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Johannes Stark (15 April 1874 — 21 June 1957) was a German physicist, and Physics
Nobel Prize laureate who was closely involved with the Deutsche Physik movement
under the Nazi regime.

http://en.wikipedia.org/wiki/Johannes Stark

Here we apply the perturbation theory to the Stark effect in hydrogen atom. The Stark
effect can be observed as a possible shift of the energy level, when an external electric
field is applied to hydrogen atom. The hydrogen atom has an electric dipole moment
because of the positive charge of proton and a negative charge of electron separated by a
distance which is the order of Bohr radius. When an external electric field is applied to
the hydrogen atom, the perturbation Hamiltonian appears as an inner product between the
electric dipole moment and the electric field. In the absence of an external electric field,
the energy level depends on the principal quantum number #;

EY =——. (R=13.605693122994 eV)
n

The ground state with n = 1 (/ = 0, m=0) is non-degenerate. On the other hand, the first
excited state with n =2 (I =1, m =1, 0, -1; [ = 0, m = 0) is degenerate (2°> = 4
degeneracy). The second excited state withn =3 (/=2,m=2,1,0,-1,-2;/=1,m=1,0,
-1; /=0, m = 0) is degenerate (3°> = 9 degeneracy).

In order to evaluate the shift of energy levels in the presence of electric field, we need
to apply the perturbation theory (nondegenerate case) to the ground state and the



perturbation theory (degenerate case) to the excited states. In these cases, it is significant
to calculate the matrix elements.

We are also interested in the change of the probability density of the wave function of
hydrogen atom, when the electric field is applied. It is expected that the ContourPlot of
the probability density appropriately changes depending on the magnitude and direction
of the electric field.

1 Hamiltonian for the hydrogen atom in the presence of an electric field

H, is the Hamiltonian of the hydrogen atom. We apply an external electric field &
(along the z axis) to the hydrogen atom, producing the Stark effect.

H=H,+H,.
H =—ji -&=—(—eF)-se, =es.

where g = -e (e>0) is the electron charge and u, (=-er) is an electric dipole moment. The
vector r is the position vector of electron. The proton (charge e) is located at the origin.
The eigenstate of H, is given by |n,/ ,m> with the energy

R
En(o) = —7 .
where R is the Rydberg constant. R = 13.60569193 eV.

In the presence of H,, the full spherical symmetry of the Hamiltonian is destroyed by

the external electric field that selects the positive z-direction, but H s still invariant
under the rotation around the z axis.

v)=R|y),
(w'dv)=(w|H]y).
or
(w|RHR|v)=(v|H|y),
or
R'HR =H,
or
[H,R]=0



Since

R i~ A o
R =exp[-—L.60|~1-—L.56.
. =exp[ P ] pa

We have

[H,L.]=0,
or

[H,L.]=0.
Since

H, =es
we have

[L.,2]=0.
since

L. =3, - b,
2 Selection rules

The selection rules are summarized as follows.

(1) Selection rule-1

<n,l,m|£|n',l’,m’>¢0,

only for m'=m.

(i1)  Selection rule-2

<n,l,m|)2iz)7|n',l',m'>=0.
only for m'=m=1.

(ii1))  Selection rule-3




<n,l,m|2|n',l’,m'>=0
unless I’ =/ =+ 1.

3. Derivation of the selection rules from commutation relations
(a) Selection rule 1

We note that the commutation relation [iz,é] =0, can be derived from the original
definition of the angular momentum.

LZ =‘£Ay _j\},\)(
with
[L.,2]=0.

Using the commutation relation, we calculate the matrix element;

<n,l,m|[iz,2]| n',l',m'> =<n,l,m|izé—£iz]| n',l',m'>

=(m —m')h<n,l,m|£| n',l',m'> -0

Thus, only for m’ = m.

<n,l,m|2|n',l',m'> #0
(b) Selection rule 2

L =3p,-3p,
with

[L.,%]=inp. [L.,]=—in%.
From this commutation relation, we have

<n,l,m|[iz,)2]|n',l',m'>=<n,l,m izi—iiz] n',l’,m'>
:(m—m')h<n,l,m|)2|n',l',m'> (1)
=ih<n,l,m|f/|n',l',m'>

and



[iz,)?]|n',l',m'>=<n,l,m izﬁ—j/iz]|n',l',m'>
=(m—m')h<n,l,m j/|n',l',m'> (2)

n',l’,m'>

<n,l,m

= —ih<n,l,m|)2

From Egs.(1) and (2), we get

(m—m')2<n,l,m fc|n',l',m'> =i(m—m')<n,l,m|f/|n',l',m'>
=<n,l,m|fc|n',l',m'>

For m'=m=1

<n,l,m xtiy n',l’,m'>:0.

