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Willis Eugene Lamb, Jr. (July 12, 1913 — May 15, 2008) was an American physicist who won
the Nobel Prize in Physics in 1955 together with Polykarp Kusch "for his discoveries concerning
the fine structure of the hydrogen spectrum". Lamb and Kusch were able to precisely determine
certain electromagnetic properties of the electron (see Lamb shift). Lamb was a professor at the
University of Arizona College of Optical Sciences.

http://en.wikipedia.org/wiki/Willis_Lamb




Fig.  From the note on quantum mechanics (E. Fermi). p.117.
E. Fermi, Note on Quantum Mechanics (The University of Chicago, 1961).

The corrections to the Bohr energy are called the fine structure. They are all relativistic in nature.
The energy of the electron in hydrogen can be expressed in terms of the fine structure constant,

with the use of the perturbation theory.
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the expression of the frequency for the Lamb shift (the non-relativistic case) (for n = 2), can be
expressed as
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V= -— In( >)=1038.27 MHz = 1057 MHz (experimental value).
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1. Bohr model
According to the Bohr model, the electron energy of the hydrogen atom is given by
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and the fine structure constant ¢ is
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The Bohr radius is given by
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2. Hydrogen fine structure

The Schrodinger solution gives a very good description of the hydrogen atom. The motion of
electrons is treated as a non-relativistic particle. In reality it is not. There are corrections to these
values of the energy. From the Dirac’s relativistic electron theory, the approximation of the
Hamiltonian can be derived as follows.
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(i) The fourth term (Thomas correction): spin-orbit interaction

Thomas term = 50 (Exp).
e
For a central potential
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where ¢ is the scalar potential, -e is the charge of electron (e>0 here).
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where L is an orbital angular momentum. Then the Thomas term is rewritten as
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(Spin-orbit interaction)

The spin angular momentum is defined by

S=—0,

which is an automatic consequence of the Dirac theory.

(i) The last term is called the Darwin term.
The Darwin term changes the effective potential at the nucleus. It can be interpreted as a

smearing out of the electrostatic interaction between the electron and nucleus due to
zitterbewegung, or rapid quantum oscillation, of the electron. Sir Charles Galton Darwin (18
December 1887 — 31 December 1962) was an English physicist, the grandson of Charles Darwin.
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It gives rise to an energy shift (the diagonal matrix element)
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which is non-vanishing only for the s state.

3. Relativistic correction



According to special relativity, the kinetic energy of an electron of mass m and velocity v is:
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The first term is the standard non-relativistic expression for kinetic energy. The second term is the

lowest-order relativistic correction to this energy. We apply the perturbation theory for this system.
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Then we have the first order correction to the energy eigenvalue
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Then we find that

(fine structure constant).
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((Calculation of £,,”)) Hydrogen
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Erel(l)
Is(I=0)  -7.30456 cm’!
25 (1=0) -1.18699 cm™!
2p(I=1) -0.21305 cm™
3s(=0)  -0.378755 cm-1
3p(=1) -0.0901798 cm-1
3d(1=2)  -0.0324647
45(1=0)  -0,165494 cm’!
dp(I=1)  -0.0437513 cm’!
4d (I=2) -0.094027 cm™
4t (1=3) -0.00896766 cm’!




4. Spin-orbit coupling (see the detail for the section of spin-orbit interaction)
We introduce a new Hamiltonian given by

Iy A

H=H,+H_,

The total angular momentum J is the addition of the orbital angular momentum and the spin angular
momentum,

J=L+S§,

The spin-orbit interaction is defined by
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The unperturbed Hamiltonian 1:10 commutes with all the components of L and S.
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Then we have



or

[J2,J.1=[*+8*+2L-S,[_+8S.]
=2(L-8,L.+5.1=0
=-2[L,,L1S, +2[L,,L.1S, —2L [S..5,1+2L [S,.S.]
=-2ihL S, +2ihL S, —2iAL.S, +2ihL S,

=0
Thus we conclude that |l//> is the simultaneous eigenket of the mutually commuting

observables{ H,, >, §*, J*,and J_}.
Hly)=E"w)
Lly)=r1(1+1)|y)
$?|w)=n’s(s+D|y)
Plw)=1"j(j+Dly)

jz l//> = hm|z//> .

