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1. Hamiltonian of He atom

The nucleus of a He atom consists of two protons and two electrons. There are two
electrons in orbit around the nucleus. Here we neglect t the motion of the nucleus,
assuming it to be infinitely heavy. An idealized classical picture of the system is shown
below.
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Fig. Co-ordinates used in the formation of the Helium Hamiltonian

The Hamiltonian of He atom, in a frame where the nucleus is at rest, is given by
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where >0, me is the mass of electron, # and r, are the position operators of the two
electrons. There are attractive Coulomb interactions between protons (2e) and electron (-
e), and repulsive Coulomb interaction between two electrons. This Hamiltonian is
separated into two parts; the unperturbed Hamiltonian as
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and the perturbation Hamiltonian as
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We note that both H, and H, are independent of spins.

2. Simultaneous eigenstate of H,, P,™*, and P,*"

Because I—A|0 contains no interaction between the individual electrons, it represents a
Hamiltonain of two isolated electrons, each under the influence the same nucleus. The
Hamiltonian H,does not contain the spin operators. The Schrédinger equation is satisfied

by each component of the wave function; in other words, the wave function of the system
can be expressed in the form of a product,

|!//> _ ¢space> ® ‘zspin> .

Note that the Schrddinger equation essentially determines only the space function
¢S"""°e>, the spin function ‘ ;(S"‘”> remaining arbitrary. The exchange operator can be

expressed by
3 S spacey spin
I:)12 = Plz I:)12 )

spin space

where the operator FA>12 inter-exchanges the spin states of the two electrons and I312
inter-exchanges the position coordinate. We have the commutation relations,

[HAO’ IE?LZSpa[:e]:O ! [HAO7 lleSpin]:O1 [IleSpace’ IE?LZSpin]ZO'

So we can find the simultaneous eigenket of H,, P, and P,*",

|l//> _ ¢space> ® ‘Zspin> ’
such that
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Note that

A

(R,"") =(R,™)* =1

We have

S space 01 ~
PlZ = 1 O :O-x

space

The eigenket F312 for the eigenvalue +1 is

¢Sspace> _ % (1) : (symmetric)

space

The eigenket f’lz for the eigenvalue -1 is

space _i 1 i .
b, >— Zl-1) (anti-symmetric)

P,®" is the Dirac exchange operator and is defined by
7" =20+ 5,6).
We note that
P, ™"+ +)=[++)  (|++) isthe eigenket of P,®" with eigenvalue +1).
P,™"|--)=|--)  (|--) is the eigenket of P,™" with eigenvalue +1).
Since
") =l
A7) =J+-)

spin

under the basis of [+ -) and |~ +), P,™" can be expressed as

S spin A~ 01
P12 :O-x: 1 O



spin

The eigenket of F312 =0, Isgiven by

i(|+_>+|—+>) for the eigenvalue (+1),

V2

and
%(|+ —)=|-+))  for the eigenvalue (-1).

spin

In summary, the eigenket of f’lz for the eigenvalue (+1) is

[++)

Zsspin>: iz (+-)+|-+). (symmetric)

=)

spin

The eigenket of F312 for the eigenvalue (-1) is

Zaspin>= iz (+-)—|-+). (anti-symmetyric)

G Commutation relations for the total orbital and spin angular momentum
We consider the Hamiltonian

Note that I:|01, ﬁoz, and I—AIl are central fields, where the interactions depends only on the

distances between the two particles. The angular momentum il =1, x p, commutes with

N

Ho-

[He, L1=0.

We note that all observables relating to one of the particles (particle 1, in our case)
commute with all those corresponding to the other one (particle 2, in our case).

[|:|02,i1]:0.

which means that



[I:I01+ I:Ioz,il]:o,
Similarly, we get
[Hoy, L,]=0, [Ho,, L,]1=0
which means that
[Ho, + Hep, L,] =0
Then we have
[Ho, + Hy L] =0
where
P=i+L,
How about the commutation relation on [I:| ,i] =07 We note that
[H,L]=[Hy, +Hy, + Hy, L1 =[H,, L]

Using the Mathematica, we show that

[H,,L]=0.
or

(r, 1, |[H, Ly ) = Hy (- )Ly (1) = LH (s — 1w (1, 1,)
where

e2
H1(|I"l—}"2|):—, Lz:le+L22’
|”1_”2|
h 0 0 h 0 0
=—(X,—-Y,—), L,=—(X—-Y,—),
L, i(layl ylaxl) 2 I(zay2 yzaxz)
rl:(xl!yl’zl)! rzz(xzaYZ’Zz)-



