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We discuss phenomena on the interaction between atoms and electromagnetic field, in terms 

of the quantum mechanics. The electromagnetic field is classically treated, while the state of 
atoms is quantum mechanically treated. Such a method is called semi-classical treatment.  
 
1. Lagrangian (Goldstein, Classical Mechanics) 

We start with the Lorentz force given by 
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We use the vector potential A and scalar potential  as 
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The Newton’s second law: 
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Here we note that 
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We also note that 
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Then we get 
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In considering the Lagrange equation, it is supposed that there are two kinds of independent 
variables, r and v. In this case 
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Then we have 
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Using this formula, we get 
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Then we have 
 

)
1

()( AvAv 
c

q
c

q
m

dt

d  . 

 
This equation takes the form of Newton’s second law. The rate of change of a quantity that looks 
like momentum is equal to the gradient of a quantity that looks like potential energy. It therefore 
motivates the definition of the canonical momentum 
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and an effective potential energy experienced by the charged particle, 
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which is velocity-dependent. The force on the charge can be derived from the velocity-dependent 
potential energy 
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So the Lagrangian L is defined by 
 

)
1

(
2

1 2 Avv 
c

qmUTL   

 
The canonical momentum is defined as 
 

Av
v

p
c

q
m

L





 . 

 
Then the mechanical momentum (the measurable quantity) is given by 
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The Hamiltonian formalism uses A and , and not E and B, directly. The result is that the 
description of the particle depends on the gauge chosen. 
 
In conclusion we have two kinds of momentum. 
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2. Hamiltonian 

The Hamiltonian of the classical radiation field ( p̂ : momentum operator of the system, 
Quantum mechanical operator) is given by 
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where  q = -e is the charge of electron (e>0) and  = 0. 
 

   

 

 ArrA

ArArrA

rArArAppA







)()(
2

)()()(

)()()(ˆˆ







ii

ii

ii







 

 
Thus 
 

 







 ApAAp

ic

e

c

e

c

e

m
H


ˆ

2
ˆ

2

1ˆ 2
2

2
2 . 

 
We use the Coulomb gauge A  0. Then we have the perturbations such that 
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where we use the vector potential A for the classical case. 
 
3. Classical radiation field 
Maxwell's equation: 
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The equation of the continuity 
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where A is the vector potential and  is the scalar potential. 
 

 

































ctctc

tc
j

A
A

A

A





411

4
1

2

2

2
2

2

 

 
Gauge transformation: 
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4. Coulomb gauge 
We start any pair of A and . Using the Gauge transformation we have a pair of A’and ’, where  
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This is a Poisson equation with known value of  A . The solution of  is uniquiely determined. 
Therefore we can always choose the Coulomb gauge with 0' A . 
 
5. Vector potential A in the Coulomb gauge 

Here we assume that  
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From the first equation, we have  = 0 
 
or 
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The plane wave monochromatic solution for the wave equation is 
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Then we have 
 

00  Ak  

 
In other words, 0A  is perpendicular to the wavevector k. 

 

e

n

k

 
 
Fig. n; propagation vector of the light. ε  is the polarization vector. The vector potential A is 

parallel to the polarization vector. 
 
A must lie in a plane perpendicular to the direction of the propagation vector ( n ). 
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where n is the unit vector defined by kkn /  and  is the polarization vector (unit vector). The 

direction of the magnetic field and electric field is perpendicular to the propagation direction, 
forming the transverse wave. 
 
6. Poynting vector 

The electromagnetic energy is given by 
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The time average is 
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where u is the energy density. The Poynting vector is given by 
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the time average of the Poynting vector is obtained as 
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7. Application interaction with the classical radiation field 

We consider the absorption and emission of light which is caused through the interaction 
between atoms and electromagnetic fields. The light is the electromagnetic field which 
periodically varies with time. Here we discuss the absorption and stimulated emission, where the 
electromagnetic field is semi-classically treated and the atoms are quantum-mechanically treated. 
There is another emission, so-called the spontaneous emission, where the electromagnetic field 
should be quantum-mechanically treated.  
 
