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1. Pauli exclusion principle 

The Pauli exclusion principle is the quantum mechanical principle that no two identical 
fermions (particles with half-integer spin) may occupy the same quantum state simultaneously. A 
more rigorous statement is that the total wave function for two identical fermions is anti-
symmetric with respect to exchange of the particles. The principle was formulated by Austrian 
physicist Wolfgang Pauli in 1925. 
(http://en.wikipedia.org/wiki/Pauli_exclusion_principle) 

For example, no two electrons in a single atom can have the same four quantum numbers; if 
n, l, and ml are the same, ms must be different such that the electrons have opposite spins, and so 
on. Integer spin particles, bosons, are not subject to the Pauli exclusion principle: any number of 
identical bosons can occupy the same quantum state, as with, for instance, photons produced by a 
laser and Bose–Einstein condensate. 
 
2. Periodic table 

The Pauli principle produces any two electrons being in the same state (i.e., having the set of 
(n, l, ml, ms). 
 
For fixed n,  
 

l = n-1, n-2, …, 2, 1 
 

ml = l, l-1, …., -l (2l +1). 
 
Therefore there are n2 states for a given n. 
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

 

 
There are two values for ms (= ±1/2). 
Thus, corresponding to any value of n, there are 2n2 states. 
 
K shell 

n l m   s  ms 
1 0 0   1/2  ±1/2  (1s)2 

 
L shell 

n l m   s  ms 
2 0 0   1/2  ±1/2  (2s)2 
2 1 1,0,-1   1/2  ±1/2  (2p)6 
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M shell 
n l m   s  ms 
3 0 0   1/2  ±1/2  (3s)2 
3 1 1,0,-1   1/2  ±1/2  (3p)6 
3 2 2,1,0,-1,-2  1/2  ±1/2  (3d)10 

 
N shell 

n l m   s  ms 
4 0 0   1/2  ±1/2  (4s)2 
4 1 1,0,-1   1/2  ±1/2  (4p)6 
4 2 2,1,0,-1,-2  1/2  ±1/2  (4d)10 
4 3 3,2,1,0,-1,-2,-3 1/2  ±1/2  (4f)14 

 
(1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)10|(4s)2(4p)6(4d)10(4f)14|(5s)2(5p)6 ((5d)10…. 
 
Atoms with filled n shells have a total angular momentum and a total spin of zero. 
Electrons exterior these closed shells are called valence electrons. 
 

H (1s) 
He (1s)2 
Li (1s)2|(2s)1 
Ba (1s)2|(2s)2 
B (1s)2|(2s)2(2p)1 
C (1s)2|(2s)2(2p)2 
N (1s)2|(2s)2(2p)3 
O (1s)2|(2s)2(2p)4 
F (1s)2|(2s)2(2p)5 
Ne (1s)2|(2s)2(2p)6| 

Na (1s)2|(2s)2(2p)6|(3s)1 

Mg (1s)2|(2s)2(2p)6|(3s)2 
Al (1s)2|(2s)2(2p)6|(3s)2(3p)1 
Si (1s)2|(2s)2(2p)6|(3s)2(3p)2 
P (1s)2|(2s)2(2p)6|(3s)2(3p)3 
S (1s)2|(2s)2(2p)6|(3s)2(3p)4 
Cl (1s)2|(2s)2(2p)6|(3s)2(3p)5 
Ar (1s)2|(2s)2(2p)6|(3s)2(3p)6 
K (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)1 
Ca (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)2 
Sr (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)3 
Ti (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)4 
V (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)5 
Cr (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)6 
Mn (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)7 
Fe (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)8 
Co (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)9 
Ni (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)10| 
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Cu (1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)10|(4s)1 
 
3. Commutation relations for total orbital and spin angular momenta 

We consider the Hamiltonian 
 

321
ˆˆˆˆ HHHH   

 
where 
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where there are Coulomb interactions among the nucleus with the charge Ze, and two electrons 

with a charge –e outside the nucleus. Note that 1Ĥ , 2Ĥ , and 3Ĥ  are central fields, where the 

interactions depends only on the distances between the particles. The angular momentum 

111 ˆˆˆ prL   commutes with 1Ĥ . 
 