For m'#m £1

<n,l,m )E|n',l',m'> =<n,l,m|f/|n',l',m'>=0

(¢) Selection rule 3
We can show the commutation relation

[L2,[L2,7]] =20 (%7 + FL?)
by using the two methods (i) the commutation relations and (ii) Mathematica.

Using this relation we can calculate the matrix element of the commutation relation

(n,Lm|[L*,[L,F1]n' 1", m") = 207 (n,1,m|(LF + FL*)| ', I' ;")
=20 [I(1+ 1)+ 1'(I'+1)(n,l,m 7 n',I',m') '
Noting that
203 (n,,m|(EF+ P ' 1 m'y = 20° [+ 1)+ 1 (P D), Ly [ ' 1)
and
(n,L,m|[D [, F]]n', 1", m") = 1A+ ) = I' P+ D) n,L,m|[ L, 7]’ 1" m")
=n*' A+ D) =" (C+DPL+ D) (n, Lm0’ 1 m")

Then we get

{IA+D) =1 +DF =20+ D) = 20"+ D) K n,Lm|f| 0,1 ,m') = 0.




or

Al

(l—l'—l)(l—l'+l)(l+l')(l+l'+2)<n,l,m r

n',l’,m'> =0
This leads to the selection rule

<n,l,m|f|n',l’,m'> #0

only for ’=/+1.

((Proof))

(i) Commutation relations
[L2,[[2,2]=2n*(E12 + L*%)
((Proof)) Griftfiths, Introduction to Quantum Mechanics
We prove this by using a various kind of commutation relations.

[L*,2]=[L,",2]+[L,",2]+[L.".2]
=L [L,21+[L, 210, + L [L,,21+[L,, )L, + L [L 21+ ,2]L.
=ih(-L,9-JL, +L %+3L))

We note that
Lp=[L,31+PL, =iz + 3L,
A =[L,,X]+ XL, =—ihz++xL,
Then we get

[L*,2]=ih[—(ihz + PL,) - PL, +(~ihz + L) + iL,)
=2ih(xL, - JL, —ih2)

Similarly,
[, %]=2ih(PL. - 2L, - ih)

and



[L?,y] = 2ik(zL, — xL. — ihp)

where
[L,.21=[9p. - 2p,.21=[P..2]~[2p,.2] = $[p..2] = iR .
(L2159, - .21 = (., 2] ==l p..2] = S =ik
[L..2]1=[5p, - §P,.2]1=—[$P,.2]=0.
[L..%]=[9p. - 2p,.%]=0.

z=—ihz.

N_|N

[L,.%]=[2p, - %p..%]=[2p,.%] =
[L..£]1=[%p, - 3p,.8]1=—[9p,. ] =ihp.
[L..91=19p. —2p,.P]=ihZ.
[L,.3]1=[2p, — 2p.,$]=0.

[L.,51=[%p, — 3P, ] = —il%.

Then we get



(L[ D,2)=2in{[L’ XL, ]~ [, pL,1—in[ L, 2]}
= 2in{[ L, %L, + X L*,L 1-[L*, 9L, - ${L*,L1-in[L*,2]}
= 2ih{2ih(PL, — 5L, —ihX)L, - 2ih(L, - L, —ihp)L,
—ih([*% - 21%)}
=210 {2(PL.L, —L," —ihiL,) —2(2L. — XL L —ihpL,)
—([22-2%
=21 {2(L, —ih%)L, —25(L.” + L,*) +2(3L, +ihP)L,)
— (L2 -0
=20{2L L, -25(L L) +2L 3L,
—([*2 - 2[%)
=21’ {2L (XL, + L, + 2L )—2L 2L —25(0* - L) — (L2 - 2L}

or

[L2,[I,5]=—2n*{-2L 5L — 221> +22L° — ([*% - 21}
=21 (217 + [*%)

where we use the relations,
XL+ 3L, +2L, =0
[, L1=[L",L,1=[L,L.]=0
[L.,2]=0

and
[L*,2]=2ih(XL, — DL, —ih2)

r2 ~1_A: AT AT A

[L,x]=2iA(yL, - ZL, — ihx)
[L%, 9] =2ik(:L, — XL, — ihp)

(i1) Mathematica
Using the Mathematica, we show that the above commutations are valid.

[L.,2]=0.