((Classical radiation field)) 

The electric or magnetic field is derivable from a classical radiation field as opposed to 
quantized field, 
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We work with a monochromatic field of the plane wave 
 

 t rkεAA cos2 0  



 

10 
 

 

nk
c


 , 0kε  

 
(ε  and n  are the (linear) polarization and propagation directions.) 
 
or 
 

    titi ee    rkrkεAA 0  

 
The Hamiltonian is given by 
 

10
ˆˆˆ HHH  , 
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Fig. Absorption process.  if EE . 

 
(ii) Stimulated emission 

The second term: responsible for the stimulated emission 
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Fig. Stimulated emission process.  if EE . 

 

8. The semi-classical form of 
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We assume that these quantities are dependent on the angular frequency . We note that the 
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(ii) Stimulated emission: 
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9. Electric dipole approximation 

The vector potential periodically change over the order of the distance (wavelength, 600 nm 
= 6000 Å). The radius of electron in atoms is much smaller than the wavelength. In this case, we 
can use the approximation, 
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


 « 1. 

 
This approximation is valid for  » ratom (atomic dimension). 
 
((Note)) 
 

atom

2

0

2

/ r

Ze

Za

Ze
 ,  a0/Z: atomic level spacing 

 

atom2
atom 137

2
r

ZZe

rcc









 

 
where 
 

(

 

e2

c


1

137
) 

 
In other words  
 

137

1
atom

Z
r 


 « 1 

 
for the light atoms (small Z). In this approximation, we get 
 

2

02
0

22

22
)( ˆ)(

4
if

a
fi W

m

e
W 




pε 


. 

 
(ii) Stimulated emission 
 

2

02
0

22

22
)( ˆ)(

4
if

e
fi W

m

e
W 




pε 


. 

 

Next we need to calculate the matrix element if  pε ˆ . For simplicity we take 

 

xeε    ( zen  ) 

 
Then we get the matrix element as 
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ixf p  ˆ . 

 
Suppose that the Hamiltonian is given by 
 

)ˆ,ˆ,ˆ()ˆˆˆ(
2

1ˆ 222
0 zyxVppp

m
H zyx  . 

 
Then we have 
 

xx p
m

i
px

m
Hx ˆ]ˆ,ˆ[

2

1
]ˆ,ˆ[ 2

0


 , 

 

where i  and i  are the eigenkets of 0Ĥ , 

 

iii EH  0
ˆ , fff EH  0

ˆ . 

 
We have 
 

iffiifififif xxEExHHxHx  ˆˆ)(]ˆˆˆˆ]ˆ,ˆ[ 000   

 
or 
 

iffiixf xp
m

i  ˆˆ 


  

 
or 
 

iffiixf ximp  ˆˆ   

 
In the direction of the electric polarization vector, we have 
 

ififif rmm  ̂ˆˆ 00  rεpε  

 
Using this expression, we get the final form 
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)(

ˆ)(
4

ˆ)(
4

ˆ)(
4

012

2

02

22

2
2
0

2
02

0
22

22

2

02
0

22

22



















WB

rW
e

rmW
m

e

W
m

e
W

if

if

iffi














pε

 

 
or 
 

2

02

22

ˆ)(
4

iffi rI
c

e
W 




  

 
where we use the electric dipole approximation 
 

)(
1

)( 00  I
c

W   

 
B12 and B21 are called the Einstein B-coefficient. We have 
 

2

2

22

2

2

22

2112

ˆ
3

4

ˆ
4

if

if

r
e

r
e

BB
















    (Average) 

 
The factor 1/3 arises from the random distribution of   since the radiation is isotropic.. Note that 

 cosrr   and  is the angle between  and r. We need to take an average over the random 

orientations of the electric dipole moments. 
 

3

1
sincos

2

1
)sin2(cos

4

1
cos

0

2

0

22  





 dd . 

 
where  
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q

r
re

e

 
 
Fig.  cosrr  . The angle  is variable, since the orientation of the dipole moment is not 

fixed. 
 
12. Relation between Einstein’s A & B co-efficients 

The energy density in thermal equilibrium between   and  d  is given by  dW T )( . 
We know that the Planck’s law for the radiative energy density is given by 

 

1
)(

32

2


 









ec
W T . 

 
from the Black-body problem (see the Black body problem in the APPENDIX) 

Suppose that a gas of N identical atoms is placed in the interior of the cavity: 
 

  E2  E1 . 
 
