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We already discussed the physics of NH3 Maser. Here we use this as a typical example of 
the time-independent perturbation problem.  
 
1. Introduction 

For the energy splitting scheme of NH3 in the presence of an electric field, we apply 
the perturbation theory for solving the problems. 
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We consider the parity operator ̂ , such that 
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Therefore the kets 1  and 2  are not the eigenkets of ̂ . Since 
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̂  is regarded as the Pauli matrix x̂ . The eigenkets of x̂  are 
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These two states are the eigenkets of ̂ . 
 

We now consider the Hamiltonain Ĥ . 
 
The symmetry of two physical configuration suggests that  
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What about the off-diagonal elements? The vanishing of 1ˆ2 H  would mean that a 

molecule initially in the state 1  would remain in that state. If 01ˆ2 H , there is a 

small amplitude for the system to mix between the two states. 
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This Hamiltonian commutates with the parity operator: 0̂]ˆ,ˆ[ H .  
 

xxx ̂  

 
2. Eigenvalue problem 
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((Application of electric field)) 
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energy = -energy = 
 

 
When the electric filed is applied along the x axis (the axis of the electric dipole 
moment), the Hamiltonian is changed into 
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The new Hamiltonian Ĥ  does not commutate with the parity operator ̂ . 
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Thus we have 
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In a weak electric field 
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3. Perturbation-1 
 

Suppose that 
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under the basis of 1  and 2 . Here 0Ĥ  is the unperturbed Hamiltonian and 1Ĥ  is the 

perturbing Hamiltonian. 1  and 2  are the eigenket of 0Ĥ .  
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with 
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Thus the unperturbed system is a non-degenerate system with 1  and 2 . So we can use 

the non-degenerate perturbation theory for this problem. 
 
The first order perturbation: 
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Then we have 
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The wave function: 
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4. Perturbation under the new basis 

First we start to find new eigenket of the 0Ĥ defined by 
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under the basis of { 1  and 2 }, where 
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The perturbation Hamiltonian is given by 
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under the basis of { 1  and 2 }, where A . 
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Then we have 
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We note that the unitary operator is defined as 
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We now consider the perturbation 1Ĥ defined by 
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under the basis of { 1  and 2 }, where A . The Hamiltonians can be rewritten as 
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under the basis of { )0(
s  and )0(

a }. We now use the non-degenerate perturbation 

theory. 
 
(i) The first order perturbation: 
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(ii) The second order perturbation 
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5. Eigenvalue problem (exact solution) 
 
We solve the eigenvalue problem using the Mathamtica. 
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where the eigenkets are not nortmalized. 
 
_______________________________________________________________________ 
6. Application 
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Let us consider NH3 in a region where  is weak but where 2 has a strong gradient in the 
x-direction (i.e., along the axis of molecules). 
 

d

dx
( 2 )    

 
The molecules in the state s  are subjected to a force parallel to the x axis: 
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Similarly, the molecules in the state a  are subjected to an opposite force: 
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This is the basis of the method which is used in the ammonia maser to sort the molecules 
and select those in the higher energy state. 
 

Maser cavity (frequency 0)
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In the ammonia maser, the beam with molecules in the state a

(0)  and with the higher 

energy is sent through a resonant cavity. 


