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Willis Eugene Lamb, Jr. (July 12, 1913 – May 15, 2008) was an American physicist who won 
the Nobel Prize in Physics in 1955 together with Polykarp Kusch "for his discoveries concerning 
the fine structure of the hydrogen spectrum". Lamb and Kusch were able to precisely determine 
certain electromagnetic properties of the electron (see Lamb shift). Lamb was a professor at the 
University of Arizona College of Optical Sciences. 
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Fig. From the note on quantum mechanics (E. Fermi). p.117. 

E. Fermi, Note on Quantum Mechanics (The University of Chicago, 1961). 
 
The corrections to the Bohr energy are called the fine structure. They are all relativistic in nature. 
The energy of the electron in hydrogen can be expressed in terms of the fine structure constant, 
with the use of the perturbation theory. 
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To the order of 5 : 
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the expression of the frequency for the Lamb shift (the non-relativistic case) (for n = 2), can be 
expressed as 
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___________________________________________________________________________ 
1. Bohr model 

According to the Bohr model, the electron energy of the hydrogen atom is given by 
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E0 =13.60569253 eV  

 

and the fine structure constant  is 
 

036.137

12


c

e


  =7.2973525698 x 10-3 

 
The Bohr radius is given by 
 

2

2

em
a

e
B


 = 0.5291772109217 Å 

 
2. Hydrogen fine structure 

The Schrödinger solution gives a very good description of the hydrogen atom. The motion of 
electrons is treated as a non-relativistic particle. In reality it is not. There are corrections to these 
values of the energy. From the Dirac’s relativistic electron theory, the approximation of the 
Hamiltonian can be derived as follows.  
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where e>0.  
 
(i) Third term: relativistic correction 
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(ii) The fourth term (Thomas correction): spin-orbit interaction 
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where  is the scalar potential, -e is the charge of electron (e>0 here). 
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where L is an orbital angular momentum. Then the Thomas term is rewritten as 
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(Spin-orbit interaction) 

 
The spin angular momentum is defined by 
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which is an automatic consequence of the Dirac theory. 
 
(iii) The last term is called the Darwin term. 

The Darwin term changes the effective potential at the nucleus. It can be interpreted as a 
smearing out of the electrostatic interaction between the electron and nucleus due to 
zitterbewegung, or rapid quantum oscillation, of the electron. Sir Charles Galton Darwin (18 
December 1887 – 31 December 1962) was an English physicist, the grandson of Charles Darwin. 
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For a hydrogen atom, 
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It gives rise to an energy shift (the diagonal matrix element) 
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which is non-vanishing only for the s state. 
 
______________________________________________________________________________ 

3. Relativistic correction 
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According to special relativity, the kinetic energy of an electron of mass m and velocity v is: 
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The first term is the standard non-relativistic expression for kinetic energy. The second term is the 

lowest-order relativistic correction to this energy. We apply the perturbation theory for this system. 
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we calculate the matrix element 
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Then we have the first order correction to the energy eigenvalue 
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Then we find that  

 



8 
 

 

)
4

3

2

1
1

(
1

)3
2/1

4
(

2

)3
2/1

4
(

8

)
4

3

2/1

1
(

2

]
4

3

)2/1(

1
[

2

1

ˆ

)0(2

2

2)0(

4

42

3

42

43
42

)1(

nln
E

l

n

cm

E

l

n

n

cm

nln

cm

nln
cm

nlmHnlmE

n

e

n

e

e

e

relrel




































 

 

where 

 

 
4

4
422)0(

4

1

n
cmE en


 .  

2

2
2)0(

2

1

n
cmE en




 
 

((Calculation of )0(
relE )) Hydrogen 
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1s (l = 0) -7.30456 cm-1  

________________________________________ 

2s (l = 0) -1.18699 cm-1 

2p (l = 1) -0.21305 cm-1 

________________________________________ 

3s (l = 0) -0.378755 cm-1 

3p (l = 1) -0.0901798 cm-1 

3d (l = 2) -0.0324647 

________________________________________ 

4s (l = 0) -0,165494 cm-1 

4p (l = 1) -0.0437513 cm-1 

4d (l = 2) -0.094027 cm-1 

4f (l = 3) -0.00896766 cm-1 
_____________________________________________________________________________ 
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4. Spin-orbit coupling (see the detail for the section of spin-orbit interaction) 
We introduce a new Hamiltonian given by 
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The total angular momentum J is the addition of the orbital angular momentum and the spin angular 
momentum, 
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The spin-orbit interaction is defined by 
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Thus we conclude that   is the simultaneous eigenket of the mutually commuting 
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Note that the expression of the state can be formulated using the Clebsch-Gordan coefficient 
(which will be discussed later). The value of j is related to l and s (=1/2) as 
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When the spin orbit interaction is the perturbation Hamiltonian, we can apply the degenerate theory 
for the perturbation theory. 
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4. Darwin term 