Two atomic levels are not degenerate. N1, N2 are the level population. 
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We assume that 
 

W() WT ( )WE ( ) 
 
where 
 

W(): cycle-average energy density of radiation at  
 

WT( ): thermal part 
 

WE ( ): contribution from some external source of electromagnetic radiation 
 
 

E2

E1

A21 B12W B21W

Spontaneous emission

Absorption

Stimulated emission

N1

N2

 
 
 
We set up the rate equations for N1 and N2 
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











)()(

)()(

212121221
2

212121221
1





WBNWBNNA
dt

dN

WBNWBNNA
dt

dN

 

 

Note that the spontaneous emission is independent of )(W . In the case of thermal equilibrium, 
we have 
 

dN1

dt


dN2

dt
 0 , 

 
or 
 

N2 A21  N1B12W()  N2B21W( )  0 . 
 
For thermal equilibrium with no external radiation introduced into the cavity 
 

W() WT ( ) 
 
with 
 













2112
2

1

21)(

BB
N

N

A
WT   

 
The level populations N1 and N2 are related in thermal equilibrium by Boltzman’s law 
 



N1

N2


eE1

eE2
 exp() , ( = 1/kBT) 

 
Then 
 

12

21

21

21

2112

21)(

B
B

e

B
A

BeB

A
W T













, 

 
which is compared with the Planck’s law, 
 

1
)(

32

3












 









e

c
W T  
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with 
 











32

3

12

21

2112

cB

A
BB


  

 

n
B

A
W T

12

21)(  , 

 
where  
 

1

1


 e

n  

 
or 
 

1
)(21

21  


e

WB

A

T

 

 
((Example)) TkBT   ( T  , TT  2 ) 
 

For T = 300 K, T = 6.25  1012 Hz = 6.25 THz 
 

For TkB , )(2121 TWBA   ( << T) 

For TkB , )(2121 TWBA   ( >> T) 
 
For optical experiments that use electromagnetic radiation in the near-infrared, we have visible, 
ultraviolet region of the spectrum ( >> 5 THz). 
 
We have 
 

(i) )(2121 TWBA   
 

A21:  spontaneous emission rate 

B21 )(TW : rate of thermally stimulated emission 
 

(ii) )()()()(  EET WWWW   
 
Therefore the radioactive process of interest involve the absorption and stimulated emission 
associated with the external source. 
 



 

21 
 

E2

E1

A21 B12WE B21WE

Spontaneous emission

Absorption

Stimulated emission

N1

N2

 
 













)()(

))()(

212121221
2

212121221
1





EE

EE

WBNWBNNA
dt

dN

WBNWBNNA
dt

dN

 

 
 
13. Spontaneous emission (quantum mechanics) 
From the above discussion, we get 
 











32

3

12

21

2112

cB

A
BB


  

 
We note that 
 

2

2

222

2

22

2112 ˆ
3

4
ˆ

4
ifif r

e
r

e
BB 




  

 
Thus we have 
 

2

3

23

2

2

22

32

3

2132

3

21

ˆ
3

4

ˆ
3

4

if
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r
c

e

r
e

c

B
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A























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The radiative lifetime is given by 
 

21

1

A
  

 
or 
 

2
3

2
3

32
2

3

232

3

23

21

2

3

4

3

4

3

4
ˆ

3

41







 xcx

cc

e
cx

c

e
r

c

e
A if 


 

 

 (1) 
 
or 
 

2
3

18

]][[
)]([

102354.71
Ax

A


  s-1. 

 
with 
 


 2


c

, 
c

e



2

 . 

 
Setting x = 1 Å and 400  nm = 4000 Å (typical value), we get 
 

2
3

18

1
4000

102354.71 



 = 1.13 x 108 s-1. 

 
((Note))  
 

28106
1




 s-1 

 
for the transition 2P to 1S in atomic hydrogen. 
 
It is interesting to compare Eq.(1) with the result obtained from the classical radiation theory 
(see later). The power radiated by accelerated particle of the charge (-e) is given by the Larmor 
formula 
 

3

22

3

)(2

c

ve
P


 , 

 
where v  is the acceleration. If we assume that the particle undergoes a circular motion of radius 
r, with uniform angular velocity. The centripetal acceleration is 
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r
r

v
v 2

2

 . 

