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In atomic physics, hyperfine structure is the different effects leading to small shifts and 
splittings in the energy levels of atoms, molecules and ions. The name is a reference to the fine 
structure which results from the interaction between the magnetic moments associated with 
electron spin and the electrons' orbital angular momentum. Hyperfine structure, with energy 
shifts is typically orders of magnitude smaller than the fine structure, results from the 
interactions of the nucleus (or nuclei, in molecules) with internally generated electric and 
magnetic fields. 

In atoms, hyperfine structure occurs due to the energy of the nuclear magnetic dipole moment in 
the magnetic field generated by the electrons, and the energy of the nuclear electric quadrupole 
moment in the electric field gradient due to the distribution of charge within the atom. Molecular 
hyperfine structure is generally dominated by these two effects, but also includes the energy 
associated with the interaction between the magnetic moments associated with different 
magnetic nuclei in a molecule, as well as between the nuclear magnetic moments and the 
magnetic field generated by the rotation of the molecule. 

http://en.wikipedia.org/wiki/Hyperfine_structure 
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where g (=5.58569) is the nuclear g-factor for proton with mass mp. 
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The magnetic field generated by a magnetic moment of the proton is given by 
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(see J.D. Jackson, Classical Electrodynamics, 2nd edition (John Wiley & Sons, 1975) p.184. 
So the Hamiltonian of the electron, in the magnetic field due to the proton’s magnetic moment is 
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The ground state of the hydrogen (n = 1, l =0) is very special since 
2
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origin. The ground state is also a non-degenerate state. The first-order correction to the energy is 
the expectation value of the perturbing Hamiltonian; 
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In the ground state (with l = 0) the wave function is spherically symmetric, and the first 
expectation value vanishes. Then we get 
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This is a contact-type (or Fermi-type) interaction. This has non-zero only when the electron is at 

the position of proton. The interaction energy is proportional to the probability 
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the electron being at the position of the proton. 
We redefine this interaction as the perturbing Hamiltonian 
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in the ground state, where 
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Here we introduce the Dirac spin exchange operator 
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There are four states which are the combination of the spin states of electron and proton; 
 

 : electron spin up and proton spin up 

 

 : electron spin up and proton spin down 

 

 : electron spin down and proton spin up 

 

 : electron spin down and proton spin down 

 
Note that 
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The spin-spin coupling is rewritten as 
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Then we have 
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  is the eigenket of 1Ĥ  with the energy eigenvalue E0. 
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  is the eigenket of 1Ĥ  with the energy eigenvalue E0. 
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The eigenvalue problem: 
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The hyperfine splitting in the ground state of hydrogen. 
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The frequency: 
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((Mathematica)) 
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2. HI 21 cm 

Hydrogen is the most abundant element in the interstellar medium (ISM), but the symmetric 
H2 molecule has no permanent dipole moment and hence does not emit a detectable spectral line 
at radio frequencies. Neutral hydrogen (HI) atoms are abundant and ubiquitous in low-density 
regions of the ISM. They are detectable in the 0948.21  cm (  1421.16 MHz) hyperfine 
line. Two energy levels result from the magnetic interaction between the quantized electron and 
proton spins.  
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Fig. This integrated HI spectrum of UGC 11707 obtained with the 140-foot telescope shows 

the typical two-horned profile of a spiral galaxy (red-shift; the observed frequency shifts 
to the lower frequency side from 1420 MHz to 1416 MHz). 

 
For UGC 11707, the line center frequency is f 1416.2 MHz. According to the Doppler effect, 

the observed frequency is given by 
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in the non-relativistic limit. Then the recessional velocity vt is obtained as 
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The distance D is obtained as 
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Note that c is the velocity of light and H0 is the Hubble constant, and D is the distance from the 
Earth. 
 

H0 = 67.80 km/s Mpc-1. 
 

1 pc = 3.26 light year   (pc: parsec) 
 

1 Mpc = 3.26 x 106 light year 
=3.08567758 x 1022 m (Mega parsec) 

 
1 year = 3.1556926 x 107 s. 

 
The time taken after the Big Ban can be calculated as 
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Fig. Hubble diagram from the Hubble Space Telescope Key Project (Freedman et al. 2001) 
using five different measures of distance. Bottom pane shows H0 vs distance with 
horizontal equal to the best fit value of 72 km/s Mpc-1. The recessional velocity v of stars 
moving away from the Earth is proportional to the distance D from the Earth; DHv 0 . 

H0 is the Hubble’s constant.  
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APPENDIX-I  Magnetic field arising from magnetic moment 

We consider the distribuition of the magnetic field B due to the magnetic moment p at the 
origin, whose direction is along the z axis. The vector potential A due to the magnetic dipole 
moment  can be described by 
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The magnetic field B is obtained as 
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So we have B (except for r = 0) as 
 

5

2

2

)(3

11
)(

)
1

(

r

r

rr

r

pp

pp

p

μrμr

μμ

μB








. (11)
 

 
Note that 
 



0)(4
12  r
r

. 

 

5

2)(31
)(

r

r

r
pp

p

μrμr
μ


 . 

 
The expression for the magnetic field including r = 0 is given by 
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[see J.D. Jackson, Classical Electrodynamics, 2nd edition (John Wiley & Sons, 1975) p.184]. 
The Hamiltonian of the magnetic moment of electron in the presence of magnetic field arising 
from the proton, is given by 
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The delta function term enters the expression for the hyperfine structure of atomic s states. 
 
APPENDIX-II Proof of the integral which is zero 
 

00,0,1]}))((3[
1

{0,0,1
2

5  mlnmlnI epep rSSSSrS
r

. 

 

  ]}))((3[
1

)(sin
2

5

2

100
2 rSSrSrS

r
r epepddrI  , 

 
where we use 
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((Mathematica)) We show the proof of I = 0 by using the Mathematica 
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