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Here we discuss the Zeeman effect using the perturbation theory. The discussion here
consists of three parts, depending on the magnitude of magnetic field; (i) in the weak
magnetic field limit where the spin-orbit interaction Hy, is dominant: (i) the intermediate
magnetic field where the spin-orbit interaction is comparable with the Zeeman energy, and
(iii) the strong magnetic field where the Zeeman energy Hg is dorminant.

H50>>H5 HSOzHB HE>>HB

0 By B;
Fig. Hs is the spin-orbit interaction. Hg is the Zeeman energy.

((Pieter Zeeman))



Pieter Zeeman (25 May 1865 — 9 October 1943) was a Dutch physicist who shared the
1902 Nobel Prize in Physics with Hendrik Lorentz for his discovery of the Zeeman effect.

((Alfred Landé))

Alfred Landé (13 December 1888-30 October 1976) was a German-American physicist
known for his contributions to quantum theory. He is responsible for the Landé g-factor and
an explanation of the Zeeman Effect.



http://en.wikipedia.org/wiki/Alfred Land%C3%A9

1. Orbital magnetic moment and spin magnetic moment
The total angular momentum J is defined by

J=L+S.

The total magnetic moment g is given by
u= —%(L +285).

The total magnetic moment along the direction of J, u, , is defined by

_ gJ:uB J

By, = 7

where g; is the Lande g-factor.



Fig. Basic classical vector model of orbital angular momentum (L), spin
angular momentum (), orbital magnetic moment (), and spin magnetic
moment (us). J (= L + S) is the total angular momentum. g is the
component of the total magnetic moment (x4 + us) along the direction (-J).

Suppose that
L=aJ+L and S=bJ+S,,

where a and b are constants, and the vectors S, and L, are perpendicular to J.



Here we have the relation a+b=1,and L, +S, =0. The values of a and b are determined
as follows.

Here we note that

2_ 2_ 2 2_ 2 2
J-S=(L+S)-S=5"+L-S=5+ ’; s*_J I;+S'

or

2 g2 2 2
J-S:#:%[J(J +1) - L(L+1)+S(S +1)],

using the average in quantum mechanics. The total magnetic moment u is
__Hs __He
U= 5 (L+2S)= 5 [(@a+2b)J + (L, +2S))].
Thus we have

Hg Hp 0;4s
=B (a+2h)J=-LEA+h)J=-2LB g
s =45 a2ty = Ho 1) = - O

with
g, =1+b=1+ J.ZS :§+ s(s+1)—L(L+1) .
J 2 2J(J +))
2. Derivation of Landé g-factor: approach from the classical model

In the classical theory, the projection vectors of the spin angular momentum S and the
orbital angular momentum L along the direction of the total angular momentum J



where
J=L+S§.
The total magnetic moment along the direction of J is given by

L-J S-J
J+2 J).
VAN

M,

__He
h(

Using L=J -8, and squaring both sides, we get
r=J*+8"-2J-S,
or

JP+8*-I
—

J-§=

Using § =J — L, and squaring both sides, we get
S*=J*+I’-2J-L,

or

Then we get



U
M, :_hJBZ (L-J+2S8-J)J

= [P P87+ 2(J+ 82—

2hJ?

g B3I -L +S?)
=8 > J

h 2J

The Landé g-factor is defined by

BJ°-I)'+S8*) 3 §*°-I
gJ = 2 =—+ 2 .
2J 2 27

In quantum mechanics, we get

_ 3 s(s+D-1(1+Y)

T2 2j(j+1)

using the relations, J> —» #%j(j+1), §* - A°s(s+1), and I — h°L(L +1). The total
magnetic moment is given by

U
M, =_7ng']'

3. Derivation of Landé g-factor: approach from the Wigner-Eckhart
The specific formula we need from the Wigner-Eckhart theorem relates the matrix

element of any general vector component \7Z to the matrix element of the total magnetic

momentum. J,;

T jml}-.}jm_A.,
(i )= IEE I 3 )

For the Zeeman effect, L or § play the role of the vector V. This equation is called the
projection theorem because of the role of the projection V.J in determining the constant of
proportionality between the matrix of V, and J,. Note that the matrix element of the
projection V.J is a diagonal element, but the V, and J, matrix elements are general matrix
elements between different m states within a given j subspace.



(im[$ - jm) = (jml* + §° - 22 jm)

zé[j(j +1) +s(s+1) - 1(1 +1)]
and

(Im[E-J1 m) = jm|* + £ - §7| jm)

:h—;[j(j+1)+l(l+1)—s(s+1)]

Then we have
e (imlSeglm) s
<Jm|SZ|Jm>_ hZJ(J‘i‘l) <Jm|JZ|Jm>
_J(+D+s(s+D)-1(1+1)

— jm jz jm'’
2j(J+)) mf3:4m)

o (mILed)mYy e
_JU+D+1+1) —s(s +2)

jm|J, | jm’
iy M

The total magnetic moment along the z axis is given by
1, = —%(EZ +25,).