 
We can argue that the time requires for the classical system to radiate energy 2/  is equivalent 
to the lifetime . Thus 
 





 3

232

3

242

3

22

3

4

3

4

3

)(421

c

re

c

re

c

veP 





   (classical) 

 
Note that the qualitative agreement between the classical and quantum mechanical results is a 
manifestation of the correspondence principle. However, the mechanism for the emission of the 
radiation is completely different in the two cases, and the classical argument can never produce 
the discrete spectrum of the radiation. 
 
14. Larmor’s formula (classical) 

The classical electrodynamics tells us that an accelerating charge radiates an electromagnetic 
field with far-field electric and magnetic field values. The instantaneous electromagnetic energy 
flow is given by the Poynting vector 
 

nE

EnEnE

EnE

BES

2

2

4

])([
4

)(
4

4









c

c

c

c









 

 
The electric field is given by 
 

retRc

e
]

)(
[

2

vnn
E


  

 
v  is evaluated at the retarded time cRttret / . This radiation has the characteristic dipole 

pattern and causes the electric dipole to lose energy, that is, to be damped. The pointing vector is 
then obtained as 
 

nvnvnnvnnS )(sin
1

4
)(

1

4
)]([

1

4
22

23

2
2

23

2
2

23

2





Rc

e

Rc

e

Rc

e
 , 

 
where  is the angle between n  and v . 
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2222 sin)()]([ vvnvnn   . 

 
The total power radiated is given by the integration of S over a sphere surrounding the charge, 
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where 
 

3

4
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0

3 


d . 

 
15. Absorption cross section 

The absorption cross section is defined as 
 

abs = absorption cross section 
 

][cm 
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In the electric dipole approximation, 
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 
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fiif

fiif

fii
i

fabs

m

c

e

m

e
c

e

m

2

2

2

22

2

2

22

2

2

ˆ
4

ˆ
4

ˆ
4

pε
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When xeε  , we have 

 

iffiixf ximp  ˆˆ   

 
Then 
 

 

 










fiiffi

fiiffiabs
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2
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2
22
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2
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ˆ)(
4

 

 
where 
 

c

e



2

 . (fine structure constant). 

 
In atomic physics, we define oscillator strength ffi  
 

2
ˆ

2
if

fi
fi x

m
f 




  

 
Thomas-Reiche-Kuhn sum rule indicates that 
 

ffi
f
  1. 

 
Using this rule 
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16. Thomas-Reiche-Kuhn sum rule 

We consider a particle in one dimension whose Hamiltonian is given by 
 

)ˆ(ˆ
2

1ˆ 2 xVp
m

H x   

 
We have the Thomas-Reiche-Kuhn rule that 
 

m
EEnx

n
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)(ˆ0
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2 
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where 
 

nEnH nˆ  
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On the other hand 
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Combining Eqs. (1) and (2), we obtain 
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where 
 

00 nn EE   

 
17. Electric dipole transition selection rule: hydrogen atom 
 

2
ˆ ifI  r  

 

zifyifxifif zyx eeer  ˆˆˆˆ   

 
is a vector. Then we have 
 

2222
ˆˆˆˆ ifififif zyxI   r  

 
Here we note that 
 

iffiififif yixyixyixyixyix  ˆˆˆˆˆˆˆˆˆˆ
*2

  

 
or 
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Similarly we have 
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Then we have 
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Spherical tensor of rank 1 
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From the Wigner-Eckart theorem, 
 

mlnTmln q ,,ˆ',',' )1( ≠ 0 for qmm '  and for 1,,1'  llll  

 
)1(

q̂T  is the odd parity operator, 

 
)1()1( ˆˆˆˆ qq TT   

 
and 
 

mlnmln l ,,)1(,,ˆ   

 

Then the matrix element mlnTmln q ,,ˆ',',' )1(  is equal to zero for ll ' . 

 
 
Then we have 
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for 1'  mm  and for 1'  ll  

 

(ii) 0,,ˆˆ',','
2

1
,,ˆ',',' )1(

1  mlnyixmlnmlnTmln  

 
for 1'  mm  and for 1'  ll . 