0]ˆ,ˆ[ 11 LH . 
 
We note that all observables relating to one of the particles (particle 1, in our case) commute 
with all those corresponding to the other one (particle 2, in our case).  
 

0]ˆ,ˆ[ 12 LH . 
 
which means that 
 

0]ˆ,ˆˆ[ 121  LHH  
 
Similarly, we have 
 

0]ˆ,ˆˆ[ 221  LHH  
 
Then we get 
 

0]ˆ,ˆˆ[ 21  LHH  
 
where 
 

21
ˆˆˆ LLL   

 

How about the commutation relation on 0]ˆ,ˆ[ LH ? We note that 
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]ˆ,ˆ[]ˆ,ˆˆˆ[]ˆ,ˆ[ 3321 LLL HHHHH   

 
Using the Mathematica, we show that 
 

0]ˆ,ˆ[ 3 LH . 

 
or 
 

),()(),()(]ˆ,ˆ[, 2121321213321 rrrrrrrrrr   HLLHLH zzz  

 
where 
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),,( 1111 zyxr , ),,( 2222 zyxr . 

 
((Mathematica)) 

 
 
_________________________________________________________________________ 
Then we have the commutation relations 
 

0]ˆ,ˆ[ LH , 
 
Similarly for the total spin angular momentum, we have 

Clear"Global`";

R12  x1  x22  y1  y22  z1  z22 ; H3 
e12

R12
;

L1z :
—


x1 D, y1  y1 D, x1 &;

L2z :
—


x2 D, y2  y2 D, x2 &;

Lz : L1z  L2z &;

1  x1, y1, z1, x2, y2, z2;

H3 Lz1  LzH3 1  Simplify

0
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0]ˆ,ˆ[ SH  
 
Note that 
 

0]ˆ,ˆ[ ji SL  

 

In other words, there is a simultaneous eigenket of the operators 2L̂ , 2Ŝ , zL̂ , and zŜ . So the total 
orbital angular momentum and the total spin angular momentum are good quantum numbers 
which denote the resulting states. 
 
4. Commutation relations for total angular momentum, 

The total angular momentum is defined by 
 

SLJ  . 
 
We note that 
 

0]ˆ,ˆ[ LH , 0]ˆ,ˆ[ SH , 0]ˆ,ˆ[ 2 LH , 0]ˆ,ˆ[ 2 SH  
 
From this relation we find that 
 

0]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[  SLJ HHH  
 
So the total angular momentum is also a good quantum number. 
 
5. Wave function for two particle system ((Cohen-Tannoudji)) 

We now consider the wave function of the two electron system. 
 
Because of the fermion, the wave function should be anti-symmetric under the exchange operator 
 

SL MSlnlnMLPc ,',';2;,:1;,)ˆ1̂( 12   

 
using the exchange operator 
 

)(
12

)(
1212

ˆˆˆ spinspace PPP   
 
where c is a normalization constant, and ',';2;,:1;, lnlnML L  are formed of the superpositions of 

1
,ln  and 

2
',' ln through the the Clebsch-Gordan co-efficients. We note that 

 

S
S

S
spin MSMSP ,)1(,ˆ 1)(

12
  
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where S = 1 (triplet, Ms = 1, 0, -1) for the symmetric case and S = 0 (singlet, Ms = 0) for the anti-
symmetric case. 
 
(i) ',', lnln   

 

SL
spaceS MSlnlnMLPc ,',';2;,:1;,)ˆ)1(1̂[ )(

12
1    

 
When S = 1 (symmetric)  
 

SL
space

SL
space

MSlnlnMLAc

MSlnlnMLPc

,',';2;,:1;,ˆ2

,',';2;,:1;,)ˆ1̂(

)(

)(
12




. 