[L.,%]=ihp. [L.,p]=—ih%.
[L2,[2,F]] =20 (L*F + FL%)
((Mathematica))
Clear["Global "] ;
<< VectorAnalysis';

SetCoordinates[Cartesian[x, y, z]]-

ux={1, 0, 0};uy={0,1, 0}; uz=(0,0, 1}; r={x, y, z};

Lx := (ux. (-1 ACross[r, Grad[#]]) &) // Simplify;
Ly := (uy. (-1 h Cross[r, Grad[#]]) &) // Simplify;
Lz := (uz. (-1 A Cross[r, Grad[#]]) &) // Simplify;

Lsq := (Nest[Lx, #, 2] + Nest[Ly, #, 2] + Nest[Lz, #, 2]) &;

eql = (Lz[zx[x, y, z]] -zLz[x[x, y, z]]) // FullSimplify

0

eq2 = Lz[x x[x, y, 2z]]- xLz[ x[x, y, z]]-21hyx[x, y, z] // Simplify
0

eq3=Lz[y x[x, v, 2z]]-yLz[ x[x, v, z]]+ihxx[x, y, z] // Simplify
0

eq4 = 21n° (Lsq[xx[x, y, z]]1+ xLsq[x[x, y, z]]) // Simplify;

eq5 = Lsq[Lsq[x x[x, y, 2]]] -Lsq[xLsq[x[x, y, 2]]] -Lsq[xLsq[x[x, vy, z]]] +
xLsq[ Lsq[x[x, y, z]]] // Simplify;

eqg4 - eg5

4. Selection rule derived from the parity operator
7 1s the parity operator:

e oA A
T == ,

Z is the parity odd operator with

e =-z,

and



7

n,l,my=(-1)

n,l,my,
or
(n,l,m|7t =(=1)(n,l,m|.
Then we have
(n,I,m|Zn',I',m') =0 for the /-state and /'-state with the same parity.
The reason is as follows.
(n,l,m| A0, I',m")=~(n,l,m|2|n'",I',m"),
or
(n,l,m|g|n',I',m"y = (=1)"""(n,l,m|2|n' ', m").
When [+ +1=2k+1(odd numbers), or /+7 = 2k (even number), we have

<n,l,m|2|n',l',m'>:0.

5. The Stark effect on the n =1 level
The ground state is non-degenerate.

/ EP+ EY

C RN N I W N N W N N N N N Ego)

lwo)=|n=1,1=0,m=0)

lefro>

Fig.  Shift of the energy level of the ground state in the presence of electric field.
The energy to the first order:

E" =-R
1

H,

E" =(y,|H|w,)=(1,0,0[H,]1,0,0)=0

10



A 2
@ 2.9 <1,0,0zn,l,m>‘
£ =ee Z © ©
n#l,l,m E1 _E,,,
where
R
o _ &t
En - 2
n

Then we have

Z

1 (1,0,0[2|n,2,m)
AEI = El(z) = —50&92 = ezgzn;],m El(o) _En(O) ‘

or

Z

(1,0,0|2 .2, m)[
o= —262’1;”1 El(o) _E (0) ‘

n

The proceeding sum is certainly not zero, since there exist states

n,l, m> whose parity is

opposite to that of 1,0,0>. To the lowest order in &, the Stark shift of the 1s ground state

is quadratic.

((Polarizability))

Electric polarizability is the relative tendency of a charge distribution, like the
electron cloud of an atom or molecule, to be distorted from its normal shape by an
external electric field, which is applied typically by inserting the molecule in a charged
parallel-plate capacitor, but may also be caused by the presence of a nearby ion or dipole.
The electronic polarizability o is defined as the ratio of the induced dipole moment P of
an atom to the electric field ¢ that produces this dipole moment.

p=ac
The work done on the system as ¢ slightly changes to ¢ +de,

dW =—-pde =—asede

or
W=AK=-—a¢
2

from the work-energy theorem. So that, we have

11



AE:AK:—%agz

6 Polarizability of the 1s-state

A

z

n,l,m|21,0,0)
E1(0> _ En(o)

n,l,m><

1,0,0)+es)’

n#l
I,m

|‘/’1s>:

—e5 =_2¢%
( ez)| W1s> € 5; EO_ED

I,m

p= <l//1s

or

2

<n,l,m

£1,0,0)
a=-2¢
; E1(0> _ En(o)

I,m

where g = —e. Under the perturbation, the energy shift is given by

ey (1007 o

n#l EI(O) _g© )
I,m "
((Note-1))
1,m|2[1,0,0) .
<1//1S (—eé)| 1//1S>:(<1,0,0 +e€;<n,l,m <}ZEI(Z)1|—ZE (0))> +...)(—€2)
I,m "
(n,1,m|2[1,0,0)
1,0,0) + ,, +...
x( > eg; n m> (EI(O) _En(o)) )

I,m

The electric field ¢ causes an induced dipole moment to appear, proportional to &.