The eigenket can be described by

j,m;l,s>

v)=

10



Note that the expression of the state can be formulated using the Clebsch-Gordan coefficient
(which will be discussed later). The value ofj is related to / and s (=1/2) as
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When the spin orbit interaction is the perturbation Hamiltonian, we can apply the degenerate theory
for the perturbation theory.
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Then we have
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Spin—orbit interaction
4. Darwin term

The additional perturbation of the Darwin term is given by
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The first-order energy shift due to the Darwin term is
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The potential energy is given by the Coulomb energy
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We note that only / = 0 states are nonzero of the wave function at the origin. This implies that the

Darwin term contributes only for the s states.
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((Mathematica)) Proof
The proof of the formula by using the Mathematica.
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In the following mathematica, we use the unit of 7 = 1.

Clear["Global ""];
SetCoordinates[Cartesian([x, Yy, z]];
ux={1, 0, 0};uy={0, 1, O};uz={0, 0, 1};

Px := (-1 ) ux.Grad[#] & // Simplify;

Py := (-1 ) uy.-Grad[#] & // Simplify;
Pz := (-1) uz.Grad[#] & // Simplify;

1 =PxX[PX[V[X, Y, Z]¥[X, Y, 2z]1]1] -PX[VIX, ¥, Z] PX [¥[X, Y, 2]]] +
PY[PY[VIX, Y, zZ1 ¥[X, Y, z]11]1 -PYy[VIX, Yy, Z] PY[¥[X, ¥y, z]1] +
Pz[Pz[V[X, Yy, z] ¥[X, Y, z]1]1] -Pz[V[X, Yy, z] PZ[¥[X, Y, z]]] -
(PX[VIX, Yy, z] PX[¥[X, Y, z]1]] - VX, Yy, 2] PX[PX[¥[X, Y, Z]]] +

PY[VIX, Yy, zZ]1 PY[¥[X, Yy, 2111 -VIX, Yy, z] PY[PY[¥[X, Yy, z]1] +
Pz[VIX, Yy, z] Pz[¥[X, Y, z]]] -VIX, Yy, z] Pz[Pz[¥[X, Yy, z]]1) //
FullSimplify

UIx,y.z] (VOO (x,y, z] + V@20 (x,y, 2] + V&2V x, y, 2])

5. Summary
The sum of the relativistic correction, the spin coupling for / # 0 is given by

O _ @ ©
En - Erel +Eso

_a_4m ( 1
2n® ¢

s 3
o G+D =+ -]
+—m,c’ 4
4n I0+1/2)1+1)
@

o 3
1 3 ](j+1)—l(l+1)—z
—m,c —[— +—+

2 n o 1+1/2 4n 200+ 1)(1+1/2)
1

—m

2

3,
[+1/2 4n

]

4 1 3
= —m e et ]
n o j+1/2 4n
:En(O)QZL(;_i)
n j+1/2 4n
where
1
=[+—
J=I=y

16



This result is intriguing in the sense that although both the spin-orbit interaction and the relativistic
corrections individually remove the /-degeneracy in the hydrogen levels, when they are combined
the total shift depends only on the quantum number ;.

For [ = 0, the spin-orbit contribution is zero and instead of it, Darwin term is added to En(l) ,

1 ,al 3 1 ,al
=—-—m —2-—)+=—m,c” —-
e n3 ( 4}’1) e 3
1 ,at 3
=——mc?——(1-—
o’ ( 4n)
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6. Numerical calculation
(a) n=>2
=1, m— 1,0, -1
s=1/2 ms=1/2,-1/2
We note that

D, x Dy, =D,, +D,,

Then we have

j=3/2(m=3/2,1/2,-1/2, -3/2), 22P3p

j=12m=1/2,-1/2), 2°Pip
b) n=2

1=0, m=0

s=1/2 ms=1/2,-1/2
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We note that

Dy, xD,,, =D,

Then we have

j=1/2(m=1/2,-1/2), 22811

We apply the above formula to the n = 2 levels of hydrogen.