 
When S = 0 (anti-symmetric), 
 

SL
space

SL
space

MSlnlnMLSc

MSlnlnMLPc

,',';2;,:1;,ˆ2

,',';2;,:1;,)ˆ1̂(

)(

)(
12




 

 
(ii) ',', lnln   

 

SL
spaceS MSlnlnMLPc ,,;2;,:1;,)ˆ)1(1̂[ )(

12
1    

 
We use the fomula, 
 

lnlnMLlnlnMLP L
L

L
space ,;2;,:1;,)1(,;2;,:1;,ˆ )(

12  , 

 
Then we have 
 

SL
SL MSlnlnMLc ,,;2;,:1;,))1(1̂[ 1    

 
When SL  = even,  
 

SL MSlnlnMLc ,,;2;,:1;,2   

 
When L + S = odd,  
 

0  

 
6. Clebsch-Gordan co-efficient for the case of He 

Here we show the Clebsh-Gordan coefficients for the two particles in the same or the 
different orbital states. The ground state of the He atom is denoted by (1s)2, where two electrons 
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are in the s1  state. We consider the excited states such as (1s)(2s), where one electron is in the 

s1  state and the other electron is in the s2  state. 

 
(1s)(2s), (1s)(3s) 
 
l = 0, l = 0 

000 DDD    L = 0 

 
 
L = 0 (symmetric) 
 

21

2211

0,00,0

0,00,00,0



 mlmlML L
 

 
(1s)(2p), (1s)(3p) 
 
l = 0, l = 1 

110 DDD    L = 1 

 
L = 1 
 

21
0,01,11,1  LML , 

 

21
0,00,10,1  LML , 

 

21
0,01,11,1  LML  

 
(2p)(3p) 
 
l = 1, l = 1 

01211 DDDDD   L = 2, 1, 0 

 
L = 2 (symmetric) 
 

21
1,11,12,2  LML  

)1,10,10,11,1(
2

1
1,2

2121
 LML  

)0,10,121,11,11,11,1(
6

1
0,2

212121
 LML  

)1,10,10,11,1(
2

1
1,2

2121
 LML  
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21
1,11,12,2  LML  

 
L = 1 (anti-symmetric) 
 

)1,10,10,11,1(
2

1
1,1

2121
 LML  

)1,11,11,11,1(
2

1
0,1

2121
 LML  

)0,11,11,10,1(
2

1
1,1

2121
 LML  

 
L = 0 (symmetric) 
 

)0,10,11,11,11,11,1(
3

1
0,0

212121
 LML  

 
(2p)(3d) 
 
l = 1, l = 2 

12321 DDDDD   L = 3, 2, 1 

 
L = 3 
 

21
2,21,13,3  LML  

2121
2,20,1

3

1
1,21,1

3

2
2,3  LML  

212121
2,21,1

15

1
1,20,1

15

2
20,21,1

5

2
1,3  LML  

212121
1,21,1

5

1
0,20,1

5

3
1,21,1

5

1
0,3  LML  

212121
2,21,1

15

1
1,20,1

15

2
20,21,1

5

2
1,3  LML  

2121
2,20,1

3

1
1,21,1

3

2
2,3  LML  

21
2,21,13,3  LML  

 
L = 2 
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2121
1,21,1

3

1
2,20,1

3

2
2,2  LML  

212121
2,21,1

3

1
1,20,1

6

1
0,21,1

2

1
1,2  LML  

2121
1,21,1

2

1
1,21,1

2

1
0,2  LML  

212121
0,21,1

2

1
1,20,1

6

1
2,21,1

3

1
1,2  LML  

2121
1,21,1

3

1
2,20,1

3

2
2,2  LML  

 
L = 1 
 

212121
2,21,1

5

3
1,20,1

10

3
0,21,1

10

1
1,1  LML  

212121
1,21,1

10

3
0,20,1

5

2
1,21,1

10

3
0,1  LML  

212121
2,21,1

5

3
1,20,1

10

3
0,21,1

10

1
1,1  LML  

 
7. Hund’s rule for the ground state;  how to find the ground state 

Electron states in the atom 
 

(n, l, m), s = 1/2 
 

For a given l, the number m takes 2l +1 values. The number s is restricted to only two values 
±1/2. Hence there are altogether 2(2l+1) different states with the same n and l. 
 
These states are said to be equivalent. 
 
According to Pauli’s principle, there can be only one electron in each such state. Thus at most 
2(2l+1) electrons in an atom can simultaneously have the same n and l. 
 
Hund’s rule is known concerning the relative position of levels with the same configuration but 
different L and S. 
 
