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1. Sinusoidal perturbation 

We consider the case of interaction between photon and electron. The perturbation 
can be given by 
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where 0A  is the vector potential. The matrix element is given by 
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In conclusion, the transition probability is proportional to 
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The absorption cross section abs  is 
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Note that the energy flux (energy per area per unit time) is given by 
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The fine structure constant is defined by 
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2. Photoelectric effect 

In the photoelectric effect, electrons are emitted from metals when they absorb energy 
from light. Electrons emitted in this manner may be called photoelectrons. 
 

 
 
Fig. Electron potential energy across the metal surface. An electron with the highest 

energy in the metal absorps a photon of energy hf. Conservation of energy 
requires that its kinetic energy after leaving the surface be hf -.. 

 
((Note)) 
The energy conservation: 
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where   is the photon energy, 2
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fmv  is the kinetic energy of free electron, and 
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1 ZmcEB   is the bound energy. 

________________________________________________________________________ 
Ejection of an electron when an atom us placed in the radiation field. 
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i : atomic (bound) state 

n : continum state (E > 0) 

 

Plane-wave state fk , an approximation that is valid if the final electron is not too slow. 
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with the periodic boundary condition 
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Fig. Density of states in the 3D k-space. There is one state per (2/L)3. 
 
The number of states for kf ~ kf+dkf and solid angle element d 
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3. Fermi's golden rule 
Using the Fermi’s golden rule, we have the differential cross section as 
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where  is the fine structure constant, 
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To be specific, let us consider the ejection of a K-shell (the innermost shell) electron 
caused by absorption of light. i : essentially the same as the ground state hydrogen atom 

wave function except that the Bohr radius a0 is replaced by a0/Z; 
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The matrix element is given by 
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Here note that 
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with 
 

q = kf  k. 
 
All we need to do is to take the Fourier transform of the atomic wave function. 
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Here we calculate 
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Using the Mathematica, we get 
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______________________________________________________________________ 
((Mathematica)) 
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Clear"Global`";

f1  2  r2 Sin Exp  q r Cos  Exp Z r

a0
;

IntegrateIntegratef1, , 0, , r, 0,  
Simplify, AbsImq  Re Z

a0
 && Re Z
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  0 &
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Thus we get 
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the differential cross section is obtained as 
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Fig. Experimental configuration for the photoelectric effect.  is the polarization 

vector. n is the unit vector of incident photon. kf is the wavevector of the outgoing 
electron. 

 
2. Energy conservation in the photoelectric effect 

Energy is conserved in the system, 
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We use the following approximation, for simplicity, 
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where the binding energy is given by 
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 is the fine structure constant: 
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The Bohr radius is 
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In nonrelativistic theory: 
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we get 
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When  = 0 (in the z-x plane), we put 
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)]2cos(3(cos2[
)cos1(

sin
)('

5




 



c

v

c

v
f f

f

 

 

In the limit of small 
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3. Angular dependence of 
d

d
 

((Mathematica)) We make a plot of a part of 
d

d
 using the SphericalPlot3D  

The cross section vanishes in the forward direction. This is a consequence of the fact 
that photons are transversely polarized. The matrix element is proportional to 2)( εk f . 

When kf is parallel to the photon momentum nk k , this factor vanishes. 
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Fig. v/c = 0. Angular distribution of photoelectric electrons. The green line (the 
direction of photon). The red line (the direction of polarization vector for photon). 

 

 
 
Fig. The case of v/c = 0.6. 
 

 
 
Fig. The case of v/c = 0.8. 
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Fig. The case of v/c = 0.95. 
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APPENDIX 
A1. Free electron gas in three dimensions 

We consider the Schrödinger equation of an electron confined to a cube of edge L. 
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It is convenient to introduce wavefunctions that satisfy periodic boundary conditions. 

Boundary condition (Born-von Karman boundary conditions). 
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The wavefunctions are of the form of a traveling plane wave. 
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with 

kx = (2/L) nx, (nx = 0, ±1, ±2, ±3,…..), 
ky = (2/L) ny, (ny = 0, ±1, ±2, ±3,…..), 
kz = (2/L) nz, (nz = 0, ±1, ±2, ±3,…..). 

 
The components of the wavevector k are the quantum numbers, along with the quantum 
number ms of the spin direction. The energy eigenvalue is 
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So that the plane wave function )(rk  is an eigenfunction of p with the eigenvalue k . 
The ground state of a system of N electrons, the occupied orbitals are represented as a 
point inside a sphere in k-space. 

Because we assume that the electrons are noninteracting, we can build up the N-
electron ground state by placing electrons into the allowed one-electron levels we have 
just found. 

A2. The Pauli’s exclusion principle 

The one-electron levels are specified by the wavevectors k and by the projection of 
the electron’s spin along an arbitrary axis, which can take either of the two values ±ħ/2. 
Therefore associated with each allowed wave vector k are two levels: 
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In building up the N-electron ground state, we begin by placing two electrons in the one-
electron level k = 0, which has the lowest possible one-electron energy  = 0. We have 
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A3 Density of states 

There is one state per volume of k-space (2/L)3. We consider the number of one-
electron levels in the energy range from  to +d; D()d  
 

 
dkk

L
dD 2

3

3

4
2

2)( 


  , 

 

where D() is called a density of states. Since 2/12 )/2( mk  , we have 
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___________________________________________________________________ 
B. Pythagorean relationship (relativistic dynamics) 
 
Relativistic dynamics 
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Kinetic energy K is defined by 
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When 2mcE  , K is equal to 
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Fig. Pythagorean relationship. 222
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C. Application  interaction with the classical radiation field 

We consider the absorption and emission of light which is caused through the interaction 
between atoms and electromagnetic fields. The light is the electromagnetic field which 
periodically varies with time. Here we discuss the absorption and stimulated emission, where the 
electromagnetic field is semi-classically treated and the atoms are quantum-mechanically treated. 
There is another emission, so-called the spontaneous emission, where the electromagnetic field 
should be quantum-mechanically treated.  
 
Classical radiation field 
 

 electric or magnetic field derivable from a classical radiation field as opposed to 
quantized field 
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which is justified if 
 

0 A .  (Coulomb gauge) 
 
We work with a monochromatic field of the plane wave 
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(ε  and n  are the (linear) polarization and propagation directions.) 
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The Hamiltonian is given by 
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where 1Ĥ is the time dependent perturbation 
 

    
titi

titi

eHeH

ee
mc

e
H





11

01

ˆˆ

)ˆ(ˆ







 pεA rkrk

 

 
The first term: responsible for stimulated emission, 
The second term: responsible for absorption 
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((Fermi’s golden rule)) 

 
where the energy is conserved during the process; Ef  Ei    
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