Then we have



(jm|C, +2S,|jm") =
:[j(j +D)+1(1+1)—s(s+1)
2j(j+1)
N JO+D)+s(s+D -1 +1)]
i+
3 s(s+1)—|(|+1)]

=[S+
2 2j(j+1)

= g,(im[3,| im’)

(im[J. | im’)

(im[3,|jm’)

where g, is the Landé g-factor given by

g, =§+s(s+_1)_—l(l+1)l
2 2j(j+1)

Then magnetic moment is given by

A

/’IB ~ ~ ll’lB ~
=B (L, +25,)=-8g,J,.
/uz h ( Z z) h gJ z

4. Zeeman effect in the weak magnetic field
In the presence of the magnetic field B along the z axis, the Zeeman energy is given by

H g.]:uBBj

B h z"

The first-order Zeeman energy correction:

T B,. ~,.
EB‘”=<JmIHB|Jm>=%%<JmIJZIJm>=gjmuBB-
For j:I+£, s:l,
2' %773

3
3,10+ .
g, =7+

— =1+ :
2 2j(j+2 2l +1
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E.Y =m@+ B.
B ( 2|+1);UB
For jzl—l,
2
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Fig. Weak-field Zeeman structure of the hydrogen 2 P fine structure levels labeled with
the quantum numbers of the coupled basis states. n = 2. j=3/2and j=1/2. | =1 and

s = 1/2. The splitting of the levels between °P,,, and *P,, at B = 0 is due to the spin
orbit interaction.

5. Zeeman effect in the intermediate magnetic field
In the presence of magnetic field along the z axis, the Zeeman energy is given by
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A~

H, :—ﬁ-B:%(i+23’)-3:%(.}+3’)-B:%B(JAZ+SAZ).

The perturbed Hamiltonian is the sum of the spin orbit interaction ﬁso and the Zeeman

energy H, as

Toon L 1
Ho=H+Hy == L8+ 4B (L, +25,).

Note that ﬁso is comparable to ﬁB . The matrix of L-S under the basis of

1 1 1 1\ . .
|¢l>=‘ml =m_§'ms =§> and |¢2>: m, :m"‘E,ms =—E>, IS obtained as
2 (m—l) \/(I+m+1)(l—m+l)

L L.S= 2 2
2 1 .
\/(I+m+—)(l m+—) —(m+E)
We note that
1(LZ+ZSZ)m,=m—£,mS=£ =(m+£)m,=m—£,ms=£ 1
h 2 2 2 2 2

20 ° 2

1(LZ+282)m|:m+£,m :—l :(m—l) mI:m—l,mS:1 :
h 2 2 2

So the matrix of %(LZ +2S,) under the basis of |¢,) and |4,) is diagonal,

Thus the resultant matrix is given by
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o (m—%) JU+m+%N—m+%)

=
4 1 1 1
l+m+>)(-m+= —(m+=
\/( S % (m+2)

m+% 0

+ 1B 1

0 m-—

2

We solve the eigenvalue problem. For simplicity we put

7?1
%:Ea, ﬂZ,UBB.

The matrix (2x2) is given by

m-1 \/(|+m+1)(|—m+3) m+l 0
- a 2 2 2 2
"= 1 1 1 i L)
l+m+3)(-m+= —(m+= 0 m-=
\/( 5 5) (m+2) 5
or
- o m—1 K m+E 0
Hy=7 2 L 2 1]
k  —-(m+>) 0 m-=
2 2

where for simplicity we use

1 1
k=\/(l+m+5)(l—m+§) .

Thus the eigenvalues are
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/11:—%+,8m+%\/a2(l +%)2 +2afm+ f?),

2==% -t l2a+Ly 420 gy,
4 2 2
We introduce the ratio ¢'as
s
(24

g:

Then we have

A :%(—1+4gm+%\/(l +%)2 L 2em+c?),

and

a 1 1
A, =—(-1+4m—-=_[(1+2)* +2cm+¢?).
2 4( gm 2\/( 2) ¢Mm+¢°)
For ¢ <<1 (weak field side)

a 21 +2
=—I+
A 2 ﬁm2|+1

a 2l
A, =——({1+1)+pm——:.
2 2( ) ﬂm2|+1

For ¢ >>1 (strong field side)