(i) The maximum values of the total spin S allowed by the exclusion principle. 
(ii) The maximum values of the total orbital angular momentum L consistent with this value 

of S. 
(iii) SLJ   for less than half full. 

(iv) SLJ   for more than half full. 
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The electron configuration (3d)n (l = 2, n = 1 - 10) 

A d shell corresponds to l = 2, with five values of ml. Multiplying this by 2 for the spin states 
gives a total of 10. Then the configuration (3d)10 represents a full shell. It is non-degenerate, and 
the state is 1S0. This is a general rule for a full shell. It follows because each of electrons must 
have a different pair of ml and ms values. 
 
(i) (3d)1: Ti3+, V4+ 

 
2D3/2 (ground state) 

 
 

L =2, S = 1/2, J = 3/2,  
 
(ii) (3d)2: V3+ 
 

3F2 
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L =3, S = 1, J = 2,  
 
(iii) (3d)3: Cr3+, V2+ 

 
4F3/2 

 
 

L =3, S = 3/2, J = 3/2,  
 
(iv) (3d)4: Cr2+, Mn3+ 

 
5D0 



 

12 
 

 
 

L = 2, S = 2, J = 0 
 
(v) (3d)5: Fe3+, Mn2+ 

 
6S5/2 

 
 

L = 0, S = 5/2, J = 5/2 
 
(vi) (3d)6: Fe2+ 

 
5D4 
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L = 2, S = 2, J = 4 

 
(vii) (3d)7: Co2+ 

 
4F9/2 

 
 

L = 3, S = 3/2, J = 9/2 
 
(viii) (3d)8: Ni2+ 

 
3F4 
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L = 3, S = 1, J = 4 
 

 
(ix) (3d)9: Cu2+ 

 
2D5/2 

 
 

L = 2, S = 1/2, J = 5/2 
 
(3d)9 
This configuration represents a set of electrons one short of a full shell. Since a full shell has zero 
angular momentum (both orbital and spin), it follows that if one electron is removed from a full 
shell, the spin angular momentum of the remainder are minus those of the one that was removed. 
So the L, S, and J values of remainder are the same as if there were only one electron in the shell. 
 
(x) (3d)10 
A d shell corresponds to l = 2, with five values of ml. Multiplying this by two for the spin states 
gives 10. Thus the configuration (3d)10 represents a full shell. L = 0. S = 0. J = 0. 
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8. Observed spectral lines 

All observed spectral lines can be explained correctly by assuming that the only wave 
functions actually appearing are those which are antisymmetric with respect to simultaneous 
exchange of both space and spin-co-ordinates of any two electrons. This rule leads to the Pauli 
exclusion principle. It has been found that the rule of antisymmetry is obeyed, not only by 
electrons, but also by many other elementary particles including neutrons, protons, and neutrino 
(fermions) 

In order to satisfy the requirement of complete anti-symmetry, it is necessary to choose either 
symmetric spin wave functions and anti-symmetric space wave functions, or anti-symmetric spin 
and symmetric space wave functions.  
 
9. Two electrons in Helium atom 

Here we try to determine the nature of the symmetry for the orbital wave function for 
electrons in He using the nature of the parity for the orbital state and spin state for the relative 
motion of two identical particles. (see the Clebsch-Gordan co-efficient for He). 
 
9.1 (1s)2 
From the Hund's law (in the same shell), we conclude that the ground state is 0

1 S  

 

 
 

000 DDD     (L=0) 
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012/12/1 DDDD    (S=1, S = 0) 

 
L = 0 (symmetric) 
 

21

21

2211

11

0,0;10,0;1

0,00,00,0

ss

nn

mlmlML L







 

 
However, we cannot construct the anti-symmetric orbital state since 
 

0)0,00,011(
2

1
1221
 ssa  

 
For L = 0 (symmetric) and S = 0 (antisymmetric), J = 0 
 

1S0 (allowed): Ground state (Hund’s law) 
 
Note that 0 SL  (even). 
_____________________________________ 
9.2 (1s)(2s) 
 

000 DDD     (L=0) 

 

012/12/1 DDDD    (S=1, S = 0) 

 
L = 0 (symmetric) 
 

21

21

2211

21

0,0,20,0;1

0,00,00,0

ss

nn

mlmlML L







 

 
For s11   and s22  , we can construct the symmetric and anti-symmetric orbital states 

such that 
 

)1221(
2

1
2121

sssss  , )1221(
2

1
2121

ssssa   

 
where L = 0 (symmetric, and anti-symmetric). 
 
