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We already discussed the physics of NH3 Maser. Here we use this as a typical example of 
the time-independent perturbation problem.  
 
1. Introduction 

For the energy splitting scheme of NH3 in the presence of an electric field, we apply 
the perturbation theory for solving the problems. 
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: electric  
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    moment   1  when the nitrogen is up. 

 

N
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   2  when the nitrogen is down. 
 
We consider the parity operator ̂ , such that 
 

21ˆ    12ˆ   

 
Therefore the kets 1  and 2  are not the eigenkets of ̂ . Since 
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

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


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̂ , 

 
̂  is regarded as the Pauli matrix x̂ . The eigenkets of x̂  are 

x
 . 

 

xxx ̂  

 
with 
 

)21(
2

1)0(  sx
 ; symmetric state.  

 

)21(
2

1)0(  Ax
 ; antisymmetric state 

 
These two states are the eigenkets of ̂ . 
 

We now consider the Hamiltonain Ĥ . 
 
The symmetry of two physical configuration suggests that  
 

02ˆ21ˆ1 EHH   

 

What about the off-diagonal elements? The vanishing of 1ˆ2 H  would mean that a 

molecule initially in the state 1  would remain in that state. If 01ˆ2 H , there is a 

small amplitude for the system to mix between the two states. 
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This Hamiltonian commutates with the parity operator: 0̂]ˆ,ˆ[ H .  
 

xxx ̂  

 
2. Eigenvalue problem 
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1 
2

2A

A°0 (perturbation)

Ea
0  E0  A

Es
0  E0  A

 
 
((Application of electric field)) 
 

N

H

H
H : electric  

    dipole  
    moment


electric 
field

N

H
H

H


energy = -energy = 
 

 
When the electric filed is applied along the x axis (the axis of the electric dipole 
moment), the Hamiltonian is changed into 
 
 

ˆ H 
E0   A

A E0  
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
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 E0

ˆ 1   ˆ z  A ˆ x  

 

The new Hamiltonian Ĥ  does not commutate with the parity operator ̂ . 
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Thus we have 
 

nn
AEH  ))((ˆ 22
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2A

Ea
0  E0  A

Es
0  E0  A

(symmetric) electric field 

Ea  E0  ( )2  A2

Es  E0  ()2  A2

 
 
In a weak electric field 
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3. Perturbation-1 
 

Suppose that 
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under the basis of 1  and 2 . Here 0Ĥ  is the unperturbed Hamiltonian and 1Ĥ  is the 

perturbing Hamiltonian. 1  and 2  are the eigenket of 0Ĥ .  

 

1)(1ˆ
00  EH ,  2)(2ˆ

00  EH  
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with 
 

 0
)0(

1 EE ,   0
)0(

2 EE  

 
Thus the unperturbed system is a non-degenerate system with 1  and 2 . So we can use 

the non-degenerate perturbation theory for this problem. 
 
The first order perturbation: 
 

01ˆ1 1
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1  HE  
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The second order perturbation 
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Then we have 
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The wave function: 
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2me

2>

1> E0+me

E0-me

A22me

A22me

H0 H1  
 
 
4. Perturbation under the new basis 

First we start to find new eigenket of the 0Ĥ defined by 
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AE
H ̂1̂ˆ

0
0

0
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 , 

 
under the basis of { 1  and 2 }, where 

 











01

10
ˆ x . 

 
The perturbation Hamiltonian is given by 
 















0

0ˆ
1H  

 
under the basis of { 1  and 2 }, where A . 

 

xxxx
AEAEH  )()ˆ1̂(ˆ

000   

 

xxxx
AEAEH  000 ()ˆ1̂(ˆ   

 
Then we have 
 
(i) 
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Eigenvalue: AEEs  0
)0(   

 

Eigenvector:  )21(
2

1)0( 
xs  

 
(ii) 

Eigenvalue: AEEa  0
)0(   

 

Eigenvector:  )21(
2

1)0( 
xa  

 
We note that the unitary operator is defined as 
 

1ˆ)0( Us  ,  2ˆ)0( Ua   

 
where 
 












11

11

2

1
Û , 












11

11

2

1
Û  

 

We now consider the perturbation 1Ĥ defined by 
 









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



0

0ˆ
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under the basis of { 1  and 2 }, where A . The Hamiltonians can be rewritten as 

 












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AE

AE
UHU

0

0
0 0

0ˆˆ ,  









0

0ˆˆ
1 


UHU  

 

under the basis of { )0(
s  and )0(

a }. We now use the non-degenerate perturbation 

theory. 
 
(i) The first order perturbation: 
 

0ˆ )0(
1

)0()1(  sss HE   

 

0ˆ )0(
1

)0()1(  aaa HE   
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(ii) The second order perturbation 
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)0()0(

2
)0(

1
)0(

)2( 



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Then we have 
 

A
AEEEEE ssss 2

22

0
)2()1()0( 

  (lower energy) 

 

A
AEEEEE aaaa 2

22

0
)2()1()0( 

  (higher energy) 

 
The wave function: 
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2

ˆ
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H

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 


  

 

2A

ys>

ya>
E0+A

E0-A

m2e22A

m2e22A

H0 H1  
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5. Eigenvalue problem (exact solution) 
 
We solve the eigenvalue problem using the Mathamtica. 
 

(i) Eigenvalue: 222
0  AE   (higher energy) 

 

Eigenket: 21)(
222





A

A
a


  

 

(ii) Eigenvalue: 222
0  AE   (lower energy) 

 

Eigenket: 21(
222





A

A
s


  

 
where the eigenkets are not nortmalized. 
 
_______________________________________________________________________ 
6. Application 
 

NH3

x

 2

a

s

 
 
Let us consider NH3 in a region where  is weak but where 2 has a strong gradient in the 
x-direction (i.e., along the axis of molecules). 
 

d

dx
( 2 )    

 
The molecules in the state s  are subjected to a force parallel to the x axis: 

 

Fs  
dEs

dx


1

2

 2

A
 

 
Similarly, the molecules in the state a  are subjected to an opposite force: 

 



11 
 

Fa  
dEa

dx
 

1

2

2

A
 

 
This is the basis of the method which is used in the ammonia maser to sort the molecules 
and select those in the higher energy state. 
 

Maser cavity (frequency 0)

vT

s

all
electric field

NH3

s

a

 2

 
 
In the ammonia maser, the beam with molecules in the state a

(0)  and with the higher 

energy is sent through a resonant cavity. 