((Note-2))
Since

A

z

(10,0

1,0,0)=0 and EC_EV>E®_E®>0

12



we have

n,l,m|2

( 1,0,0)[
A2
a=2e % EO_EO
2¢?
<————— Un,l,m|z
EO_EO ;K |

l,m

1,0,0)[

26? A
= EO_E® ;K”’l’m|z

l,m

1,0,0)"

Here
> |1 m[Z10,0)]" = 3 (1,0,0[2 .1, m){n,1,m|21,0,0) = (1,0,0]2%|1,0,0)
Im Im
Then we have
2¢° R 2 2¢° .
a < W;Kn,l,rﬂz 1,0,0>‘ = W<1,0,0 Z2 1,0,0>

I,m
or

2¢° , 16

a<—; a,’ =—a, =5.33a,’
e 1
(L
2a, 4

which is consistent with the experimentally observed value: @@= 4.5 ag°.

~2
z

(10,0

1,0,0) = a,’

((Bethe-Salpeter))

Hans Albrecht Bethe (July 2, 1906 — March 6, 2005) was a German-American physicist,
and Nobel laureate in physics for his work on the theory of stellar nucleosynthesis. A
versatile theoretical physicist, Bethe also made important contributions to quantum
electrodynamics, nuclear physics, solid-state physics and particle astrophysics. For most
of his career, Bethe was a professor at Cornell University.

13



http://en.wikipedia.org/wiki/Hans_Bethe

How can we calculate the exact value of «?

a=2e Z EO_ (0> 2e Z EO_ (0>

n#l n#l
l,m l,m

(n.1,

= [&rR, ()Y (0, @)1 cos LR,y (1) (6,0)]

Here

Y0°(0,¢)=ﬁ, COSQZJ?KO(Q’¢)

(n.1,

)= [4QY" (6,0) = ¥2(0,0) [ PR ()R ()

3
1 1
j dQY,™ (6, ¢)$ 0,9) —35],15,”,0

Then we have

14



[’e]

(n. 0)= T I PdrR,, (r)R(r)

or

(m.

:—[.[ rdrR, ("R, ("] =a, f(n)

where f(n) is obtained by H.A. Bethe and E.E. Salpeter [Quantum Mechanics of One- and
Two Electron Atoms, Academic Press, New York, 1957, p.262]

Fony = L2 =D

3 ( +1)2n+5
E —— moe4 _ ez
" 2R 2n’a,

2
1
E\-EY="—(1-—
n 1 2610( nz)

Then we have

azzezzK O ~ 44,3 SO _ 44,20.915806 = 3.66326a,
E(O) E(O) 0 2 0= o 0

n#l n L n=2 N -1

((Mathematica))

15



Stark effect with n =1

Clear["Global %"];

1 14/ B 7 af
R[n , 7 ,r]:i= —— |2 a0 2 e a0n r (n-7-1)1 LaguerreL[—1+n—/,1+2/,
V(n+/7)!

Y[/ ,m , & , ¢ ] :=SphericalHarmonicY[/, m, &, &];
Yo ,7,m,z,6,4]:=R[n, 7, r] Y[/, m, &, &]
f[ni_, /1 ,ml ,n2 ,/72 ,m2 ,r ,6 ,¢]=

(—1)"‘1 Y[nl,¢1, -ml, r, 6, ¢] xCos[6] ¥[n2, /2, m2, r, 6, ¢] r? Sin[e6] // Simplify;

Integral calculation

g[lnl_, 71 ,mi_, n2 ,/2 ,m2] :=
f[ni, 71, m1, n2, /2, m2, r, 6, ¢]

Simplify [Integrate [Integrate [Integrate [
a0

(e, 0, n}], (z, 0, oo}], a0 >o],-
Beth' s formula

1 28n7 (n_1)2n—5
hin ] = - — oms ;
3 (n+1) n+5

Table[{n, 1, g[n, 1, 0, 1, 0, 0]* // N, h[n] // N}, {n, 2, 10}] // TableForm

16,0, 27}],

2r

aln

1)

2 1 0.554929 0.554929
3 1 0.0889893 0.0889893
4 1 0.0309238 0.0309238
5 1 0.0145191 0.0145191
6 1 0.00802234 0.00802234
7 1 0.00491424 0.00491424
8 1 0.00323396 0.00323396
9 1 0.00224381 0.00224381
10 1 0.00162158 0.00162158