(i) L = 0 (anti-symmetric), S = 1 (symmetric), leading to J = 1 
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3S1 (allowed) 
 
(ii) L = 0 (symmetric), S = 0 (anti-symmetric), leading to J = 0 
 

1S0 (allowed), 
 
9.3 (1s)(2p) 
 

D0 x D1 = D1   (L=1) 
 

D1/2 x D1/2 = D1+ D0  (S=1, 0) 
 
L = 1  
 

21
1,10,01,1  LML , 

 

21
0,10,00,1  LML , 

 

21
1,10,01,1  LML  

 
 
For 

111 10,0 s  and 
222 ,12 mp   (m = 1, 0, -1), we can construct the symmetric 

orbital state and anti-symmetric state such that 
 

)1221(
2

1
2121

sppss  ,  L = 1 (symmetric) 

 

)1221(
2

1
2121

sppsa  ,  L = 1 (anti-symmetric). 

 
(i) L = 1 (anti-symmetric) and S = 1 (symmetric), leading to J = 2, 1, 0 
 

3P2, 
3P1 

3P0 (allowed) 
 
(ii) L = 1 (symmetric) and S = 0 (anti-symmetric), leading to J = 1 
 

1P1 (allowed). 
 
________________________________________________________________________ 
9.4 (1s)(3s) 
 

000 DDD     (L=0) 
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012/12/1 DDDD    (S=1, S = 0) 

 

21

21

2211

31

0,0;30,0;1

0,00,00,0

ss

nn

mlmlML L







 

 
For s11   and s32  , we can construct the symmetric and antisymmetric orbital states 

such that 
 

)1331(
2

1
2121

sssss  ,  L = 0 (symmetric) 

 

)1331(
2

1
2121

ssssa    L = 0 (anti-symmetric) 

 
(i)  L = 0 (anti-symmetric) and S = 1 (symmetric), leading to J = 1 
 

3S1 (allowed). 
 
(ii) L = 0 (symmetric) and S = 0 (antisymmetric), leading to J = 0 
 

1S0 (allowed) 
 
9.5 (1s)(3p) 
 

101 DDD     (L=1) 

 

012/12/1 DDDD    (S=1, S = 0) 

 
L = 1  
 

21
1,10,01,1  LML , 

 

21
0,10,00,1  LML , 

 

21
1,10,01,1  LML  

 
For 

111 10,0 s  and 
222 ,13 mp   (m = 1, 0, -1), we can construct the symmetric 

orbital state and anti-symmetric state such that 
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)1331(
2

1
1221

sppss  ,  L = 1 (symmetric) 

 

)1331(
2

1
1221

sppsa  ,  L = 1 (anti-symmetric) 

 
 
(i) L = 1 (antisymmetric) and S = 1 (symmetric), J = 2, 1, 0 
 

3P0, 
3P1,, 

3P2,  (allowed) 
 
(ii) L = 1 (symmetric) and S = 0 (antisymmetric), J = 1 
 

1P1  (allowed) 
______________________________________________________________________ 
 

 
 
Fig. An energy-level diagram of the excited states of He. 

3S1 and 1S0 from (1s)(3s). 3P0, 
3P1, 

3P2, 
3P3, and 1P1 from (1s)(2p). From the textbook of 

Gasiorowicz. 
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Fig. Energy level diagram of He atom. 1S0 from (1s)2. 1S0 and 3S1 from (1s)(2s). 1P1, 

3P0, 
3P1, 

3P2 from (1s)(2p). 1S0 and 3S1 from (1s)(3s). ). 1P1, 
3P0, 

3P1, 
3P2 from (1s)(3p). 

 
 
10. Two electrons in carbon 

We consider the energy-level diagram for the states of carbon.  
 