((Mathematica))
Clear["Global "+"];

el?
R12 =\ (X1 -x2)2+ (yl-y2)2+ (z1-22)% ; H3 = =5

A
L1z := — (x1D[#, y1] -yl1D[#, x1]) &;
1

h
L2z := — (x2D[#, y2] -y2D[#, X2]) &;
1

Lz := (L1z[#] + L2z[#]) &;
yl=y[x1,yl, z1, X2, y2, z2];
H3Lz[y1] - Lz[H3 y1] // Simplify
0

Then we have the commutation relation

or

From these relation, we have
[H,I]=0, and[H,[,]=0
Similarly we have
[H,$°1=0, [H,S,]=0

Here

A A

[L;,S;]=0
The total angular momentum is defined by
J=L+S.
We note that

[H,L]=0, [H,S]=0, [H,I*]=0, [H,S?]=0,



From this relation we find that
[H,J]1=[H,L]+[H,8]=0.

leading to

A A A A

[H,J°]=0, [H,J],]=0

A

In summary, there is a simultaneous eigenket of the operators I?, S, I:Z , and §Z . So the

total angular momentum and the total spin angular momentum are good quantum
numbers which denote the resulting states.

4. Spin state for the total Hamiltonian H
From the above discussion, we have

[H,5,]=0, [H,8%=0, [P, H]=0.
[$%,5,]1=0
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So we have the simultaneous eigenket of P,*", §%, and S, .

(i) S=1
IS=LM,=1)=|++)
Zsspin> =1s=1M,=0) =%(|+—>+|—+>) : (symmetric)
[SEGMESEIEISS
with
R, )(sspi"> = )Ksspi">, B[S, M,) = (D>, M,)
(i) S=0

Zaspin> ~[s=0,M, = 0>%(|+ —)=|-+)). (anti-symmetyric)

with

S spin
P

6™ Bs M) = ()% s,M,)




5. Orbital state for the total Hamiltonian H
We need to choose the unperturbed states that diagonalize the perturbation (Cardinal
rule). So the best way we can do is to choose the state

|L,M;ny,k;n,, 1) = the superposition of the kets |n,,1;,m) and |n,,1,,m,)with the
Clebsch-Gordan co-efficients

with
M, =m +m,, L=l +0, 0 +1, =1L =1,

where L and M are the good quantum numbers. Here we use the following notation.

I =rL(L+1), L, =/M,
with

M=m +m,
where

m =l I1-1, -2, ... - Iy,

m, = Iz, I2- 1, I2-2, .... - |2,

7. Eigenstates [L,M;n, L;n,,l,) (Cohen-Tannoudj))
P — p (pace)p (spin)
127 12 12 )

) =c@-P,)|LM;n, I;n,,1,) ®|S, M)
_ C(i— If)lz(space)lf;lz(spin))| LM;n,L; n2,|2>®|S, Ms> '

where ¢ is a normalization constant, and |L,M;nl,ll;n2,lz> are formed of the

superposition of the kets |n;,l;,m,) and |n,,1,,m,) with the Clebsch-Gordan co-efficients.
F’Slz(spin)|s’ M 5> — (_1)S+l|S, MS > .

where



Iﬁlz(spin)|s =1 Ms> = (_1)2|S =1 MS> = |S =1 Ms> (symmetric)
P,*"|S =0,M; =0) = (-1)Y|S=0,0)=-|S =0,0) (antisymmetric)
The symmetrizer operator and antisymmetrizer operator are defined by

- 1 A A A
A(space) _ ﬁ[l_ Plz(space)] , S (space) _ Plz(space)]

1
—
N
@0 k) =[ngl)

lw) = cll- (~) R, )L, M;n, I;;n,,1,) ®[S, My ).

When S =1 (symmetric)

) =c@- P, )L, M;n,, L0, 1,) ®|S, M)
= cV2A L M;n, 150, L) ®[S, M)

When S = 0 (antisymmetric),

lw) = c@+ P, )L, M;n,, L;n,, 1) ®[S, M)
= cv/25* 9| L, M;n, I;n,, 1) ®|S, M)

(i) |n1,|1>:|n2,|2>

lw) = cl1- (-D) R, )L, M;n, 150, 1,) ®[S, M)
We use the formula,

P, L, M;n Ly, 1) = (<DL, M;ng Ly, 1)
only for |n,,l;)=|n,,1,). Then we have

lw)=cll- (=)L, M;n, L;n,, L) ®[S,My).
When L + S = even,

lw)=2c|L,M;n;,Li;n,, 1,) ®[S, My).