 

(iii) 0,,ˆ',',',,ˆ',',' )1(
0  mlnzmlnmlnTmln  

 
for mm '  and for 1'  ll . 
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APPENDIX Black body problem 
 
A.1 Maxwell’s equation 

We start with the Maxwell’s equation (in cgs units) 
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with ck . Similarly, we have 
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We now consider an electromagnetic wave in the closed cube with side L. 
 

 
 
Fig. Boundary condition for the electric field (red) (tangential component continuous) and the 

magnetic field (green) (normal component continuous). 
 
From the boundary conditions we have 
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(nx, ny, nz = 1, 2, 3, …) 
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Note that 
 

Ex = 0   for y = 0 and y = L planes and z = 0 and z = L planes. 
Ey = 0  for z = 0 and z = L planes and x = 0 and x = L planes. 
Ez = 0  for x = 0 and x = L planes and y = 0 and y = L planes. 

 
From the condition 
 

0
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we have 
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From the condition 
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we have 
 

)cos()cos()sin( 3211 zkykxkBBx  , 

 
)cos()sin()cos( 3212 zkykxkBBy  , 

 
)sin()cos()cos( 3213 zkykxkBBz   

 
where 
 

Bx = 0   for x = 0 and x = L planes  
By = 0  for y = 0 and y = L planes. 
Bz = 0  for z = 0 and z = L planes. 

 
We note that 
 

0)sin()sin()sin()( 321332211  zkykxkkEkEkEE  

 
This means that the vector (E1, E2, E3) is perpendicular to the wave vector k = (k1, k2, k3). 
For each k, there are two independent directions for (E1, E2, E3); polarization. 
 

 
 
A.2. Density of states for the modes 

Since 0332211  kEkEkE , only one of k1,k2, k3 can be zero at a time. Since if two or three 

are zero, E1 = E2 = E3 = 0. There is no electromagnetic field in the cavity. Each set of integers 
(nx, ny, nz) defines a mode of the radiation field and corresponds to two degrees of freedom of the 
field when two polarization directions are taken into account. 
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The density of states (k to k +dk) 
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where V = L3.  
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Since ck , 
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of modes having their frequencies between  and +d, 
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where c is the velocity of light and  
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We have the following formula; 
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For single mode k , the energy is given by 
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We use the Planck distribution. The total energy is given by 
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or the energy density by 
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(Planck’s law for the radiation energy density). It is clear that 
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is dependent on a variable x given by 
 

Tk
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B
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(the scaling relation). The experimentally observed spectral distribution of the black body 
radiation is very well fitted by the formula discovered by Planck. 
 

(1) Region of Wien ( 1
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(2) Region of Rayleigh-Jeans ( 1
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Fig. Scaling plot of f(x) vs x for the Planck's law for the energy density of electromagnetic 

radiation at angular frequency  and temperature T. Planck (red). Wien (blue, particle-
like). Rayleigh-Jean (green, wave-like). 
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Fig. Scaling plot of Planck's law. Wien's law, and Rayleigh-Jean's law. 
 
A.3 Deivation of u(, T) 
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Then we have 
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where 
 

  = 1.054571596 x 10-27 erg s, kB = 1.380650324 x 10-16 erg/K 
c = 2.99792458 x 1010 cm/s. 
J = 107 erg 

 
A.4 Wien’s displacement law 

u() has a maximum at 
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T is the temperature in the units of K.  is the wave-length in the unit of nm 
 

T(K)   (nm) 
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1000 2897.77
1500 1931.85
2000 1448.89
2500 1159.11
3000 965.924
3500 827.935
4000 724.443
4500 643.949
5000 579.554
5500 526.867
6000 482.962
6500 445.811
7000 413.967
7500 386.369
8000 362.221
8500 340.914
9000 321.975
9500 305.029
10 000 289.777 
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Fig. Wien's displacement law. The peak wavelength vs temperature T(K). 
 
