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We already discussed the physics of NH; Maser. Here we use this as a typical example of
the time-independent perturbation problem.

1. Introduction

For the energy splitting scheme of NHj3 in the presence of an electric field, we apply
the perturbation theory for solving the problems.
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|2) when the nitrogen is down.

We consider the parity operator 7, such that
7i1)=[2) #12)=[)

Therefore the kets [1) and |2) are not the eigenkets of 7. Since
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7 is regarded as the Pauli matrix &, . The eigenkets of &, are |J_r>x.

with

S(O)>_ - (1) +|2)) ; symmetric state.

+), =|o 2

-), = ‘¢A(O)> = %(|1> —|2)) ; antisymmetric state

These two states are the eigenkets of 7.

We now consider the Hamiltonain H .

The symmetry of two physical configuration suggests that
(UHIL) = (2H[2)=E,

What about the off-diagonal elements? The vanishing of (2|H|1) would mean that a

molecule initially in the state |1) would remain in that state. If <2|I:||1> #0,thereisa
small amplitude for the system to mix between the two states.
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This Hamiltonian commutates with the parity operator: [I3| ] = 0.
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2. Eigenvalue problem
H|£), = (E,1- AG,)|%) = (E, FAL)
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When the electric filed is applied along the x axis (the axis of the electric dipole
moment), the Hamiltonian is changed into

~ [E0+y8 —-A

H = = E 1+ pe6, — AG
—A Eo—,UgJ 0 +:u‘gaz Oy

The new Hamiltonian H does not commutate with the parity operator 7.

H = E 1++/(ue)? + A2 A 5 HE 5,
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H = E,1++/(ue)’ + A%6-n
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where
0 . 0
[+) = cosE|1>+sm E|2>
and
. 0 0
|—>n =—sin E|l> + cosz|2>
where

sinez——A cosé = He

V(ue) + A V() + A?



Thus we have

+/(ue)? + A?)|%)

=E,+A / E, = E, +v (1) + A’

EC=E,—-A \ E, = E, — y(ue) + A?

(symmetric) electric field €

In a weak electric field

2 .2
/ y7ar;
E.=E, - A/l+ X =E, -
2
E.,=E,+A 1+ —E +A+ +...

3. Perturbation-1

Suppose that

where

under the basis of 1) and |2). Here H, is the unperturbed Hamiltonian and H, is the

perturbing Hamiltonian. [1) and |2) are the eigenket of H,.

Hol1) = (B, + ue)|1), Ho|2) = (E, — ue)|2)



with

EQ =E, + ue,

Eé()) =B, —ue

Thus the unperturbed system is a non-degenerate system with |1) and |2). So we can use
the non-degenerate perturbation theory for this problem.

The first order perturbation:
E® =(1H,[1)=0
EY =(2|H,[2)=0

The second order perturbation
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Then we have
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2ue
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E,=E® +E’ +E{® =E, — ue -
2ue

The wave function:

(high energy)

(low energy)
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4. Perturbation under the new basis

First we start to find new eigenket of the ﬁodefined by

~ (E, -A A
H,=| ° =E,l-AG,,
~-A E,

under the basis of {|1) and |2)}, where
. [0 1)
o, = :
10
The perturbation Hamiltonian is given by
(s )
0 —ue
under the basis of {|1) and |2)}, where |ue| << A.
Hol+), = (E,1- AG,)|+), = (E,— A)|+),
HA0|_>X = (Eoi_ AOA_X)|_>X = (EO + A|+>x

Then we have

(i)



Eigenvalue: E© =E,-A

Eigenvector:

v, )=+, - \/15(|1>+|2>

(i)

Eigenvalue: E,” =E, + A
Eigenvector: ‘Wa‘°)> =|-), = %(ﬂ) ~|2))

We note that the unitary operator is defined as

s(°)>:0|1>, a(0)>=0|2>

where

o-3 1) et )

We now consider the perturbation ﬁldefined by

~ 0
T
0 —ue

under the basis of {|1) and |2)}, where || << A. The Hamiltonians can be rewritten as

~~ (E,~A 0 ~oo~ (0 eu
U'HU = , U'HU =
0 E,+A gu O
(0>> (0)>
W, }. We now use the non-degenerate perturbation

theory.
Q) The first order perturbation:

E® = (. |F v, ) =0

=0 = (y, A,

n)=c



(i) The second order perturbation
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Then we have
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(lower energy)

2 2
&
E,=EQ +E® +E? =E, + A+ £

(higher energy)

The wave function:
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5. Eigenvalue problem (exact solution)

We solve the eigenvalue problem using the Mathamtica.
(i) Eigenvalue: E, ++/A*+&%4’ (higher energy)

z(g,u+w/A2+gZ,uz )|l>—|2>

A

Eigenket: |y, )

(i)  Eigenvalue: E,—+/A*+&%u? (lower energy)

2 2. 2
Eigenket: ) = —(E )

where the eigenkets are not nortmalized.

6. Application

| ] |¢)
M_\‘y\
|

Let us consider NHs in a region where ¢ is weak but where & has a strong gradient in the
x-direction (i.e., along the axis of molecules).
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The molecules in the state |(/)5> are subjected to a force parallel to the x axis:

Similarly, the molecules in the state |(pa> are subjected to an opposite force:
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This is the basis of the method which is used in the ammonia maser to sort the molecules
and select those in the higher energy state.

Maser cavity (frequency o)

| | | | all
electric field —y |¢5>

\ 16.) :¢¢¢¢

NH;3
\ < vT >

In the ammonia maser, the beam with molecules in the state (p;o)) and with the higher

energy is sent through a resonant cavity.
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