® n2h[n]

// N

n=2 n2 -1

3.66326
7 Stark effect on the n = 2 level

We now consider the state with n = 2.
n = 2 state (4 states-degeneracy):

[=1(m==l1, 0): p-state (3 states)

[ =0 (m = 0): s-state (1 state)
Note that
R
E2(0> _ _?

is the eigenvalue of ﬁlo . The degenerate system with the four states:

|n,1,m)=|2,0,0),

2,L1),

2,1,0),

2,1,-1)

with the same energy. For convenience we introduce the basis as

16



‘1//1(0)> =(2,0, 0> even state
|, ) =|2,1,1)

‘1//3(°)> =2,1, 0> odd states
) =|2.1,-1)

Here we show the cross section of the probability density for n =2 and / = 1 in the
absence of external electric field.

State

2,1,0)

State

2,1,1)

17



From the selection rule, we have

(2,1,m|2]2,0,m") =(2,1,m|2|2,0,m)6,, .
(2,1,m|2]2,1,m") =0
(2,0,0|2|n,0,0)=0

The matrix of I;Vl based on these bases is given by

0 0 (H), 0
0 0 0 0
(H),, ©0 0 0
0 0 0 0
where
(ﬁl)Sl = eg<1//3(0) ‘2‘ V/1(0)> =—3esa, = -k,
or
E, =3esga, (>0)
Note that

18



1(0>> <

0)
2.0
= j j j rcosOR,, (r) [Y2(8,0)] Ry (r)Y2 (6, p)r sin Odrd 6d o

=-3aq,

(v,

Matrix elements of <n,l ".m'

, > is given by

2,1,1) {2,1,0) |2,1,-1) |2,0,0)
(2,1, 0 0 0 0
(2,1, 0 0 0 ~E,
(2,,-1 0 0 0 0
(2,0, 0 —E, 0 0

where

(2

The reduced matrix:

> —3eca, =—-E,

,0)
0  -E
_E, 0

(21,
(2,0,

We find that

i) =-E ")

Aly,”)=0

H, Wz

)=
)=
v} =-
vi")=0
\%(0’> and \m((”} are the eigenstates of £, with the energy 0.

19



We now consider the matrix of 1':11 in terms of the basis “//1(0)> and ‘1//3(0)>

ﬁllr :( ° _on
-E, 0
|¢1>:U‘W1(0)> and |¢’3>:U‘W3(0)>

with

U21 U22

1 1
U—(UH UlzJ_ ﬁ ﬁ
a 1

22

For A =-Ey (the lowest level)

U
0) 11
[// =
> (UIZJ

For A = E|), (the highest level)

|¢’1>

S5l

o) 5

U22

|9)=

V2

The degenerate level of n = 2 splits into the three levels:

(1) The ground state: E = E,*’ — E,

)= (\ AN
(1))  The first excited state with Ez(o) (double-degeneracy)

) and |,)

(iii)  The second excited state with £, +E,

20



|03) = (\ ) =)

3>
EY +Ey
E(O) |l//(0)>,|l//(0)>
2 2 4 E§0)
EV—E,
1>
Fig.  Energy splitting (Stark effect withn=2).  E  =3eeq,.
8 Charge density distribution for the Stark effect with n =2

The charge density distribution for the |¢71> ,

),

@Y and @) s evaluated
Y,

from the CountourPlot (Mathematica) of

K”|(01>2, K |¢’3 < ‘l//z

where y = 0, in the x-z plane.

b

0
, and ‘ ‘1/14( )

21



10}

_10>A L L L L 1 L L L L 1 L L L L 1 L L L L 1
-10 -5 0 5 10

ContourPlot of Kr|(o1>‘2 with y =0, in the x-z plane. When the electric field is applied

along the z axis, the average position of electrons shifts to the (-z) direction. The energy
eigenvalue is E=E," — E,.

22



10}

_10>A L L L L 1 L L L L 1 L L L L 1 L L L L AA
-10 -5 0 5 10

ContourPlot of Kr|go3>‘2 with y =0, in the x-z plane. When the electric field is applied

along the z axis, the average position of electrons shifts to the z direction. The energy
eigenvalue is E = E,"" + E, .

23



10}

-10r, ‘ ‘ ‘ ‘
-10 -5 0 5 10

)

is applied along the z axis, the average position of electrons remains unshifted in the

2

ContourPlot of |(r|y,"” with y =0, in the x-z plane. When the electric field
2

direction to the z axis. The energy eigenvalue is E = Ez(o) .