Carbon: 2s22p2 
 
10.1 The configuration of (2p)2 

We consider the two electrons in 
 

(2p)2 

 
The ground state can be determined from the Hund's rule. According to the Hund's rule: the 
ground state is given by. 
 

2 3P0  
 
since 
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L = 1, and S = 1. J = |L - S| = 0 because of the less than half. 
 
The addition of the orbital angular momentum: 
 

l = 1, l = 1    L = 2, 1, 0. 
 
The addition of the spin angular momentum: 
 

s = 1/2, s = 1/2 ,  S = 1, 0 
 
(2p)2 

 
L = 2 (symmetric) 
 

21
1,11,12,2  LML  

)1,10,10,11,1(
2

1
1,2

2121
 LML  

)0,10,121,11,11,11,1(
6

1
0,2

212121
 LML  

)1,10,10,11,1(
2

1
1,2

2121
 LML  

21
1,11,12,2  LML  

 
L = 1 (anti-symmetric) 
 

)1,10,10,11,1(
2

1
1,1

2121
 LML  

)1,11,11,11,1(
2

1
0,1

2121
 LML  

)0,11,11,10,1(
2

1
1,1

2121
 LML  

 
L = 0 (symmetric) 
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)0,10,11,11,11,11,1(
3

1
0,0

212121
 LML  

 
(1) L = 1 and S = 1  J = 0  3P0 (anti-symmetric) 
 

(ground state from the Hund's law) 
 

L = 1 (antisymmetric). S = 1 ( symmetric). 
 
(2) L = 1 and S = 1  J = 1  3P1 (anti-symmetric) 
 

L = 1 (antisymmetric). S = 1 (symmetric). 
 
(3) L = 1 and S = 1  J = 2  3P2 (anti-symmetric) 
 

L = 1 (antisymmetric). S = 1 (symmetyric) 
 
_________________________________________________________________ 
(4) L = 2 and S = 0  J = 2  1D2 (anti-symmetric) 
 

L = 2 (symmetric).  S = 0 (anti-symmetric). 
 
(5)  L = 0 and S = 0  J = 0  1S0 (anti-symmetric) 
 

L = 0 (symmetric).  S = 0 (anti-symmetric). 
 
(6) L = 2 and S = 1  J = 3  3D3 (symmetric, not allowed) 
 

L = 2 (symmetric).  S = 1 (symmetric). 
 
_____________________________________________________________ 
(7) L = 2 and S = 1  J = 2  3D2 Symmetric (not allowed) 
 

L = 2 (symmetric).  S = 1 (symmetric). 
 
____________________________________________________________________ 
(8) L = 2 and S = 1  J = 1  3D1 Symmetric ( not allowed) 
 

L = 2 (symmetric).  S = 1 (symmetric). 
 
________________________________________________________________________ 
(9) L = 1 and S = 0, J = 1  1P1  Symmetric ( not allowed) 

 
L = 1 (anti-symmetric). S = 0 (anti-symmetric). 

 
_______________________________________________________________________ 
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(10) L = 0 and S = 1  J = 1   3S1 (symmetric, not allowed) 
 

L = 0 (symmetric).  S = 1 (symmetric). 
 
________________________________________________________________________ 
Table 

 
S L J  
0 0 0 1S0   (antisymmetric) 
0 1 1 1P1  (symmetric) 
0 2 2 1D2  (antisymmetric) 
 
1 0 1 3S1  (symmetric) 
 
1 1 2 3P2   (antisymmetric) 
1 1 1 3P1   (antisymmetric) 
1 1 0 3P0   (ground state; antisymmetric) 
1 2 3 3D3  (symmetric) 
1 2 2 3D2  (symmetric) 
1 2 1 3D1  (symmetric) 

 
________________________________________________________________________ 
By the selection rules, L = ±1, S = 0, J = 0, ±1, no transitions are allowed between the levels 
shown in Fig. the selection rule S = 0 prohibits singlet to triplet transitions. 
 