31
E 22P (0) il g (0)
(2°R,),) = (4422)
EQP,)=a’E (0)( ll)— S LEO
e 44 27 16 °
31 13
E2’S,,)=a’E,"(->—+)=—a’E,"
(2°5,,,) = (44 )16 >

When the Darwin term for / = 0 is taken into account,

vy =22,

E(2’R,,)=a’E,"” —
( 1/2) ( 44 2 16

The energy levels for the n =2 (one electron) are as follows.

18



n=2 0 ueV
—3.4014 eV =11.3204cV 22P3/2

Aq(=45.283 peV)

X—56.603pe\/ 2P,
2’Sip

A (=90.565 ueV)

'—147 17 LG
H,
0 H S0 +H rel H Darwin

Fig. Hydrogen fine structure in the n =2 level.

7. Exact solution from Dirac relativistic theory
The exact fine-structure formula for hydrogen (obtained from the Dirac equation without

recourse to the perturbation theory) is

E(n, j)=m,c*{[1+( YT -1

(24
RTREIT T

Note that the energy depends only on n and ;.
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15,237 cm-1

2S1/2

Fig.  Energy levels of the hydrogen atom according to the Dirac theory showing the
component transition of H,, line. Note that each energy level depends only on the
quantum numbers 7 and ;.

0.091 ¢cm-1
T 2P3/2
0.365 cm~1
2S12 { 2P1/2
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Fig.  Fine structure of n = 2 levels of hydrogen atom according to the Dirac theory. The dotted
line indicates the position of the n = 2 level according to the Bohr theory.

((Series expansion))

AE(n, j) = E(n, j)~ E,"”

mc*at 1 3
=————( ——)+.
2 n j+1/2 4n
2
g L3,
e 4n
2
((Numerical values))
n J AE(n,j) [peV]
1 1/2 -181.135
2 1/2 -56.6048
2 3/2 -11.3207
3 1/2 -20.1261
3 372 -6.70853
3 5/2 -2.23616
4 1/2 -9.19826
4 3/2 -3.53779
4 5/2 -1.65099
4 7/2 -0.707533
5 1/2 -4.92689
5 372 -2.02867
5 5/2 -1.06263
5 7/2 -0.579613
5 9/2 -0.289824
((Mathematica))
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n-(j +1/2) +\/(j+—;)2—a2

Series[El[n, j], {a, O, 6}] // Simplify[#, j > 0] &
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2 7 S
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+
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8. The Lamb Shift
The Lamb shift, named after Willis Lamb (1913-2008), is a small difference in energy

between two energy levels *S,,, and *B,, (in term symbol notation) of the hydrogen atom in
quantum electrodynamics (QED). According to Dirac, the *S,,, and *P,, orbitals should have the

same energies. However, the interaction between the electron and the vacuum causes a tiny energy
shift on °S,,,. Lamb and Robert Retherford measured this shift in 1947, and this measurement

provided the stimulus for renormalization theory to handle the divergences. It was the harbinger
of modern quantum electrodynamics developed by Julian Schwinger, Richard Feynman, and Shin-
ichiro Tomonaga. Lamb won the Nobel Prize in Physics in 1955 for his discoveries related to the
Lamb shift.

Theoretical and experimental values of the Lamb shift in MHz.

Theoretical 1057.70 £ 0.15 MHz
Experimental 1057.77 £ 0.10 MHz
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4.372

) ueV

4372 ueV
1057.14 MHz
0.0352626 cm’!