The additional perturbation of the Darwin term is given by 
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The potential energy is given by the Coulomb energy 
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We note that only l = 0 states are nonzero of the wave function at the origin. This implies that the 

Darwin term contributes only for the s states.  
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((Mathematica)) Proof 

The proof of the formula by using the Mathematica. 
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In the following mathematica, we use the unit of ħ = 1. 
 

 
 

5. Summary 
The sum of the relativistic correction, the spin coupling for
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Clear"Global`";

SetCoordinatesCartesianx, y, z;

ux  1, 0, 0; uy  0, 1, 0; uz  0, 0, 1;

Px :   ux.Grad &  Simplify;

Py :   uy.Grad &  Simplify;

Pz :  uz.Grad &  Simplify;

f1  PxPxVx, y, z  x, y, z  PxVx, y, z Px x, y, z 
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PyVx, y, z Pyx, y, z  Vx, y, z PyPyx, y, z 
PzVx, y, z Pzx, y, z  Vx, y, z PzPzx, y, z 

FullSimplify

x, y, z V0,0,2x, y, z  V0,2,0x, y, z  V2,0,0x, y, z
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This result is intriguing in the sense that although both the spin-orbit interaction and the relativistic 
corrections individually remove the l-degeneracy in the hydrogen levels, when they are combined 
the total shift depends only on the quantum number j. 
 

For l = 0, the spin-orbit contribution is zero and instead of it, Darwin term is added to
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6. Numerical calculation 

(a) n = 2 

l = 1,  ml= 1, 0, -1 

s= 1/2  ms = 1/2, -1/2 

 

We note that 

 

2/12/32/11 DDDD 
 

 

Then we have 

 

j = 3/2 (m = 3/2, 1/2, -1/2, -3/2),  22P3/2 

 

j = 1/2 (m = 1/2, -1/2),    22P1/2 

 

(b) n = 2 

l = 0,  ml= 0 

s= 1/2  ms = 1/2, -1/2 
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We note that 

 

2/12/10 DDD 
 

 

Then we have 

 

j = 1/2 (m = 1/2, -1/2),    22S1/2 

 

We apply the above formula to the n = 2 levels of hydrogen. 
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When the Darwin term for l = 0 is taken into account, 
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The energy levels for the n = 2 (one electron) are as follows. 
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Fig. Hydrogen fine structure in the n = 2 level.  

 

____________________________________________________________________________ 
7. Exact solution from Dirac relativistic theory 

The exact fine-structure formula for hydrogen (obtained from the Dirac equation without 
recourse to the perturbation theory) is 
 

}1])

)
2

1
()2(

(1{[),( 2/12

22

2 


 





jjn

cmjnE e . 

 
Note that the energy depends only on n and j. 
 

H so+H rel
H0 HDarwin

n=2

-11.320meV 22 P32

-56.603meV 22 P12

-147.17 meV

22S12

D1=45.283 meV

D2=90.565 meV

-3.4014 eV
0 meV
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Fig. Energy levels of the hydrogen atom according to the Dirac theory showing the 

component transition of H line. Note that each energy level depends only on the 
quantum numbers n and j. 
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Fig. Fine structure of n = 2 levels of hydrogen atom according to the Dirac theory. The dotted 
line indicates the position of the n = 2 level according to the Bohr theory. 