Two of the four degenerate states for n = 2 (‘1//2(0)> and ‘1//4(0)>) are unaffected by the

electric field to the first order, and the other two linear combinations
o) =%(\ ")+ ") E= B -E)),

and
o=y = BV ey

This means that the hydrogen atom in this unperturbed state behaves as though it has a
permanent electric-dipole moment of magnitude 3eao, which can be oriented in three
different ways; one state parallel to the external electric field, one state anti-parallel to the
field, two states with zero component along the field (Schiff).

((Mathematica)) The eigenvalue problem for n =2 is solved using the Mathematica.
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Calculation of matrix element for the Stark effect with n =1

R[n ,7 , ] :=

1
V(n+7)!
-3 L
(21+/ a0 "2 @8 n "2V (n-/-1)1
2 r
LaguerreL[—1+n—/, 1+27, — )
a0 n

Y[/, m , & , & ] :=SphericalHarmonicY[/, m, &, &#];
y[n , 7/ , m ,r ,6 ,¢ ] :=R[n, 7, r] Y[/, m, &, #];
flni ,71 ,mi ,n2 ,/72 m2 ,r ,6 ,¢]-=
(-1)™ ¢[nl, 41, -ml, r, 6, ¢] rCos[6] ¥[n2, /2, m2, r, 6, ¢]
r? 8in[6] // Simplify;

Simplify]|
Integrate]
Integrate[Integrate[f[2, 1, 0, 2, 0, O, r, 6, ¢],
{¢$, 0, 2m}], {6, 0, ®}], {r, O, ©}], a0 > 0]

-3 a0

25



EO0 = 3 e a0 &; Eigenvalue problem for the simplified system

H22 = {{0, -EO}, {-EO, O0}}
{{OI _EO}I {_EOI O}}

eql = Eigensystem[H22]

{{_EOI EO}I {{ll l}l {_lr l}}}

Y1l = Normalize[eql[[2, 1]]]
1 1

= =]

Y2 = -Normalize[eql[[2, 2]]]
1 1

{\/?’_\/?}

UT = {¥1, ¥2}
1 1 1 1

= =& =)

U = Transpose [UT]

1 1 1
= =& =)
{{1, 0}, {0, 1}}
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9 n = 3 Stark effect
We consider the case of n = 3.

n =3 state (9 states degenerate):

[=2(m==2,%1,0): d-state (5 states)
[=1(m==l,0): p-state 3 states)
[=0(m=0): s-state (1 state)
Note that
R
(0)
E3 = —?

is the eigenvalue of ﬁlo .

Matrix elements of Hi:

3,11)

9
—Eeé'ao

322) [321)  [3.20)  [3.2-1) [32.-2)

(3,2,2 0 0 0 0 0 0
(321 0 0 0 0 0

(32,0 0 0 0 0 0 0
(32-1 0 0 0 0 0 0
(322 0 0 0 0 0 0
(3,1 0 —%e&% 0 0 0 0
310 0 0 -3V3eam, 0 0 0
BL-1 0 0 0 —26&% 0 0
(3,0,0 0 0 0 0 0 0
where

A A

(1;1H;1u>=—%ea%4110fa3Jp>=—3ﬁka%411—1

(3,1,0/2[3,0,0) = ~3/6eeu, .

Note that

27

Z

3,1,0)
0

0

- 3\/§e8a0
0
0

3,1,-1)
0

0

3,1,—1> = —%egao ,

3,0,0)
0
0
0
0
0

0

- 3\/gega0
0
0



112> ’_>=0

b >=0’

Thus , > ,2,— > are eigenstates of H; with the zero energy. So we consider the
a>a 5>7 aa_>7 5>7 5>7 aa_>7 a>}
s > s > e > 5Ly > s > 3717_1> bl >
(32, 0 0 -—ea, 0 0 0
(3.2, 0 0 0 0 ~3+3eza, 0 0
(32,1 0 0 0 0 0 —eea, 0
9
(3,11 ~ ety 0 0 0 0 0 0
(3.1, 0 -3ea, 0 0 0 0 -3J6ea,
(3,1,-1| 0 0 —%egao 0 0 0 0
(3,0, 0 0 0 0 ~3J6eeu, 0 0
This matrix consists of three submnatrices.
(1)
(3,2, 0 ~3\3esu, 0
< 1, —3\/§ega0 0 —3\/gega0
(3,0, 0 ~3v6ezu, 0
or
0 —3/3ezq, 0
M, = —3\/§eea0 0 —3\/gega0
0 ~3v6eza, 0