1 1 1 1
ﬂ,l:ag(m+5)=,6(m+5), /IZZCZG(m—E):ﬂ(m—E)-
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((Mathematica))
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1
Clear["Global *"]; rulel = {\/ k> +m? L+ 5}
1 1
rule2={k->\/(L—m+—) (L+m+—) };
2 2

a m- 2 k m+ < 0
Al= — 2 | +B ? N
2 k —(m+z) 0 (m—;)

eql = Eigensystem[Al];

Al=eql[[1, 2]] /- rulel /. rule2 // Simplify[#, L>0] &

1

4 (—a+4m5+J<a+2La>2+8ma5+452)

A2 =eql[[1, 1]] /- rulel /. rule2 // Simplify[#, L>0] &

—%+mB—%\/(a+2Loc)2+8monB+4/32

AM1=21/. {B>Ca} //Simplify[#, a>0] &

1
Za(—1+4m§+\/1+4|_+4|_2+8m§+4§2)

A22=22 /. {B->Ea} // Simplify[#, a>0] &

-%a(1-4m§+J1+4L+4L2+8m§+4§2)

Series[all, {£, 0, 2}] // Simplify[#, 2L +1>0] &

La 2(1l+L)ymac (1+4L+4L%-4m?)ac?
+

3
— + +0
2 1+2L 2 (1+2L)3 o

Series[A22, {£, 0, 2}] // Simplify[#, 2L +1>0] &

2Lmac  ((1+4L+4L%-4m?) o) &?
1+2L 2 (1+2L)3

3

+0[C]

(1+L) a+

NP
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6. Zeeman effect in the strong magnetic field (Paschen Back effect)

We consider the case where the magnetic field is strong enough that the Zeeman shifts
are much larger than the fine-structure shifts. The perturbation assumption regarding the
Zeeman effect is no longer valid. It is more appropriate to include the Zeeman Hamiltonian,

H =|:|o+|:|s:ﬁo_ﬁ'B:ﬁo"'%(i"'zj)'B’
where

;,:_%(mz&).

We note that

Then we have

~ N ~

[Ho,[,1=0, [Ho,I’1=0, [H,,S,1=0, [H, 8%1=0,
[I2,0,]=0, [8%,5,1=0, [H,H,]=0

A

We choose a simultaneous eigenket of I3|8, I:|O, I?, 82, I:Z,and S,

) =[nim)sm.
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Here the Zeeman Hamiltonian

in zeroth-order and treat the fine structure as a perturbation. We note that

Ho|n;Imy;sm,) = E | m;Im,;sm, ),

,UB

Hg|n;Im,;sm,) = (L, +2S,)[n;Im;;sm,) = 25 B(m, +2m,)|n;Im;;sm,)

The Zeeman energy is the expectation values,

£ o_HB
h

Zeeman

2= (n;Imy;sm |(L, +2S,)|n;Imy;smy) = 25 B(m, +2m,)

We now treat the spin-orbit interaction as a perturbation to the zeroth order state that
include the Zeeman interaction.

E,,” = (n;Im;;sm, [H,[n;Im,;sm,)
= &(n;Im;;sm,|L- S|n;Im;;sm, )
:§<n;lml;sms|£([+ +L.S,)+L,S,[nIm,;sm,)
)

= &(n;Im;;sm,|L,S, n;Im, ; sm

=&’ mm,
R M,
P10+ 2)(1 1)
2
where
é:hz — eZhZ 1 :lm C2a4 1

2m,c? n®a,’1(1 +1/2)(1 +1) 2 n®l(1 +1/2)(1 +1)
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with

Note that E.,“’ is independent of the magnetic field. Thus we get

ml ms

el +;)(| 1)

AE® = E," + B, = 4,B(m, +2m,) + = mc’a’

or

@ 2 4
AE™ _ (m +2ms)i+1mec a m,m

Hg 5 B, 2 1B, n3|(|+1)(|+1)
2

where By is the characteristic magnetic field.

((Example))
The 2p state for the hydrogen.n=2,1=1,s=1/2.m=1,0,-1. mg=1/2, -1/2. x :BE'

0
_1mcia’

k= .
2 B,

®
We make a plot of

as a function of x = E )
Hp Bo Bo

(3]
AE T _ (m, +2m,)x+k—Tim.

1158, el +;)(| 1)
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Fig.  Strong-field Zeeman structure of the 2p states of hydrogen. Solid lines show the the
Zeeman levels, while the dashed lines shows the addition of the Zeeman
contribution and the spin-orbit interaction. The quantum numbers indicate the

uncoupled basis states. The vertical dashed line denotes x = BE =1.
0

|4)=|m =1m, =1/2), |4,)=|m, =0,m, =1/2),
g =|m =Lm, =-1/2), |g,)=|m =-1m, =1/2)
) =[m =0m, =-1/2),  [g,)=|m =-Lm, =-1/2).
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