When L + S = odd,
lv)=0.

Here we show the Clebsh-Gordan coefficients for the two particles in the same or the
different orbital states.

(1s)(1s), (15)(2s), (1s)(3s), (25)(2s)

L=0 (symmetric)

|IL=0,M =0)=|l,=0,m, =0)[l, =0,m, =0)
={0.0),/0.0),

(1s)(2p), (1s)(3p), (2s)(2p)

L=1
IL=1,M, =1)=|11)|0,0),,
IL=1,M_=0)=[10),/0,0),,
IL=1,M_ =-1)=[1-1)|0,0),.

(2p)(2p), (2p)(3p)

L=2 (symmetric)
| L=2,M, = 2} = |1,1>l|1,1>2 ,
1
L=2.M, =1)= (1) [10), +10)}11),).

L=2.M, =0) = (11)[1-1), + 111, +210),[10),),

1
%ql,
L=2M, =-1)= 2 (1-1,10), +[10),1-1),).

IL=2,M =-2)=|1-1)[1-1),.

L=1 (anti-symmetric)
1
L=1M, =2)=2(11)10), - |10),}11),).
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L=1M, =0)= - (11)1.-0), -[1.-1)11),),

1
L=1M, =) =-(10)[1-1), 11,20}, ).

L=0 (symmetric)

1
L=0M, =0) = (15)1-1), + 111, ~0)10),)
(2p)(3d), (3p)(3d)
L=3
IL=3,M_=3)=[11) |2,2) ,
2 1
L=am,=2)= 2 j21), + 110)[22),
2 2 1
L=am, =4 = 21 [20), 42 2[10)[23), + 1) f22),
1 3 1
L=am, =0)= L) f2-1), + [H10)J20), + 1121,
2 2 1
L=am =9 =21 20), +2 200} o1, + Al 22,
2 1
L=am, =2)= 2 2-1), + 10)/2-2),
IL=3 M =3)=[1-1)[2-2),.
L=2

L=2,M =2)= —\E|1,0>1|2,2>2 +%|1,1>1| 21),

IL=2,M, =1) =%|1,1>1|2,0>2 —%|1,0>1|2,1>2 _%|1,_1>1|z,2>2,
IL=2,M_=0)= %|1,1>1| 2-1), —%|1,—1>1| 21),,

IL=2,M =-1) =%|1,1>1|2,—2>2 +%|1,o>1|2,—1>2 —%|1,—1>1|2,o>2,
L=2,M =-2)= \E|1,o>1|2,—2>2 —%|1,1>1| 21),.

11



1 3 3

L=t =)=k 20), - [ 210 f23), - [S1-1)22),
3 2 3

Lot =0)= 212, - 20y 20), + [ 2pa) o),

1 3 3
L=tM, =)= Lf11)[20), - [ 21020, + Sas) 2-2),

6. Ground state

Here we discuss the eigenvalue and eigenfunction of the system. The unperturbed I—AI0
is just the sum of two independent Coulomb Hamiltonians. Thus we can express the
eigenstate of ﬁoas simultaneous hydrogen eigenstates:

Ing, 1, m)®|[n,,1,m,) .

On the other hand, the full Hamiltonian H is too complicated to solve directly. So we
must resort to approximation methods.

Let us start with the ground state of I:IO. Since

Vieo) =[N=11=0,m=0)®|n=11=0,m=0),

is symmetrical (space part), the spin part should be anti-symmetric,

1
Zspin> = E[(|+’_>_|_;+>] (S = 1)
Then the ground state of the two electrons is given by Wspace> ;(Spin> .

E(1s,1s)® = 2(—%mec222a2) =—8(13.6eV) =-108.8¢eV ,

where Z = 2. The ground state wave function is given by
Zr

0 1 72,
(r[100) = Ry, ()Y, ©8)= ()" ™.

The first-order shift in the ground state

12



E(1s,1s5)® = <1s,1s|I:I1|1s,1s> :meecza2 =34.0eV ,
with

(155]13,f1515) = [[d*rt’, (100}, |1oo>\2%
Then we get

E(1s,1s) = E(15,15)® + E(1s,1s)" = -108.8 + 34.0 = —74.8eV ,

in comparison with the experimental result: -78.975 eV.