 
((Series expansion)) 
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((Numerical values)) 
 

n j  E(n,j) [eV] 
 
1 1/2  -181.135 
________________________________________________________ 
2 1/2  -56.6048 
2 3/2  -11.3207 
________________________________________________________ 
3 1/2  -20.1261 
3 3/2  -6.70853 
3 5/2  -2.23616 
________________________________________________________ 
4 1/2  -9.19826 
4 3/2  -3.53779 
4 5/2  -1.65099 
4 7/2  -0.707533 
________________________________________________________ 
5 1/2  -4.92689 
5 3/2  -2.02867 
5 5/2  -1.06263 
5 7/2  -0.579613 
5 9/2  -0.289824 
__________________________________________________________ 

 
((Mathematica)) 
 



22 
 

 
 
8. The Lamb Shift  

The Lamb shift, named after Willis Lamb (1913–2008), is a small difference in energy 

between two energy levels 2/1
2S and 2/1

2P  (in term symbol notation) of the hydrogen atom in 

quantum electrodynamics (QED). According to Dirac, the 2/1
2S  and 2/1

2P  orbitals should have the 

same energies. However, the interaction between the electron and the vacuum causes a tiny energy 

shift on 2/1
2S . Lamb and Robert Retherford measured this shift in 1947, and this measurement 

provided the stimulus for renormalization theory to handle the divergences. It was the harbinger 
of modern quantum electrodynamics developed by Julian Schwinger, Richard Feynman, and Shin-
ichiro Tomonaga. Lamb won the Nobel Prize in Physics in 1955 for his discoveries related to the 
Lamb shift. 
 
Theoretical and experimental values of the Lamb shift in MHz. 
 

Theoretical 1057.70 ± 0.15 MHz 
Experimental 1057.77 ± 0.10 MHz 

 

E1n_, j_ : me c2 1 


n  j  12  j  1

2
2

 2

2 12

 1 ;

SeriesE1n, j, , 0, 6  Simplify, j  0 &


c2 me 2

2 n2


c2 me 3  6 j  8 n 4

8 1  2 j n4


c2 me 5 1  2 j2 3  6 j  8 n  32 1  2 j2 n  24 n2 3  6 j  2 n 6

48 1  2 j3 n6
 O7
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4.372 eV 
1057.14 MHz 
0.0352626 cm-1 

 
((Experiment)) Zeeman effect 
 
Landé g-factor: 
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For 2 2P3/2 
 

BgmEmE B11
)0(

111 )(    

 
where 
 

)0(
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For 2 2S1/2 
 

BgmEmE B22
)0(
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22S12

22 P12

4.372meV
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where 
 

)0(
2E = -56.603 eV 

22 g , 
2

1
,

2

1
2 m  

 
For 2 2P1/2 
 

BgmEmE B33
)0(

333 )(   

 
where 
 

)0(
3E = -56.603 - 4.372 eV 
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3 m  

 

 
 

Fig.  The Zeeman effect. The energy levels of 2/3
2P  (blue), 2/1

2S  (red) and 2/1
2P  (green). The 

Lamb shift is taken into account.  
 
((Experimental results)) 
W. Lamb, Novel lecture (1955). 
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Fig. 
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APPENDIX-A 

Relativistic correction for Na (Z = 11) 

According to special relativity, the kinetic energy of an electron of mass m and velocity v is: 

 

23

42

82 cmm
K

ee

pp


. 

 

The first term is the standard non-relativistic expression for kinetic energy. The second term is the 

lowest-order relativistic correction to this energy. We apply the perturbation theory for this system. 
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Noting that 
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we calculate the matrix element 
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Then we have the first order correction to the energy eigenvalue 
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Here we use 
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We calculate the wavelength of emitted light between the states of n = 3, l = 1 and n = 3, l = 0 for 
Na (Z = 11); 
 





)0,3()1,3( relrel EE

hc 23668.5 Å = 4 x 5890 Å. 
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APPENDIX-B 
B-1 Lamb’s report 

The Lamb Shift and the Magnetic Moment of the Electron 
(S.S. Schweber, QED and the men who made it: Dyson, Feynman , Schwinger, and 
Tomonaga, Chapter 5, p.206). 

 
Molecular hydrogen is thermally dissociation in a tungsten oven, and a jet of atoms emerges 

from a slit to be cross-bombarded by an electron stream. About one part in a hundred million of 

the atoms is thereby excited to the metastable 2/1
22 S  state. The metastable atoms (with small recoil 

deflection) move on out of the bombardment region and are detected by the process of electron 
ejection from a metal target. The electron current is measured with an FP-54 electrometer tube and 
a sensitive galvanometer. If the beam of metastable atoms is subjected to any perturbing fields 

which may cause a transition to any of the P22  states, the atom will decay while moving through 
a very small distance. As a result, the beam current will decrease, since the detector does not 
respond to atoms in the ground state. Transitions may be induced by radiofrequency radiation for 

which h  corresponds to the energy difference between one of the Zeeman components of 2/1
22 S  

and any component of either 2/1
22 P  or 2/3

22 P . Such measurements provide a precise method for 

the location of 2/1
22 S  state relative to the P states, as well as the distance between the later states.  

