x,\phi)\psi_{n,m}(x,\phi)$$

$$= \int dx x d\phi \frac{1}{\sqrt{2\pi}} e^{-im'\phi} P_{n',m'}(x) \frac{1}{\sqrt{2\pi}} e^{im\phi} P_{n,m}(x)$$

$$= \int_{0}^{\infty} dx x P_{n',m'}(x) P_{n,m}(x) \int_{0}^{2\pi} \frac{d\phi}{2\pi} e^{i(m-m')\phi}$$

$$= \int_{0}^{\infty} dx x P_{n',m'}(x) P_{n,m}(x)$$

which reduces to

$$\delta_{n,n'} = \int_{0}^{\infty} x dx P_{n',m}(x) P_{n,m}(x)$$

 $L_{2(n-|m|)}^{|m|}(x^2)$ is the associated Laguerre function, the associated Laguerre polynomial is given

$$L^{\alpha}_{\beta}(x)$$
 LaguerreL[β , α , x] (Mathematica)

(a) For n = 0, the degeneracy = 1 $E_1 = \hbar \omega_0$

$$r = 0$$
 $|m| = 0$ $L_{\underline{n-|m|}}^{|m|}(x^2) = L_0^0(x^2) = 1$

(b) For n = 1, the degeneracy = 2 $E_2 = 2\hbar\omega_0$

$$r = 0$$
 $|m| = 1$ $L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_0^1(x^2) = 1$

(c) For n = 2, the degeneracy = 3, $E_2 = 3\hbar\omega_0$

$$r = 0$$
 $|m| = 2$ $L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_0^2(x^2) = 1$

$$r = 1$$
 $|m| = 0$ $L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_1^0(x^2) = 1 - x^2$

(d) For
$$n = 3$$
, the degeneracy = 4, $E_3 = 4\hbar\omega_0$

$$r = 0$$
 $|m| = 3$ $L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_0^3(x^2) = 1$

$$r = 1$$
 $|m| = 1$ $L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_1(x^2) = 2 - x^2$

(e) For
$$n = 4$$
, the degeneracy = 5, $E_4 = 5\hbar\omega_0$

$$r = 0$$
 $|m| = 4$ $L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_0^4(x^2) = 1 - x^2$

$$r = 1$$
 $|m| = 2$ $L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_1^2(x^2) = 3 - x^2$

$$r = 2$$
 $|m| = 0$ $L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_2^0(x^2) = \frac{1}{2}(2 - 4x^2 + x^4)$

(f) For
$$n = 5$$
, the degeneracy = 6, $E_5 = 6\hbar\omega_0$

$$r = 0$$
 $|m| = 5$ $L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_0^5(x^2) = 1$

$$r = 1$$
 $|m| = 3$ $L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_1^3(x^2) = 4 - x^2$

$$r = 2$$
 $|m| = 1$ $L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_2^1(x^2) = \frac{1}{2}(6 - 6x^2 + x^4)$

(g) For
$$n = 6$$
, the degeneracy = 7 , $E_5 = 7\hbar\omega_0$

$$r = 0 \quad |m| = 6 \qquad \qquad L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_0^6(x^2) = 1$$

$$r = 1 \quad |m| = 4 \qquad \qquad L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_1^4(x^2) = 5 - x^2$$

$$r = 2 \quad |m| = 2 \qquad \qquad L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_2^2(x^2) = \frac{1}{2}(12 - 8x^2 + x^4)$$

$$r = 3 \quad |m| = 0 \qquad \qquad L_{\frac{n-|m|}{2}}^{|m|}(x^2) = L_3^0(x^2) = \frac{1}{6}(6 - 18x^2 + 9x^4 - x^3)$$

5. Probability density plot

$$1 = \int_{0}^{\infty} x dx [P_{n,m}(x)]^2$$

where

$$x[P_{n,m}(x)]^{2} = 2(-1)^{n-|m|} \frac{\left[\frac{(n-|m|)}{2}\right]!}{\left[\frac{(n+|m|)}{2}\right]!} \exp(-x^{2})x^{2|m|+1} \left[L_{\frac{n-|m|}{2}}^{|m|}(x^{2})\right]^{2}$$

The classical limit of x is obtained from the energy conservation that

$$E = \hbar \omega_0 (n+1) = K + \frac{1}{2} \mu \omega_0^2 \rho^2 = K + \frac{1}{2} \hbar \omega_0 x^2$$

with the kinetic energy K = 0. Since

$$\hbar\omega_0(n+1) = \frac{1}{2}\hbar\omega_0 x_{cl}^2$$

we het the classical limit x_{cl}

$$x_{cl} = \sqrt{2n+2} .$$

Here we make a plot of the probability density $x[P_{n,m}(x)]^2$ as a function of x and the line of the classical limit for each n and |m| by using the Mathematica.

REFERENCES

R. Shankar, *Principles of Quantum Mechanics*, second edition (Springer, 1994). J Schwinger, *Quantum Mechanics*: Symbolism of Atomic Measurements (Springer, 2001).

APPENDIX Mathematica

```
Clear["Global`*"];

P[n_{-}, m_{-}, x_{-}] := 2 (-1)^{n-Abs[m]} \frac{\left(\frac{n-Abs[m]}{2}\right)!}{\left(\frac{n+Abs[m]}{2}\right)!} \exp\left[-x^{2}\right] x^{2 Abs[m]+1}
\left(\text{LaguerreL}\left[\frac{n-Abs[m]}{2}, Abs[m], x^{2}\right]\right)^{2};
gl[n_{-}] := \text{Module}[\{hl, h2, nl\}, nl = n;
hl = \text{Graphics}[\{\text{Text[Style["x", Black, 12, Italic], } \{4.5, 0.03\}],
\text{Text[Style["x P_{n,m}^{2}", Black, 12, Italic], } \{0.3, 0.8\}]\}];
h2 =
\text{Graphics}[\{\text{Blue, Thick,}
\text{Line}[\{\{\sqrt{2n1+2}, 0\}, \{\sqrt{2n1+2}, 0.9\}\}]\}];
n = 0; m = 0;
fl = \text{Plot[P[n, m, x], } \{x, 0, 5\}, \text{PlotStyle} \rightarrow \{\text{Red, Thick}\},
\text{PlotLabel} \rightarrow
\text{Style[Framed[{"n="} <> \text{ToString[n], "|m|="} <> \text{ToString[m]}}],
16, \text{Blue, Background} \rightarrow \text{Lighter[Yellow]]};
\text{Show[fl, gl[n]]}
```