Here we note

1
0 _ 2
E,  =—-—mcC 5 5

with
R = 13.60569253(30) eV

Fine structure constant;

e
o=—
hic
Bohr radius:
hZ
ag =48, = meez .
eZ
—=mc’a’ =2x=m.c’a’.
a0
((Note))
1 1 1

o |- \/rlz +1,°—2rr,c086
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1 B 4

&6 = ,
jsm \/r +r,-2rr,cos6 hth +[r 1|
[[d°rdr, (r,[200)[*|(r, |200) —_jd 1|(r [100) [d°n, r2|1oo>\
y
1
r2
0
/ y
X

First we fix the direction of r1 in the z axis. @ is the angle between r1 and r2.

Fig.
r,=(r,sin@cos¢,r,sindsing,r, cos o)
_27r, 1
J.d r, r2|100‘ —_Ir dr, jd(/ﬁj.smede ( )3 %
Jr2+1,2-2rr, cosd
227"2 T 1

1,7 - .
:2;z.|.—(—)3r22e % drzfsméde —
T 8y 0 \/rl +1,” —2rr,cos6

27r,
- 4

_2( )J'r e *dr,———
r+5+m—q

27r,
- 1

—8(—) jr e “dr,

r+5+m—5

_27r, 1
—8(— jr dre * —M——
r+5+m—5

14



Then we have

_2Zn, 1 _27r, 1
[d*n,|(r, |100) ——8(—) [jr dre ® 2—1+jr dre * 5]
rl 2 _27n, w 27r,
_4( )[I 2 dr,e ® +Irdre 2 ]
O l
=4(—)39(r1)
a0
J.J.d rd’r, r1|1OO ‘ ‘ r2|100 —4(—) J-d r r1|100‘ g(r)

27Zn

_4(—) *[2m? g(r)dr—( )3 %)

(—) jdrr g(r)e *

Finally we get

°  Be?z

[[d°rd®n|(r; j100) |(r, [100)] —_8 2L )612825 T6a,

(1s1s|H J1s,15) = %%mecza2

((Mathematica))
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Clear["Global «"]; ¢[n , 7, m , r , & , 4] :=

1/ (v (n+7)1) ,

3 7 3
(21"/ a2 e an n2z172 v A (n-/-1)1

LaguerreL[-1+n-7,1+27, (2Z1r)/ (a n)])

SphericalHarmonicY[7, m, &, &];
yls[r ] :=y[1, 0, 0, r, 6, ¢];

¥2s[r_] :=¢[2,0,0, r, o, ¢];

el1?
fl =

\/rl2 +1r22- 2rlr2Cos[e]
eql = Integrate[2 n Sin[e] 1, {6, 0, xw}] //
Simplify[#, {r1>0, r2>0, (ri-r2)?>0}]&;
fll =eql // Simplify[#, r2<rl] &; F12 =eql // Simplify[#, r2 > rl] &;
gll = r22 yls[r2]% f11 ; g12 = r2° yls[r2]° 12 ;
al = Integrate[gll, {r2, O, r1}] // FullSimplify;

Z1

a2 = Integrate[gl2, {r2, rl, «}]// FullSimpIify[#, Re[—] > O] &;
a

al2 = (al+a2) // Simplify; a3 = al2 4 x r1? y1s[r1]? ;

71
Integrate[a3, {rl, 0, w}] // FullSimpIify[#, Re[—] > o] &
a

5e12 71
8 a

7. Variational method

Suppose that the wave function of the ground state is given by

1 = Zr

Z 32, a
— e ",
\/;(ao)

The Hamiltonian is given by

(r[100(2))=

16



1 ., 1 ., Zez_Ze2 e?

A =

PP Tt

om, ™ "o, P TR |rz| i
1 ., Ze* 1 ., (Z-2)e* (Z-2)¢ e’
=[z—p 5 +—pP +[ t— ]+
2m, " [7[2m, " | | | B AR

Here we calculate the expectation value (E)= <z//||:| %

1 = 1 _
(E), = —EmeCZ(Za)z(lﬂ) =§mec2a2(—2zz) ,

— [ [d% (s 100z & —rZ)eZ (r, 100(Z)|

2
-£7z-2)
0

=m,c’a’Z(Z-2)

= [d*n [ d*n(n|100Z) (r:ro0cz)f

2
-2 7(Z-2)
0

=m,c’a’Z(Z-2)

2(Z-2)e°
r

), = [d*[d*n| 4\100(z>\ Krz \100(2)\

2
=
=§Z_mec2a2
8
Then
] 1 2 2 =2 (7 5=
<E>:<y/|H|z//>:Emec a’[22°+4Z(Z-2)+,Z],

We find the minimum energy from the derivative of <E> with respectto Z ,

1 2 2 1 1 2 2 5 2
E, <-—mcC«x 5-167 mca“2(Z -——)° .
0 — 2 ( ) 2 e a ( 16)