((Experiment)) Zeeman effect
Land¢ g-factor:

3, s(s+D-1(+D)

2 2j(j+1)

For 2 ?Pip
_ (0
E(m)=E " +mgu,B
where

E"”=-11.320 peV

41 :g
For 2 %Sin

E,(m,)= Ez(O) +m,g, 1B
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where

E,"=-56.603 eV

g, =2, m, =

N | —

1
2 9
For 2 ?Pip
_ (0)
E,(my)=E;" + myg;u,B
where

E"=-56.603 - 4372 eV

2 1
&5 3’ 3 2’ 2
E(ueV)
/ e —— B(Gauss)
250 3000
~20.
_40/
_60%
_g0h

Fig. The Zeeman effect. The energy levels of *B,,, (blue), °S,,, (red) and *P,, (green). The

Lamb shift is taken into account.

((Experimental results))
W. Lamb, Novel lecture (1955).
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APPENDIX-A
Relativistic correction for Na (Z = 11)

According to special relativity, the kinetic energy of an electron of mass m and velocity v is:

2 4

_p p

3.2
2m, 8m,c

e

The first term is the standard non-relativistic expression for kinetic energy. The second term is the

lowest-order relativistic correction to this energy. We apply the perturbation theory for this system.

ﬁZ ~ Z€2 i’4

H=H,+H,= (2me ) 8m’c?
where
I:IO|nlm> = En(0)|nlm>
and
~ Pt Ze A p*
0_2me _|T, rel__gme—302
Noting that

2
ﬁz = 2me(H0 +Z_f)
r

we calculate the matrix element
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2 2
<nlm|j)4|nlm> = 4m22<nlm|(1:10 +Zé)(ﬂ0 +Zi)|nlm>

2 7

—a4m (£, ] + 2Ze2En(0)<l> + 7% <i2> ]

r r

Then we have the first order correction to the energy eigenvalue

<nlm|ﬁm, nlm) = ——— 5 (nlm|p*|nim)
m,’c
1 (0) 1)1 24/ 1
=———7[|\E +2Ze’E " (—) +Z7%€e(—
2meC2 [( ! )2 ! r av ]/‘2 av]
Here we use
(. -
=) ==
rl., nag
R
2 1
"l a n3a32(l+5)
and
1 Z'a’
©)
En - e ’ 2
n
where
h e’
a, = 5 (Bohr radius), oa=— (fine structure constant)
m,e hc

Then we find that
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(0)
Erel(l) = Erel (n’l) == (En )2 ( 4” 3

2me’ 1+1/2 )

We calculate the wavelength of emitted light between the states of n =3, /=1and n=3, /=0 for
Na (Z=11);

P hc
Erel (3’1) - Erel (3’0)

=23668.5 A =4 x5890 A.

APPENDIX-B

B-1 Lamb’s report
The Lamb Shift and the Magnetic Moment of the Electron
(S.S. Schweber, QED and the men who made it: Dyson, Feynman , Schwinger, and
Tomonaga, Chapter 5, p.206).

Molecular hydrogen is thermally dissociation in a tungsten oven, and a jet of atoms emerges
from a slit to be cross-bombarded by an electron stream. About one part in a hundred million of

the atoms is thereby excited to the metastable 2°5,,, state. The metastable atoms (with small recoil
deflection) move on out of the bombardment region and are detected by the process of electron

ejection from a metal target. The electron current is measured with an FP-54 electrometer tube and
a sensitive galvanometer. If the beam of metastable atoms is subjected to any perturbing fields

which may cause a transition to any of the 2°P states, the atom will decay while moving through
a very small distance. As a result, the beam current will decrease, since the detector does not
respond to atoms in the ground state. Transitions may be induced by radiofrequency radiation for

which hv corresponds to the energy difference between one of the Zeeman components of 25, ,
and any component of either 2°P,, or 2°B, , . Such measurements provide a precise method for

the location of 2°S,,, state relative to the P states, as well as the distance between the later states.