Eigensystem[M:] (Mathematica is used for the calculation)
> 3

E1=9ecgay = 3Ey

10)+

0)]

|‘/’1> \/—
|‘//2>:$

Er= 0,

,>]
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E3 = -9ecap = -3E) |l//3> =L[L

3 42

3,1,0)+

3,0,0)]

3,2,0) +\E
2

(i)

32,-1)  |3L-1)
<3,2,—1| 0 - % ega,

<3,l,—1| —%egao 0

0 ——eaa,
M, = 2

3 eea, 0

Eigensystem[M;] (Mathematica is used for the calculation)

9 3 1

E4=Eesao= —Eo |!//4>=$[
9 3 1

Es=-= esar=-_ Eo lws) = ﬁ[[ 32,-1)+

32,-1)—

3,1,-1)]

3,1,-1)]]
(iii)

3,2,1)

3,L1)
(32,1

0 ——e&a
2 0

(3,1

22 eea, 0
2

0 ——ee&q,
M, = 2

3 eea, 0

Eigensystem[M;3] (Mathematica is used for the calculation)

E4 = gesao = éEo
2 2

3.2,1) -

v =520 -[301)

Es = -gesao = -EEO
2 2

32,1+

|w7>=%[[ 3.L1]]
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st EV43.0E,
Waz, We> g0, 5k,
EY [ 0
B.2.2>, 322> 3
s ESV-1.5E,
[fr3 > EY"-3.0E

Fig.  Energy splitting (Stark effect withn =3).  E, =3eeq,.

10 Charge density distribution for the Stark effect with n =3

First we show the cross section of the probability density of n =3 and / = 1 in the absence
of electric field.

State

3,1,0)
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State

3,1,1)
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Next we show the cross section of the probability density of » = 3 and / = 1 in the
presence of an electric field.
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10t ]
20
~20 ~10 0 10 20

ContourPlot of Kr|t//1 >‘2 with y =0, in the x-z plane. The energy eigenvalue is E\” +3E,.
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-20 -10 0 10 20

ContourPlot of Kr| !//3>‘2 with y =0, in the x-z plane. The energy eigenvalue is E\” —3E,.
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ContourPlot of Kr| v, >‘2 with y =0, in the x-z plane.
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10 20

The energy eigenvalue is E\” —3E,.



20

10

-10

20 S e
-20 -10 0 10 20

ContourPlot of Kr| !//7>‘2 and Kr| !//5>‘2 with y =0, in the x-z plane. The energy eigenvalue
is £V —1.5E,.

36



20

10

-10

20 S e
-20 -10 0 10 20

ContourPlot of Kr| !//6>‘2 and Kr| !//4>‘2 with y =0, in the x-z plane. The energy eigenvalue
is E” +1.5E,.
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-10

-20t . . . -
-20 -10 0 10 20

ContourPlot of Kr 3,2,2>‘2 and Kr 3,2,—2)‘2 with y =0, in the x-z plane. The energy

eigenvalue is E(”.
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APPENDIX-I

The wavefunction of hydrogen atom:
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Vi (1.0, 0) = (1 |n,1,m)

(m=1-D!_ 1 13n r 2 gt 2 om
—F—2"a exp(———)n~ 'L —)Y" (0,
(n+1)! 0 p( naO) nflfl(nao) (0, 9)

The matrix element:
(n',0,m'(2[n,1,m) = [[[r* sin Gdrd 04diQy ., (r,0,$)r cos Oy, (1,0, 6)

Calculation of matrix elements for n = 3

R[n , /7 , ] :=

1 3 __r 2 r
— 2" a07"% e W1 n2 A (n-7-1)1 LaguerreL[—1+n—/, 1+27, —]]
V(n+7)! a0 n

Y[/ , m , & , ¢ ] := SphericalHarmonicY[/, m, &, #];
Yo,/ ,m ,r ,6,¢]:=R[n, 7, r] Y[/, m, &, &]

f[nl1 , /71 ,ml ,n2 ,72 ,m2 ,r ,6 ,¢]-=
(—1)ml Y[nl, /1, -ml, r, 6, ¢] rCos[O] ¥ [n2, /2, m2, r, 6, ¢] r? Sin[6] // Simplify;
g[nl , 71 ,ml ,n2 ,/72 , m2] :=
Integrate[Integrate[Integrate[f[ni, /1, m1, n2, /2, m2, r, 6, ¢]1, {¢, 0, 2xm}], {6, 0, 7}],
{r, 0, ©}] // Simplify;