When Z = 2,

17



E= —%mec2a22(2 - %)2 =-2x13.60569253 eV X (2 —%)2 = -77.4563 eV

where
= 5
Z=7-—=106875.
16
((Mathematica))
71\3/2 1 _71
Clear["Global +"]; ¢[r ] := (—] — exp[— r];
a0 T a0
gl =
) ri2 y o )
Integrate[¢[r1] dn— 4xr2’el? (71-2) 41r2)°,
r

{ri, 0, oo}] // Simplify[#, Re[i—(l)] > o] &;
Integrate[gl , {r2, 0, ©}] //
] Z1
Simpllfy[#, Re[;] > O] &

el2z71 (-2 +21)
a0

Minimum energy determination: Z1 = x. x is changed as a variable. z is fixed as z = 2
for He.

5
hl=-2x% +4x (Xx-2) +— x // Simplify
4

X (5+8x-16 z)

Nlip

h2 = Solve[D[hl, X] == 0, X]

1
{{x+1—6 (-5+162) ||

hil =hl1 /. h2[[1]] // FullSimplifty

1
-~ (5-162)%
128

5 12
-27-2(2——) /-z2-2
16

-77.4563

18



8. First excited state

We consider the (1s)(2s) electron configuration, where one electron is in the 1s state
and the other is in the 2s state. We note that the addition of the orbital angular momentum
IS

L=0.
1)

[1-+),|25+), —|25+),[15 +), =[l1s),[25), —|25),[15), ] +.4)
()

[15-+),[25 =), =[25 =), |15 +), =[15),|25),|+.=) =[2s),|15), )= +).
©)
“ [1s =), |25 +), = |25 4),[15 ), =[15),|25),|-+) ~[25),[15), ] +) .
4

[1s -), 25 =), —[2s =), [1s ), =[|1s),|25), —|2s),[15),1] ) -
Eq.(2) + Eq.(3):

[[15),[25),|+.=) =[25),[15), ] =+)] +[15),[ 25), | =+) = [25),[15),]+-)],
which is equal to

[+-)+|-+)

)25, ~[25)ps) ) L)

Eq.(2) - Eq.(3):
[[15),|25),|+=) =[25),[15),]=+)1=[}15), 25),|=+) = [25),[15), ] +~)1,

which is equal to

_+>.

f1525), +[25) 19,11

19



The zero-th order wave function.
Q) The antisymmetric orbital state;

|1S>1|25>2 —|28>1|18>2
2 :| A>’

where the spin state is symmetric (S = 1, triplet state)

(i) The symmetric orbital state;

[1s),|2s), +[2s),[1s)

2 2=y,

where the spin state is anti-symmetric (S = 0, singlet state).
Here we use the notation |y, ) =) for the symmetric state and the notation

lw_)=|y,) for the antisymmetric state.

1
<r',r"|1//i> =y, (r'r)= —[<r'|1s><r"|25> + <r'|25><r"|1s>] :
V2
Now we calculate the matrix element

A AR IR A CROLNCO VA (Y
= %”d r'd 3r"[<r'|1s>*<r"|25>* + <r'|25>*<r"|1s>*]Hl(r',r")
[(r15)(r"[25) (1| 25)(r"[15)]

Calculation of the matrix elements:
We assume that

Then we have

20



(. [Fily.) = [ dry " ) Gy (87)
= %”d 'd 3r"[<r'|ls>*<r"| 28>* + <r| 25>*<r"|ls>*] H,(r',r")
[(r'[1s)(r"|25) + (r'|25)(r"15)]
— Vll +V12 +V 21+V22
2

K+K"
2

=J+

o) = [[8ra®r . () G ()
— [as) (r72s) + (r2s) (o7ts) TH, )
{rias)o°f2s) - o) s
— V11 _V12 +V 21_sz
- 2

_—K+K’
2

)= [0y )G e )
— LSy (l2s) ~(r2s) (ras) TR,
[(r[Ls)(r"|25)+ (r'|25)(r"[15)]
— Vll +V12 -V 21_V22
- 2
K-K"
2

(w Al ) = [[d2rdy " e Hy ey ()
:%U drd’r[(r[Ls) (r"2s) = (r'|25) (r"[1s) TH, (", ")
[(r[1s)(r"|25) - ([ 25)(r"[15)]

- Vi =V, VotV

where

21



V= ”d r'd 3r"<r'|1s>*<r"| 25>* H, (', r")<r'|1s><r"| 25>

= J-J.d *r'd 3r"‘<r'|ls>‘2‘<r"| 28>‘2 H,(r',r")
V, = ”d%'d 3r"<r'|1s>*<r"|23>* Hl(r',r")<r'|28><r"|ls>]