 
 
The 0

3 P  state has the lowest energy, because the antisymmetry of the spatial part of the wave 

function for the two 2p electrons lowers their Coulomb repulsion energy (Hund's law). Just 
above 0

3 P  are the 1
3 P  and 1

3 P  states at 2 meV and 5 meV above the ground state, their energies 

being increased by the spin-orbit interaction. The 2
1 D  states are 1.26 eV above the ground state, 

the 0
1S  another 1.42 eV higher. 
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________________________________________________________________________ 
10.2 Excited state: (2p)(3s) 
 

l = 1, l = 0    L = 1 
s = 1/2, s = 1/2 ,   S = 1, 0 

 
(1) L = 1 and S = 1  J = 2, 1, 0  3P2, 

3P1, 
3P0, 

(2) L = 1 and S = 0  J = 1   1P1 
 
(2p)(3s) 
 
L = 1 
 

21
0,01,11,1  LML , 

 

21
0,00,10,1  LML , 

 

21
0,01,11,1  LML  

 

Using the operator )(
12
ˆ spaceP , we can construct both 

the symmetric   L = 1 state (with S = 0 anti-symmetric state)  
the anti-symmetric L = 1 state (with S = 1 symmtric state). 

 
For carbon the excitation of a 2p electron to a 3s orbit gives rise to a 3P2, 

3P1, 
3P0, and 1P1. 

 
(1) L = 1 and S = 1  J = 0  3P0 (anti-symmetric) 

(ground state from the Hund's law) 
 

L = 1 (antisymmetric). S = 1 ( symmetric). 
 
(2) L = 1 and S = 1  J = 1  3P1 (anti-symmetric) 
 

L = 1 (antisymmetric). S = 1 (symmetric). 
 
(3) L = 1 and S = 1  J = 2  3P2 (anti-symmetric) 
 

L = 1 (antisymmetric). S = 1 (symmetric) 
 
(4) L = 1 and S = 0  J = 1  1P1  
 

L = 1 (symmetric). S = 0 (antisymmetric). 
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Fig. Energy level diagram of carbon 

H. White, Introduction to atomic spectra  
 
11. Nitrogen 
Electron configuration: (2p)3 
 

01231012111 32)( DDDDDDDDDDD   

 
The ground state: Hund's rule 
 

S = 3/2 and L = 0. j =3/2: 4S3/2 
 
((Total orbital angular momentum L)) 
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L = 3 (symmetric), L = 0 (anti-symmetric) 
 

L= 3 (7 states)  once  (totally symmetric) 
L = 2 (5 states)) twice  (both mixed symmetry) 
L = 1 (3 states) three times (one totally symmetric, two mixed symmetry) 
L= 0 (1 state) once (totally antisymmetric). 

 
(see Young's tableau) 
 

, ,  
 m = 3 m = 2 m = 1 
 

,   
 m = 1 m =0 m = -1 
 

, ,  
 m = 0 m = -1 m = -2 
 

 
 m = -3 
 

 
 m = 0 
 
((Total spin angular momentum Spin)) 
 

2

3
S  (symmetric) 

 
 

, , ,  
 m=3/2 m=1/2 m=-1/2 m=-3/2 
 
where 
 


2

3
,

2

3
SMS  

 

1 1 1 1 1 2 1 1 3

1 2 2 1 32 1 33

2 2 2 32 2 32 3

333

1

2

3

1 1 1 1 1 2 1 2 2 2 2 2
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][
3

1

2

1
,

2

3
  

 

][
3

1

2

1
,

2

3
  

 


2

3
,

2

3
 

 
Then we have the following cases for the total angular momentum 
 
S = 3/2 (symmetric), L= 0 (antisymmetric), leading to j = 3/2 
 

4S3/2 

 
which is the same one predicted from the Hund's law. 
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Fig. Energy level diagram of nitrogen 
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12. Oxygen 
Electron configuration: (2p)4 
 
The ground state: Hund's rule 
 

S = 1 and L = 1. J=2: 3P2 
 

 
 
Fig. Energy level diagram of oxygen. H. White, Introduction to atomic spectra  
 
________________________________________________________________________ 
13. Selection rules for electric dipole transitions in the L-S coupling scheme 
 
1. j = 0, ±1  (the transition between j= 0 and j'= 0 is not allowed) 
2 mj = 0, ±1  (the transition between mj = 0 and  mj'= 0 is not allowed if j = j'). 
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3. 1L   Term 
4 0S   Term 
 
_____________________________________________________________________________ 
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