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Pieter Zeeman (25 May 1865 – 9 October 1943) was a Dutch physicist who shared the 
1902 Nobel Prize in Physics with Hendrik Lorentz for his discovery of the Zeeman effect. 
 
((Alfred Landé)) 
Alfred Landé (13 December 1888–30 October 1976) was a German-American physicist 
known for his contributions to quantum theory. He is responsible for the Landé g-factor and 
an explanation of the Zeeman Effect. 
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Here we have the relation 1 ba , and 0  SL . The values of a and b are determined 

as follows. 
 

2J

LJ 
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SJ 
b . 

 
Here we note that 
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using the average in quantum mechanics. The total magnetic moment  is 
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2. Derivation of Landé g-factor: approach from the classical model 

In the classical theory, the projection vectors of the spin angular momentum S and the 
orbital angular momentum L along the direction of the total angular momentum J 
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The Landé g-factor is defined by 
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In quantum mechanics, we get 
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using the relations, )1(22  jjJ , )1(22  ssS , and )1(22  LLL . The total 

magnetic moment is given by 
 

Jμ j
B
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3. Derivation of Landé g-factor: approach from the Wigner-Eckhart  

The specific formula we need from the Wigner-Eckhart theorem relates the matrix 

element of any general vector component zV̂  to the matrix element of the total magnetic 

momentum. zĴ ; 
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For the Zeeman effect, L or S play the role of the vector V. This equation is called the 
projection theorem because of the role of the projection V.J in determining the constant of 
proportionality between the matrix of Vz and Jz. Note that the matrix element of the 
projection V.J is a diagonal element, but the Vz and Jz matrix elements are general matrix 
elements between different m states within a given j subspace.  
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The total magnetic moment along the z axis is given by 
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where Jg is the Landé g-factor given by 
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Then magnetic moment is given by 
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4. Zeeman effect in the weak magnetic field 

In the presence of the magnetic field B along the z axis, the Zeeman energy is given by 
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Fig. Weak-field Zeeman structure of the hydrogen 2 P fine structure levels labeled with 

the quantum numbers of the coupled basis states. n = 2. j = 3/2 and j = 1/2. l = 1 and 

s = 1/2. The splitting of the levels between 2/3
2P  and 2/1

2P  at B = 0 is due to the spin 

orbit interaction.  
 
5. Zeeman effect in the intermediate magnetic field 

In the presence of magnetic field along the z axis, the Zeeman energy is given by 
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The perturbed Hamiltonian is the sum of the spin orbit interaction soĤ  and the Zeeman 

energy BĤ  as  
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We solve the eigenvalue problem. For simplicity we put 
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z=ba

DEa

j=32

j=12

m=32

m=12

m=-12
m=12

m=-12
m=-32

1 2 3 4 5

-5

5

10



15 
 

 

 

Clear"Global`"; rule1   k2  m2  L 
1

2
;

rule2  k  L  m 
1

2
L  m 

1

2
;

A1 


2

m  1

2
k

k m  1

2
  

m  1

2
0

0 m  1

2
 ;

eq1  EigensystemA1;

1  eq11, 2 . rule1 . rule2  Simplify, L  0 &

1
4
  4 m     2 L 2  8 m    4 2 

2  eq11, 1 . rule1 . rule2  Simplify, L  0 &



4
 m  

1
4

  2 L 2  8 m    4 2

11  1 .      Simplify,   0 &

1
4
 1  4 m   1  4 L  4 L2  8 m   4 2 

22  2 .      Simplify,   0 &


1
4
 1  4 m   1  4 L  4 L2  8 m   4 2 

Series11, , 0, 2  Simplify, 2 L  1  0 &

L 
2


2 1  L m  

1  2 L

1  4 L  4 L2  4 m2  2

2 1  2 L3  O3

Series22, , 0, 2  Simplify, 2 L  1  0 &


1
2
1  L   2 L m  

1  2 L

1  4 L  4 L2  4 m2  2

2 1  2 L3  O3



16 
 

 
6. Zeeman effect in the strong magnetic field (Paschen Back effect) 

We consider the case where the magnetic field is strong enough that the Zeeman shifts 
are much larger than the fine-structure shifts. The perturbation assumption regarding the 
Zeeman effect is no longer valid. It is more appropriate to include the Zeeman Hamiltonian, 
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000
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We note that 
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We choose a simultaneous eigenket of BĤ , 0Ĥ , 2L̂ , 2Ŝ , zL̂ , and zŜ  
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Here the Zeeman Hamiltonian 
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in zeroth-order and treat the fine structure as a perturbation. We note that 
 

slnsl smlmnEsmlmnH ;;;;ˆ
0  , 

 

slslBslzz
B

slB smlmnmmBsmlmnSL
B

smlmnH ;;)2(;;)ˆ2ˆ(;;ˆ  


. 

 
The Zeeman energy is the expectation values, 
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We now treat the spin-orbit interaction as a perturbation to the zeroth order state that 
include the Zeeman interaction.  
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Note that )1(
0sE  is independent of the magnetic field. Thus we get 
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where B0 is the characteristic magnetic field. 
 
((Example))  

The 2p state for the hydrogen. n = 2, l = 1, s = 1/2. ml = 1, 0, -1. ms = 1/2, -1/2. 
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Fig. Strong-field Zeeman structure of the 2p states of hydrogen. Solid lines show the the 

Zeeman levels, while the dashed lines shows the addition of the Zeeman 
contribution and the spin-orbit interaction. The quantum numbers indicate the 

uncoupled basis states. The vertical dashed line denotes 1
0


B

B
x . 

2/1,11  sl mm , 2/1,02  sl mm , 

2/1,13  sl mm , 2/1,14  sl mm ’ 

2/1,05  sl mm , 2/1,16  sl mm . 
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