Vo= ([ a2 (1) Wt o)
Voo = [[drd®r (| 25) (r"[ds) TH, (' ) (1| 25)(r"15)
= [[aerd (| 2s) (e 1) H (1)

When K is real, we have the matrix of Hi under the basis of {|y, ), |w_)};

J+K 0
H, = ,
0 J-K

where
2
V=V, =3 =27 110 1 ey = 1142V,
8la,” 81 - 2
2
V, =V, =K =08 716 0 tmcia?) = 1196y,
7298, 729 2
with
? 1
—=mcC’a’=2x>-mc’a’ =2R =27.2¢eV .
a, 2

This implies that

H,

w.)=+K)

v.),  Hilw)=Q0-K)yw).
For |y, ) =|w,) the first-order energy correction is given by
EY=J+K for S = 0 (singlet).

For |y_) =|y,) the first-order energy correction is given by

22



EY=J-K for S =1 (triplet).

9. Heisenberg ferromagnet model
Here we introduce an effective spin Hamiltonian:

A A

BS(S+1)=82=(8,+8,)?=8"+8,"+2S, -
or
1,2 & 3
?2S1‘S2:S(S+l)—5.
When S =1 (triplet),
1.~ 2 1 ~ A
?Zsl'szzai (0,-0,=1),
or
%(i+6'1-6'2)=1.
When S = 0 (singlet),
1,2 2 3 A A
?2S1~S2=—E, (6,-0,=-3),

or
1~ . .
—(1+0,-0,)=-1.
2

Then the effective Hamiltonian can be rewritten as

(H,), :Ji—%K(i+&1-&2)

:(J—%K)i—%Kél-&z .

1 ~
=(J-=KJ1-—
( 2) 2h?

K 5.8,
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When K is positive, we say that the interaction between spins is ferromagnetic. If K is
negative, the interaction is antiferromagnetic. This Hamiltonian is called the Heisenberg
model, which was first proposed by Heisenberg.

((Note))

We note that (H,),, is expressed by

1 -~ 1 . .
(Hl)eff =(J _EK)l_EKo'l‘O'z

~( —%K)iz i, -%K(&U ® G+ 61y ® Gy + Gy ® )

J-K 0 0 0

under the basis of |+ +), |+-),
We can solve the eigenvalue problem for (Hl)eff . Of course we have the eigenvalues,
(J - K) for S = 1 state and (J + K) for S = 0 state.

((Note))

The excited state thus obtained are characterized by L, S, and J as follows.
Q) L=0, S=1, J=1 ’S,

2 L =0, S=0 J=0 'S,

) L=1, S=1, J=2,1,0 °R,°RP,°P,

(4) L=1, S=0, J=1 'R,

where J is the total angular momentum, L is the orbital angular momentum, §' is the total
angular momentum of the system.

((Mathematica)) Solving the eigenvalue problem of (H,) ;
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Clear["Global "%"];S=1/2;a=1;

exp_* :=
exp /- {Complex[re_, im_] =» Complex[re, -im]};

oX = PauliMatrix[1l]; oy = PauliMatrix[2];
oz = PauliMatrix[3]; 12 = ldentityMatrix[2];
14 = IdentityMatrix[4];

H1 =
J 14-

1
E K (KroneckerProduct[12, 12] +

KroneckerProduct[ox, ox] +
KroneckerProduct[oy, oy] +
KroneckerProduct[oz, oz]) // Simplify;

H1 // MatrixForm

J-K 0 O 0
0 J -K O
o -K J 0
0 0 0 J-K

eql = Eigensystem[H1]

{{J-K,J-K,JI-K,JI+K}, {{0,0,0, 1},
{Os ls 1’ 0}’ {ls Os 01 0}’ {Os 711 1’ 0}}}

10. Evaluation of Jand K
((Mathematica))

) = {r1s) = %[f] e,

3/2 7r
1 Z 98 Zr
25) = — °(2—-—),
i 442;;(%] T

Hl(l‘l,l"") = ﬁ,

Vi, = ”d3r'd r"<r'|1s>*<r"|25>* Hl(r',r")<r'|1s><r"|28>
= ”d r'd 3r"‘<r'|1s>‘2‘<r"| 28>‘2 H,(r', r")
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11.