We have observed an electrometer current of the order of 107'* A which must be ascribed to
metastable hydrogen atoms. We have also observed the decrease in the beam of metastable atoms
caused by microwaves in the wave length range 2.4 to 18.5 cm in various magnetic fields. The
results indicate clearly that, contrary to theory but in essential agreement with Pasternack’s

hypothesis, the 2°S,,, state is higher than 2°P,, by about 1000 MHz (0.033 cm™).
[October 1946 to March 1948].

B-2 Beth’s calculation
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(S.S. Schweber, QED and the men who made it: Dyson, Feynman , Schwinger, and
Tomonaga, Chapter 5, p.231).

The actual calculation of the nonrelativistic Lamb shift was made on a train ride from New
York to Schenectady. Bethe had stayed in New York after the Shelter Island Conference to visit
his mother, and had gone on to Schenectady to consult for General Electric. The calculation is
straightforward (Beth 1947). The self-energy of an electron in a quantum state m, due to its
interaction with the radiation field, is

3
8 (e z* K
3z \ he n <EF -FE >

n m ave

2

where Ry is the Rydberg energy o’ %mc2 , o= ;— . This is the expression that Bethe had obtained
C

on his arrival at Schenectady. He was not quite confident of its accuracy, because he was not quite

sure of the correctness of a factor of +/2 in his expansion of the radiation operators in terms of
creation and annihilation operators. This he checked on Monday morning in Heitler’s book. He
also got Miss Steward and Dr. Stehn from GE to evaluate numerically < E, — E, > for the 2s
state. It was found to be 17.8 Ry, “an amazingly high value. Inserting this into the above equation
Bethe found W, = 1040 MHz, “in excellent agreement with the observed value of 1000 MHz”

(Bethe, 1947).

((Note))
The expression of the frequency for the Lamb shift (the non-relativistic case) (for n = 2), can be
expressed as

a’m,c’ 1
V= ~— In( 5
127°hc 89

)= 1038.27 MHz.

http://quantummechanics.ucsd.edu/ph130a/130_notes/node476.html

((Mathematica))
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Clear["Global %"];

rulel = {c- 2.99792x 10",
A - 1.054571628 107,
me » 9.10938215 107%,
a - 7.2973525376 x 107%, MHz -» 10°};

5 3
(:1_Q§£L_ [ 1 2])// MHz /. rulel //
12725 C 8. 9a
N
1038.27

B-3  Feynman’s Nobel Lecture:
R.P. Feynman, Nobel Lecture, December 11, 1965
The development of the space-time view of quantum electrodynamics.

Then Lamb did his experiment, measuring the separation of the 2°S,,, and 2°P, , levels of

hydrogen, finding it to be about 1000 megacycles of frequency difference. Professor Bethe, with
whom [ was then associated at Cornell, is a man who has this characteristic: If there’s a good
experimental number you’ve got to figure it out from theory. So, he forced the quantum
electrodynamics of the day to give him an answer to the separation of these two levels. He pointed
out that the self-energy of an electron itself is infinite, so that the calculated energy of a bound
electron should also come out infinite. But, when you calculated the separation of the two energy
levels in terms of the corrected mass instead of the old mass, it would turn out, he thought, that the
theory would give convergent finite answers. He made an estimate of the splitting that way and
found out that it was still divergent, but he guessed that was probably due to the fact that he used
an un-relativistic theory of the matter. Assuming it would be convergent if relativistically treated,
he estimated he would get about a thousand megacycles for the Lamb-shift, and thus, made the
most important discovery in the history of the theory of quantum electrodynamics. He worked this
out on the train from Ithaca, New York to Schenectady and telephoned me excitedly from
Schenectady.
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Fig.

Fine and hyperfine structure of the hydrogen atom. Abbreviations: g = mc?a* =1.45 x 1073
eV, A = 1,420 MHz. The finite size of the nucleus is not taken into account. Scales are not
preserved. [J. Pade, Quantum Mechanics for Pedestrians 2: Applications and Extensions
(Springer, 2014)]. The lamb shift is 1057 MHz.

32