We have observed an electrometer current of the order of 10-14 A which must be ascribed to 
metastable hydrogen atoms. We have also observed the decrease in the beam of metastable atoms 
caused by microwaves in the wave length range 2.4 to 18.5 cm in various magnetic fields. The 
results indicate clearly that, contrary to theory but in essential agreement with Pasternack’s 

hypothesis, the 2/1
22 S  state is higher than 2/1

22 P  by about 1000 MHz (0.033 cm-1). 

[October 1946 to March 1948]. 
 
_____________________________________________________________________________ 
B-2 Beth’s calculation 
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(S.S. Schweber, QED and the men who made it: Dyson, Feynman , Schwinger, and 
Tomonaga, Chapter 5, p.231). 

 
The actual calculation of the nonrelativistic Lamb shift was made on a train ride from New 

York to Schenectady. Bethe had stayed in New York after the Shelter Island Conference to visit 
his mother, and had gone on to Schenectady to consult for General Electric. The calculation is 
straightforward (Beth 1947). The self-energy of an electron in a quantum state m, due to its 
interaction with the radiation field, is 
 

avemn EE
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
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3

8
3

432
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where Ry is the Rydberg energy 22

2

1
mc , 

c

e



2

 . This is the expression that Bethe had obtained 

on his arrival at Schenectady. He was not quite confident of its accuracy, because he was not quite 

sure of the correctness of a factor of 2  in his expansion of the radiation operators in terms of 
creation and annihilation operators. This he checked on Monday morning in Heitler’s book. He 

also got Miss Steward and Dr. Stehn from GE to evaluate numerically avemn EE   for the 2s 

state. It was found to be 17.8 Ry, “an amazingly high value. Inserting this into the above equation 

Bethe found sW2 = 1040 MHz, “in excellent agreement with the observed value of 1000 MHz” 

(Bethe, 1947). 
 
((Note)) 
The expression of the frequency for the Lamb shift (the non-relativistic case) (for n = 2), can be 
expressed as 
 

)
9.8

1
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12 22

35
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c

cme


 = 1038.27 MHz. 

 
http://quantummechanics.ucsd.edu/ph130a/130_notes/node476.html 
 
((Mathematica)) 
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______________________________________________________________________________ 
B-3 Feynman’s Nobel Lecture: 

R.P. Feynman, Nobel Lecture, December 11, 1965 
The development of the space-time view of quantum electrodynamics. 

Then Lamb did his experiment, measuring the separation of the 2/1
22 S  and 2/1

22 P levels of 

hydrogen, finding it to be about 1000 megacycles of frequency difference. Professor Bethe, with 
whom I was then associated at Cornell, is a man who has this characteristic: If there’s a good 
experimental number you’ve got to figure it out from theory. So, he forced the quantum 
electrodynamics of the day to give him an answer to the separation of these two levels. He pointed 
out that the self-energy of an electron itself is infinite, so that the calculated energy of a bound 
electron should also come out infinite. But, when you calculated the separation of the two energy 
levels in terms of the corrected mass instead of the old mass, it would turn out, he thought, that the 
theory would give convergent finite answers. He made an estimate of the splitting that way and 
found out that it was still divergent, but he guessed that was probably due to the fact that he used 
an un-relativistic theory of the matter. Assuming it would be convergent if relativistically treated, 
he estimated he would get about a thousand megacycles for the Lamb-shift, and thus, made the 
most important discovery in the history of the theory of quantum electrodynamics. He worked this 
out on the train from Ithaca, New York to Schenectady and telephoned me excitedly from 
Schenectady. 
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Fig.  Fine and hyperfine structure of the hydrogen atom. Abbreviations: g = mc2α4 =1.45 x 10−3 

eV, A = 1,420 MHz. The finite size of the nucleus is not taken into account. Scales are not 
preserved. [J. Pade, Quantum Mechanics for Pedestrians 2: Applications and Extensions 
(Springer, 2014)]. The lamb shift is 1057 MHz. 

 
 