(@)

Vi = [T 0o o) (0725 Hr o 25)0" s

_I4ﬂr1 (|15 (1| 2s) dr.[r (r,|1s)(r, | 25) drj'27r3|n6?|r r|d0
1 "2

_ 16€°
729a,

V,, :”dsrldsr2 r1|28 ‘2‘ K |1s ‘ZH (r,r,)

_J'47zr ‘r1|23‘ drﬂ r2|1s I, er'27zsm6?|r r|d¢9
_17¢?
~ 8la,

Mathematica
Calculation of V12
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Clear["Global +"]; ¢[n , 72, m , r , 6, ¢ ] :=
1/ (v (n+7)1)

3 71 3
(21”’ a2 e an n2z172 v 4/ (n-/-1)1

LaguerreL[-1+n-/, 1+27, (2Z1r) / (an)])
SphericalHarmonicY[7, m, &, #];

yls[r_]1 :=y[1, 0,0, r, 6, ¢];

¥2s[r_] :=y¢[2, 0,0, r, 6, ¢];

el12

Tl =

\/rlz +r22- 2rlr2Cos[e]
eql = Integrate[2 x Sin[e] 1, {e, O, wn}] //
simplify[#, {r1>0, r2>0, (ri-r2)?>0}]&;
fll =eql // Simplify[#, r2<rl] &; f12 =eql // Simplify[#, r2 > rl] &;
gll = r22 yls[r2] y2s[r2] f11; gl2 = r2° y1s[r2] y2s[r2] 12 ;
al = Integrate[gll, {r2, 0, r1}] // FullSimplify;

Z1

a2 = Integrate[gl2, {r2, rl, «}] // FullSimpIify[#, Re[—] > O] &;
a

al2 = (al+a2) // Simplify; a3 =2al2 4rn ri? yls[rl] ¢2s[ri]

Z1
Integrate[a3, {rl, 0, o}] // FullSimpIify[#, Re[—] >0] &
a

16 e12 71
729 a

(b)  Calculation of V11
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Clear["Global " «"]; ¢[n , 72, m , r , & , 8] :=
1/ (v (n+7)1)

3 4r 3
(21”’ a2 e an n2z172 v 4/ (n-/-1)1

LaguerreL[-1+n-/, 1+27, (2Z1r) / (an)])
SphericalHarmonicY[7, m, &, #];

yls[r_]1 :=y[1, 0,0, r, 6, ¢];

¥2s[r_] :=y¢[2, 0,0, r, 6, ¢];

el12

Tl =

\/rlz +r22 - 2rilr2cCos[e]
eql = Integrate[2 x Sin[e] 1, {e, O, wn}] //
simplify[#, {r1>0, r2>0, (ri-r2)?>0}]&;
fll =eql // Simplify[#, r2<rl] &; f12 =eql // Simplify[#, r2 > rl] &;
gll = r22yls[r2]% f11; g12 = r22 y1s[r2]? 12 ;
al = Integrate[gll, {r2, 0, r1}] // FullSimplify;

Z1

a2 = Integrate[gl2, {r2, rl, «}] // FullSimpIify[#, Re[—] > O] &;
a

al2 = (al+a2) // Simplify; a3 = al2 4 x r1? y2s[r1]? ;

Z1
Integrate[a3, {rl, 0, ©}] // FullSimpIify[#, Re[—] >0] &
a

17 el1?2 71
81 a

12. Summary

Orthohelium:
For spin triplet (symmetric spin part), we have an anti-symmetric space part ‘w‘a’ > with

space

energy | - J.
E® =E(1,0,0) + E(n,I,m),
EY=1-1.

Parahelium:
For spin singlet (antisymmetric), we have a symmetrical space part

+J.

1//5(;;06> with energy |
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E =E(10,0) +E(n,I,m)

EY =1+

rara TPy singlet
1212
(1s3(2p) i ortho

210 tiplat

Para 15 singlet
15328
(1s)i2s) i: ortho

350 triplet

1 singlet
ERE] FPara '3 q

Fig.  Schematic energy level diagram for low-lying configurations of He atom.
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f; ~58.0 - 3FE}'.I:.‘.."
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2 -58.5 !
v
=
w
-59.0 -
35,
-59.5 -
-60.0 -

Fig. An energy-level diagram of the first excited states of He (Townsend, Quantum
Physics)

13.  Orthohelium and parahelium

In the helium energy level diagram, one electron is presumed to be in the ground state
of a helium atom, the 1s state. An electron in an upper state can have spin antiparallel to
the ground state electron (S=0, singlet state, parahelium) or parallel to the ground state
electron (S=1, triplet state, orthohelium).

It is observed that the orthohelium states are lower in energy than the parahelium
states. The explanation for this is:

1. The parallel spins make the spin part of the wavefunction symmetric.

2. The total wavefunction for the electrons must be anti-symmetric since they are
fermions and must obey the Pauli exclusion principle.

