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1. Sinusoidal perturbation

We consider the case of interaction between photon and electron. The perturbation
can be given by
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where A, is the vector potential. The matrix element is given by
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In conclusion, the transition probability is proportional to
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The absorption cross section o, is
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Note that the energy flux (energy per area per unit time) is given by



The fine structure constant is defined by

2. Photoelectric effect
In the photoelectric effect, electrons are emitted from metals when they absorb energy
from light. Electrons emitted in this manner may be called photoelectrons.
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Fig.  Electron potential energy across the metal surface. An electron with the highest
energy in the metal absorps a photon of energy Af. Conservation of energy
requires that its kinetic energy after leaving the surface be 4z -.¢.

((Note))
The energy conservation:

ho = %mvf2 + EB%mcz(Zoz)2

where 7iw is the photon energy, %mvfz is the kinetic energy of free electron, and

E,= %mcz(Zoz)2 is the bound energy.

Ejection of an electron when an atom us placed in the radiation field.
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|i) : atomic (bound) state
|n): continum state (£ > 0)

Plane-wave state ‘kf>, an approximation that is valid if the final electron is not too slow.

with the periodic boundary condition
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space. There is one state per (2r/L)®.

Density of states in the 3D &
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3.

Fermi's golden rule
Using the Fermi’s golden rule, we have the differential cross section as
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or
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where ¢ is the fine structure constant,

To be specific, let us consider the ejection of a K-shell (the innermost shell) electron
caused by absorption of light. |z> : essentially the same as the ground state hydrogen atom

wave function except that the Bohr radius ay is replaced by ay/Z;
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The matrix element is given by
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Here note that
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with
q-= kf — k.

All we need to do is to take the Fourier transform of the atomic wave function.
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Clear["Global %"];
Zr
fl=2rnr?Sin[e] Exp[- i qrCos[e] ] Exp[-—o];
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Integrate[Integrate[fl, {6, O, x}], {r, 0, ©}] //
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the differential cross section is obtained as
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Fig. Experimental configuration for the photoelectric effect. ¢ is the polarization
vector. n is the unit vector of incident photon. k¢ is the wavevector of the outgoing

electron.

2. Energy conservation in the photoelectric effect
Energy is conserved in the system,
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We use the following approximation, for simplicity,
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where the binding energy is given by
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a is the fine structure constant:
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The Bohr radius is
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In nonrelativistic theory:
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When ¢ =0 (in the z-x plane), we put
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The derivative of f(8) with respect to dis
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or

6 = arccos[2 v—f]
C

When v—f<<1, cos@=0,or 8= 2. As Yr increases, @decreases.
C C

3. Angular dependence of do
dQ

((Mathematica)) We make a plot of a part of Z—g using the SphericalPlot3D

The cross section vanishes in the forward direction. This is a consequence of the fact
that photons are transversely polarized. The matrix element is proportional to (k, )%,

When k¢ is parallel to the photon momentum k& = kn , this factor vanishes.
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Fig. vlc = 0. Angular distribution of photoelectric electrons. The green line (the
direction of photon). The red line (the direction of polarization vector for photon).

Fig. The case of v/ic = 0.6.

Fig. The case of v/c = 0.8.
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Fig. The case of v/c = 0.95.
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APPENDIX
Al. Free electron gas in three dimensions
We consider the Schrddinger equation of an electron confined to a cube of edge L.
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It is convenient to introduce wavefunctions that satisfy periodic boundary conditions.
Boundary condition (Born-von Karman boundary conditions).

v (x+L,y,z) =y (x,y,2),
v (x,y+L,z)=y (x,y,2),
vi(x, v, z+ L) =y, (x,,2).

The wavefunctions are of the form of a traveling plane wave.

Vi (l') =" )

with
kx = (2n/L) ny, (nx =0, £1, £2, £3,.....),
ky = (2n/L) ny, (ny =0, £1, £2, £3,.....),
k, = (2nlIL) nz, (n, =0, £1, £2, £3,.....).

The components of the wavevector k are the quantum numbers, along with the quantum
number ms of the spin direction. The energy eigenvalue is
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Here

Py, (1) = 2V, (1) = ik, (1)

1

So that the plane wave function y, (r) is an eigenfunction of p with the eigenvalue 7k .
The ground state of a system of N electrons, the occupied orbitals are represented as a
point inside a sphere in k-space.

Because we assume that the electrons are noninteracting, we can build up the N-
electron ground state by placing electrons into the allowed one-electron levels we have
just found.

A2.  The Pauli’s exclusion principle
The one-electron levels are specified by the wavevectors k and by the projection of

the electron’s spin along an arbitrary axis, which can take either of the two values #/2.
Therefore associated with each allowed wave vector k are two levels:

1), k).
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In building up the N-electron ground state, we begin by placing two electrons in the one-
electron level £ = 0, which has the lowest possible one-electron energy ¢ = 0. We have
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A3 Density of states
There is one state per volume of k-space (27/L)°. We consider the number of one-
electron levels in the energy range from £to etde; D(g)de

L3
D(g&)ds = 22— 4nk*dk
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where D(&) is called a density of states. Since k=(2m/#%)"?Je, we have
dk = (2mI1?)?de 1(24/€) . Then we get the density of states
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B. Pythagorean relationship (relativistic dynamics)

Relativistic dynamics
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Kinetic energy K is defined by
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When E ~mc?, K is equal to

Pythagorean relationship

E
cp
mc
E2
Fig. Pythagorean relationship. —- = m®c’ + p°
c
C. Application — interaction with the classical radiation field

We consider the absorption and emission of light which is caused through the interaction
between atoms and electromagnetic fields. The light is the electromagnetic field which
periodically varies with time. Here we discuss the absorption and stimulated emission, where the
electromagnetic field is semi-classically treated and the atoms are quantum-mechanically treated.
There is another emission, so-called the spontaneous emission, where the electromagnetic field
should be quantum-mechanically treated.

Classical radiation field

= electric or magnetic field derivable from a classical radiation field as opposed to
quantized field

A= prepP)+—A
2m mc
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which is justified if
V-4=0. (Coulomb gauge)
We work with a monochromatic field of the plane wave
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(¢ and n are the (linear) polarization and propagation directions.)

or
A= |A0|8[ei(k»r—wt) + e_i(k"‘—a)t)]

The Hamiltonian is given by

where 151l is the time dependent perturbation
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The first term: responsible for stimulated emission,
The second term: responsible for absorption
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((Fermi’s golden rule))

where the energy is conserved during the process; £, — E, = ho
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