A.5 Rate of the energy flux density 

It is assumed that the thermal equilibrium of the electromagnetic waves is not disturbed even 
when a small hole is bored through the wall of the box. The area of the hole is dS. The energy 
which passes in unit time through a solid angle d, making an angle  with the normal to dS is 
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where c is the velocity of light. The right hand side is divided by 4, because the energy density 
u comprises all waves propagating along different directions. The emitted energy unit time, per 
unit area is 
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(only for the half upper plane).  
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Fig. Radiation intensity is used to describe the variation of radiation energy with direction. 
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Fig. Geometrical factor. The photons pass from the lower half plane to the upper half plane in 

a straight way through a pin hole with the effective area (dS cos). Since the area dS is 
small enough, the form of the wave changes from plane wave to spherical wave. The 
spherical wave propagates in all directions (the total solid angle 4) after passing through 
the pin hole. The fraction of the photons propagating over the solid angle (d) is d/4  

 
 
In other words, the geometrical factor is equal to 1/4. Then we have a measure for the intensity 
of radiation (the rate of energy flux density); 
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where 
 

S (λ ,T)dλ = power radiated per unit area in ( , + d) 
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The energy flux density ),( TS   is defined as the rate of energy emission per unit area. 
 
((Note)) The unit of the poynting vector <S> is [W/m2]. S  is the energy flux (energy per 

unit area per unit time). 
 
 
(1) Rayleigh-Jeans law (in the long-wavelength limit) 
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(2) Wien's law (in short-wavelength limit) 
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We make a plot of ),( TS  as a function of the wavelength, where ),( TS  is in the units of 

W/m3 and the wavelength is in the units of nm. 
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Fig. cu()/4 (W/m3) vs  (nm). T = 2 x 103 K. Red [Planck]. Green [Wien]. Blue [Rayleigh-

Jean]. Wien's displacement law: The peak appears at  = 1448.89 nm for T = 2 x 103 K. 
This figure shows the misfit of Wien's law at long wavelength and the failure of the 
Rayleigh-Jean's law at short wavelangth. 
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Fig. (a) and (b) cu()/4 (W/m3) vs  (nm) for the Plank's law. T = 1000 K (red), 1500 K, 2000 

K, 2500 K, 3000 K (blue), 3500 K, 4000 K (purple), 4500 K, and 5000 K. The peak shifts 
to the higher wavelength side as T decreases according to the Wien's displacement law. 

 

 
 
Fig. Power spectrum of sun. cu()/4 (W/m3) vs  (nm). T = 5778 K. The peak wavelength is 

501.52 nm according to the Wien's displacement law. 
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Fig. Power spectrum of cosmic blackbody radiation at T = 2.726 K. The peak wavelength is 

1.063 mm (Wien's displacement law. 
________________________________________________________________________ 
A.6. Stefan-Boltzmann radiation law for a black body (1879). 
 
Joseph Stefan (24 March 1835 – 7 January 1893) was a physicist, mathematician and poet of 
Slovene mother tongue and Austrian citizenship. 

 
 
http://en.wikipedia.org/wiki/Joseph_Stefan 
 
_______________________________________________________________________ 
Ludwig Eduard Boltzmann (February 20, 1844 – September 5, 1906) was an Austrian 
physicist famous for his founding contributions in the fields of statistical mechanics and 
statistical thermodynamics. He was one of the most important advocates for atomic theory at a 
time when that scientific model was still highly controversial. 
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http://en.wikipedia.org/wiki/Ludwig_Boltzmann 
____________________________________________________________________ 
The total energy per unit volume is given by 
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((Mathematica)) 
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A spherical enclosure is in equilibrium at the temperature T with a radiation field that it contains. 
The power emitted through a hole of unit area in the wall of enclosure is 
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where  is the Stefan-Boltzmann constant 
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  erg/s-cm2-K4 = 5.670400 x 10-8 W m-2 K-4 

 
and the geometrical factor is equal to 1/4. The application of the Stefan-Boltzmann law is 
discussed in lecture notes of Phys.131 (Chapter 18) (see URL at 
 
http://bingweb.binghamton.edu/~suzuki/GeneralPhysLN.html 
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A.7 Duality of wave and particle 
 
Region of Rayleigh-Jeans: wave-like nature 
Region of Wien:   particle-like nature 
 
 
The mean energy contained in a volume V in the frequency range between  and +, is 
given by 
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The mean-square of the fluctuation in energy is obtained as 
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(See the Appendix for the detail). Note that 
 

2222 )()( nnnnn   (from the definition). 
 
(i) Rayleigh-Jean (wave-like) 
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(ii) Wien (particle-like) 
 

For 1 
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(iii) Planck 
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