3. This forces the space part of the wavefunction to be anti-symmetric. The
wavefunction for the electrons can be written as the product of the space and spin
parts of the wavefunction.
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4. An anti-symmetric space wavefunction for the two electrons implies a larger
average distance between them than a symmetric function of the same type. The
probability is the square of the wavefunction, and from a simple functional point
of view, the square of an antisymmetric function must go to zero at the origin. So
in general, the probability for small separations of the two electrons is smaller
than for a symmetric space wavefunction.

5. If the electrons are on the average further apart, then there will be less shielding of
the nucleus by the ground state electron, and the excited state electron will
therefore be more exposed to the nucleus. This implies that it will be more tightly
bound and of lower energy.

This effect is sometimes called the "spin-spin interaction™ and is addressed by Hund's
Rule . It is part of the understanding of the ordering of energy levels in multi-electron
atoms.

14, Origin of ferromagnetism (Heisenberg: 1926-1928)
Heisenberg's article closely followed the lines of his correspondence with Pauli in

both 1926 and 1928. After noting that neglect of electron interactions leads, according to
Pauli, to paramagnetism or diamagnetism, he described the basis of his theory: "The
empirical phenomenon that ferromagnetism presents is very similar to the situation we
met earlier in the case of the helium atom." The clue was the splitting of the two-electron
helium atom into singlet and triplet terms by the exchange interaction. He continued, "We
will try to show that the Coulomb interaction together with the Pauli principle suffice to
give the same result as the molecular field postulated by Weiss. Only very recently have
the mathematical methods for treating such a complicated problem been developed by
Wigner, Hund, Heitler and London.” Recalling the Heitler-London expression for the
exchange integral, and explaining how the exchange energy can tend to align spins, he
then launched into a very formal calculation of the energy levels in terms of the
characters of the permutation group, finally specializing to nearest neighbor interactions
with a common exchange integral and introducing the Gaussian approximation. His
resulting version of the Weiss formula implied that a spin must have at least eight nearest
neighbors for the system to become ferromagnetic, a result he continued to regard as
significant; it also implies that the system must become paramagnetic again at low
temperature, but he did not "believe that this result has physical meaning. It arises
mathematically through the assumed Gaussian distribution of the energy values."

L. Hoddeson et al, edited, Out of the Crystal Maze: Chapters from the History of Solid-
State Physics (Oxford, 1992).
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APPEDIX-1 Origin of ferromagnetism (Tomonaga’s comment)

“The effect of the apparently large interaction between electron spins is not limited to
spectral term values. In order to explain the ferromagnetism of Fe, as you may know, P.
Weiss proposed long ago that there is a large interaction between molecular magnets
based on the then-accepted concept of the molecular magnet. By using this idea, Weiss
could explain a wide variety of experimental results related to ferromagnetism. However,
the origin of such a strong interaction between molecular magnets was entirely unknown.

Then there appeared the new interpretation of the spectral terms of alkaline earths.
This new interpretation was given by Heisenberg in 1926; he not only discovered that the
symmetry properties of the wave function has a close connection to a particle’s statistics
in a many-electron system but also found that it plays an important role in a variety of
problems and for the first time gave a clear explanation of the spectral terms of two-
electron systems. Furthermore, immediately after this work he applied the same idea to
the problem of ferromagnetism.”

[S. Tomonaga, The Story of Spins (University of Chicago Press, 1997). The original
book (in Japanese) was published from Chuokoron-sha (1974). It was translated from
Japanese to English by Prof. Takeshi Oka].

APPENDIX-11 Origin of ferromagnetism (Wannier’s comment)

The discovery of the correct nature for the ferromagnetic coupling force came as a
by-product of quantum mechanics. Dirac showed that the electronic spin and the pauli
exclusion principle combine in such a way as to produce between the spins of two
neighboring electrons a coupling of the form Jg, - 6,. Here &, and &, are the two spins

and J is a function of distance called the exchange energy or exchange coupling. It can be
of either sign. If the wave functions of the two electrons interpenetrate substantially the
exchange energy is of the same order as the electrostatic interaction, but at larger
distances it falls exponentially as the wave functions themselves. We may therefore think
of J as being of electrostatic order, but only acting between close neighbors. Heisenberg
was the first to realize that this exchange energy J, if of negative sign, offers a natural
explanation for the phenomenon of ferromagnetism.

[G.H. Wannier, Elements of Solid State Theory (Cambridge, 1960)].
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