Matrix element calculation

a = Simplify[g[3, 2,1, 3,1, 1], a0 >0]; B = Simplify[g[3, 2, 0, 3, 1, 0], a0 > 0];
Y = Simplify[g[3, 2, -1, 3, 1, -1], a0 > 0] ;
6 = Simplify[g[3, 1, 0, 3, 0, 0], a0 > 0];

M1 = {{0, B, 0}, {B, 0, 6}, {0, 6, 0}}

{{o, -3+/3 a0, 0}, {-3V3 a0, 0, -3V6 a0}, {0, -36 a0, 0}}

eql = Eigensystem[M1]
) ) 1 E E E
{t0, -9a0, 920}, {{-V2, 0, 1}, (s W ig 7 4l

M2 = {{0, a}, {a, O}}

{{o. =222}, {-222, o}

eq2 = Eigensystem[M2] // Simplify
9a0 9a0
A lr 1 ’ ’lr 1

{1 > > | ERE b A b1}

M3 = {{0, a}, {a, 0}}

{{o, -222), {222, o}

Eigensystem [M3]

9a0 9a0
{{—7, 7}, {{1, 13, {-1, 1}}}
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APPENDIX-II Polarizability
F=eE [dyne = erg/cm],
p=aE =er.

Then we get

2 2
a="="" =TT o ep’].
E eE “erg/cm

We have two spheres, each of radius a, one of which has volume charge density +p and
the other of which has density -p. The vector from the center of the positive sphere to the
center of the negative sphere is d. The two spheres have a region of overlap and we want
the electric field within this region.

We see that the electric field inside a uniformly positively charged sphere is (restoring the
vector notation)

dr Am’p B 47zpr

E = 5
4 3 3

r

b

or
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where r is the vector from the center of the sphere to the point in question. Now suppose
that s is the vector from the center of the negative sphere to the same point. Because the
charge is negative, we get

E, :—4L'Os
3

So the total electric field is, using the superposition

E:EV+ES:4%p(r—s):4%pd

For the system (sphere, radius a) with the total charge ¢, the charge density p is obtained
as

_ 47R?
3 P

q

Then we have

bt 0t
3 47 R R

or
p=RE=aFE

The polarizability is given by
a=R.

For the hydrogen, if we take R =a, =0.52917721092 A, we get
a=ap’=1.48185 x 107 cm’.

Another method to calculate the value « is shown as follows. Here we use the formula

2

a
<r2> = n[5n +1-31(1 +1)].
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Forn=1,Z=1, and [ = 0, the radius R can be evaluated as

Rz\/@:ﬁaﬁe

for a = as. Then « 1is calculated as
a =R’ =3y3a, =5.19a,’

Experimentally, ¢ for hydrogen is = 6.67 x 10%° cm® = 4.50 ag’.

APPENDIX-III Selection rule

((Spherical tensor of rank 1))

TO =3, T =—%()Ac+if/), T =%(£—ij})
((Wigner-Eckart theorem)) selection rule
(om0 ,m) =0
unless
m'=m+gq,
Jl=Jtk, jrk=1, |-k (D, =D,xD, =D, +D, +..+D, )
((Parity))
ZLm) = (=1 |1, m)
and
AXT=—-X, AYAT=-y, AZT=-Z (odd parity)
((Example))

Using the Wigner-Eckart theorem and the property of the parity operator, we have
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(1m|2|1,m) = (1", m"|T" |1, m) = 0

for Am=m'=m=0, Al=1'-] =+
(I'm| 3+ | l,m) =2 (I',m'| 1" 1,m) £ 0

for Am=m'-m=1, Al=1'-1 =+
(I m| 2= |1, m)=2(1,m'| T |1,m) =0

for Am=m'-m=-1, Al=['-1=+1
APPENDIX-IV Selection rule for polarizaed light waves

(a) Linearly polarized light wave

V.=—pE
=—qE,coswt(r-e.)
=—qE,zZcoswt
=—qE, Re[ze'™ ]

The transition matrix element;

<l',m' I}z

l,m)=—gE, Re[(l',m'|

l, m> e[a}t ]
This element is not zero when
Al =+1, and Am =0

(b) Right-hand and left-hand polarized light wave

A

V.y="pE
=—qE,[coswt(r-e ) Fsinwt(r-e,)
=—qE,(Xcos ot F ysin wt)
— —gE, Re[(R £ iP)e]

The transition matrix element;

<l',m'

Vs

l,m> =—qE, Re[<l',m'|xiriy

l, m> e
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This element is not zero when
Al =+1, and Am ==1

Note that the transition of Am =0.
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