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The two spin-1/2 fermions are in a state of orbital angular momentum l in their center-of-mass 
frame. A system of two spin-1/2 fermions is in a state of even orbital angular momentum l if its 
spin state is a singlet, and in a state of odd orbital angular momentum l if its spin state is a triplet. 
It is usual to denote the total spin as S, the total orbital angular momentum as L, the total angular 
momentum as J, and 2S+1LJ the state of the two fermions. For example, a 3P2 state corresponds to 
S = 1, L = 1, J = 2 and a 1D2 state to S = 0, L = 2, J = 2. The case of two spin-zero bosons is even 
simpler: only states of even orbital angular momentum are allowed.  
 
1. Hamilton Central force problem 

We now consider the quantum mechanics of the central force problem, where there is a 
central force between two identical particles ( 21 mmm  ). 
 

 
 
Fig. The central force problem with the identical masses with 21 mmm   There is a central 

force between two identical masses. The center of mass is at the midpoint between the 
positions of mass m1 and mass m2. 

 
We consider a system of two particles, of masses m1 and m2, at positions r1 and r2, whose 
interaction is given by a potential |)(| 21 rr V . In quantum mechanics, the Hamiltonian is given 
by 
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(i) The relative co-ordinate operator: 
 

21 ˆˆˆ rrr  ,   
 
(ii) The relative momentum operator: 
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(iii) The co-ordinate operator for the center of mass: 
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(iv) The momentum operator for the center of mass: 
 

21 ˆˆˆ ppp G . 

 
(v) The total angular momentum operator for the system: 
 

LLL ˆˆˆ  GT  

 
with 
 

GGG prL ˆˆˆ  .  prL ˆˆˆ   (relative angular momentum) 

 
The Hamiltonian can be rewritten as 
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where M is the total mass and m is the reduced mass, 
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Here we have the commutation relations. 
 

1̂]ˆ,ˆ[ ijji ipx  , 

 
0]ˆ,ˆ[ Gji px  

 

1̂]ˆ,ˆ[ ijGjGi ipx   

 
0]ˆ,ˆ[ jGi px  

 
0]ˆ,ˆ[ jGi pp  

 
In other words, the position and momentum operators of the center of mass and of the relative 
motion obeys the canonical commutation relations. Any variable associated with the center of 
mass motion commutes with any variable associated with the relative motion. These 
commutation relations imply that 
 

0]ˆ,ˆ[ relG Hp ,  0]ˆ,ˆ[ HGp , 

 
0]ˆ,ˆ[ relG HH , 0]ˆ,ˆˆ[]ˆ,ˆ[  relrelGrel HHHHH  

 

C0nsequently, we can find the eigenstate of Ĥ , which is a simultaneous eigenstate of Gp̂  and 

relĤ , rG E,p . 
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Since 
 

0]ˆ,ˆ[]ˆ,ˆˆ[]ˆ,ˆ[  GrGrGG HHHH ppp  

 
we get 
 

0ˆ Gp  

 
For simplicity, we assume that 
 

0ˆ Gp  

 
Then we have the final form of the Hamiltonian as 
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2. Parity operator and exchange operator for two identical particles 

Here we show that the exchange operator is the same as the parity operator for the two 
identical particles  
 
(i) Relative co-ordinate operator: 21 ˆˆˆ rrr   
Using the general relation 
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(ii) Relative momentum: )ˆˆ(
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Similarly we have 
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Then we can conclude that the exchange operator is equivalent to the parity operator. 
 

̂1̂2 P  
 
since 
 

rr ˆˆˆˆ 1  , pp ˆˆˆˆ 1   
 
and 
 

ijji ipx ]ˆ,ˆ[   (commutation relation). 

 
(iii) Hamiltonian 
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̂1̂2 P  (the parity operator). 
 
Then we have the commutation relation 
 

0]ˆ,ˆ[ H  
 

So there is an simultaneous eigenket of Ĥ  and ̂ . 
 

 EH ˆ ,   ˆ  

 
Since  ˆˆ 2  , we have 
 

ee  ˆ ,  oo  ˆ  
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In other words, e  has the even parity, while o  has the odd parity. Suppose that 

 
mln ,,  

 
We know that 
 

mlml l ,)1(,ˆ   

 
So  
 
(i) The wave function has odd parity for l = 1, 3, 5, …, (= o ), and 

 
(ii) The wave function has even parity for l = 0, 2, 4, 6, … ( e . 

 
Then the orbital state with even integer of l has the even parity, while the orbital state with odd 
integer of l has the odd parity. 
 
3. Classification of the symmetry for superconductivity 

When we take into account of the spin states, the symmetry of the resultant eigenket should 
be anti-symmetric. In other words, 
 

S = 0 (antisymmetric)  with l = even. 
S = 1 (symmetric)  with l = odd. 

 
(i) S-state (BCS Cooper pair) 
 

l =0, S = 0  S1  j = 1 (3 states) 
 
(ii) P-state (liquid 3He superfluidity) 
 

l =1, S = 1  P3  j = 2, 1, 0 (9 states; 5+3+1=9) 
 
(iii) D-state (high Tc superconductor) 
 

l =2, S = 0  D1  j = 2 (5 states) 
 
The onset of superconductivity occurs with the condensation of electron pairs. These electron 
pairs, called the Cooper pair, can be in a state of either total spin S=0 (spin singlet) or 1 (spin 
triplet). Being fermions, electrons anticommute. Therefore the antisymmetric spin-singlet state is 
accompanied by a symmetric orbital wave function (even parity) and vice versa, in order to 
preserve the anti-symmetry of the total wave function.  
 
4. Deuteron 
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The spin angular momentum and the orbital angular momentum of deuteron consisting of one 
neutron and one proton) can be discussed using the above discussion, since the neutron and 
proton are regarded as identical particles. 
 
Both the proton (p) and the neutron (n) have s spin 1/2. Then the total spin is S = 0 (singlet, 
antisymmetric) or S = 1 (triplet, symmetric). The relative orbital angular moment of the deuteron 
is 
 

L = 0, 2, 4,   (even parity, or symmetric) or L = 1, 3, 5, … (odd parity, or 
antisymmetric). 

 
(i) S = 0 (antisymm)  
 
Since the proton and neutron are fermions, the symmetry of the wave function should be 
antisymmetric. So we have L = 0, 2, … (symmetric). In this case the total angular momentum is 
 

000 DDD    (S = 0, L = 0, J =0).   1S0 

 

220 DDD    (S = 0, L = 2, J =2)   1D2 

 
……………………………………………………………………………………………………. 
(ii) S = 1 (symm)  
 
In this case, we have L = 1, 3, … (antisymmetric). The total angular momentum is 
 

01211 DDDDD   (S = 1, L = 1, J =2, 1, 0).   3P2,1,0 

 

23431 DDDDD   (S = 1, L = 3, J =4, 3, 2)   3F4,3,2 
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