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Abstract 

One of the authors (M.S.) has been teaching the physics laboratory courses (from the 
Sophomore Laboratory to the Advanced (Graduate) Laboratory) for many years at the 
Binghamton University. Undergraduate students spend a lot of time in studying the fundamental 
physics in the physics courses such as the introductory physics, mechanics, electromagnetism, 
and so on. Even if they understand the theories in a sufficient depth to be able to apply it readily, 
they encounter some difficulties in understanding the essence of the experiments in the physics 
laboratory courses, since the conditions of the experiments are more complicated than the ideal 
conditions of the physics models. As far as we know, so far there are very few opportunities in 
discussing the gap between the real physics and ideal physics for the physics laboratory courses. 
The mathematics which is required for the real physics is much more complicated than the 
mathematics for the ideal physics.  

In nature there are many examples of the coupled pendulum. The nature of the physics is 
governed mainly by the coupling constant between two pendulums, leading to the complicated 
physical behaviors. This note is an attempt to provide an account which treats physical examples 
(coupled pendulum in the present case) in some depth. As an example, we discuss the physics of 
coupled pendulum in the Sophomore Laboratory and the one dimensional chain in the Junior 
Laboratory in the Physics Department of the Binghamton University. In this note, first we 
discuss the motion of coupled pendulum the absence of an external force. The motion is 
described by nonlinear differential equations even in the limit of small angles. The numerical 
calculations are carried out using the Mathematica programs. These programs are very useful 
since the problems can be solved in spite of the complicated nature. It is clearly seen that there 
are two normal modes, the in-phase mode and the out of phase mode. The motion of the coupled 
pendulum is discussed by Feynman using very simple model. The motions are expressed by 
linear differential equations in the limit of small angles. The in-phase mode and out-of-phase 
modes can be easily derived. The general motion is a superposition of the in-phase mode and the 
out-of phase mode. Next we discuss the motion of coupled pendulum under an external force 
with the angular frequency . When  is close to the angular frequencies of the normal modes, 
the absorption of the power by the system becomes maximum. We also discuss the motion of a 
series of masses connected by springs, where the masses are suspended on strings. 
Experimentally we need to determine the dispersion relation of the 1D chain system for the 
propagation of the longitudinal and transverse waves. We discuss how to measure the 
characteristic angular frequency of the particular normal modes. 

In writing this note, we read many excellent textbooks and reviews on the simple pendulum 
and coupled pendulum.1-8 These references are very useful in our understanding the physics of 
the coupled pendulum. 
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1. Coupled pendulum 

1.1 Nonlinear differential equations 

Two pendulums, connected by a mass-less spring, are allowed to vibrate in the same vertical 
plane. Here we consider the limiting case of small oscillations. Figure 1 shows the schematic 
diagram of the system.  

 

   
Fig.1 Schematic diagram of the coupled pendulum with mass m1 and mass m2. These masses are 
connected by a spring with the spring constant k. L1 and L2 are the lengths of the un-stretched 
spring. The mass m1 is located at (x1, y1) from the reference vertical line-1. The mass m2 is 
located at (x2, y2) from the reference vertical line-2.  

 

The coordinates of the two masses from each reference vertical line are expressed by 
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for the mass 1, and 
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for the mass 2, respectively. The Lagrangian of the system is given by a difference between the 
kinetic energy and the potential energy, 
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Here we assume that the term of 2/2/ 2
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where L is the length of un-stretched spring. This equation can be rewritten as 
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The Lagrange’s equation given by 
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leads to the differential equations for 1 and 2, 
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For simplicity, we assume that |1| and |2| are very small angles;  

1cos 1  ,  1cos 2  , 

11 sintan   ,  22 sintan    

Then we have the nonlinear differential equation 
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with the initial conditions given by 

1(t = 0) = 10, 2(t = 0) = 20, 

v1(t = 0) = v10, v2(t = 0) = v20. (1.11) 

 



((Mathematica)) 
The derivation of the Lagrange’s equation by using the Mathematica (VariationalD program).  

 

 

x1  L1 Sin1t; x2  L2 Sin2t; y1  L1 Cos1t;

y2  L2 Cos2t
L2 Cos2t
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L22 m2 Cos2t2 2t2

Needs"VariationalMethods`"
eq1  VariationalDLL, 1t, tCos1t  FullSimplify

L1 k L1 Sin1t  k L2 Sin2t  g m1 Tan1t 
L1 m1 Sin1t 1t2  L1 m1 Cos1t 1t

eq2  VariationalDLL, 2t, tCos2t  FullSimplify

L2 k L1 Sin1t  k L2 Sin2t  g m2 Tan2t 
L2 m2 Sin2t 2t2  L2 m2 Cos2t 2t

s1  Solveeq1  0, 1t 
1t 
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s2  Solveeq2  0, 2t   Simplify
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Tan2t  L2 m2 Sin2t 2t2
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1.2 Numerical calculation of the nonlinear differential equation by Mathematica: 

Plot of 1(t) vs 2(t) 

The nonlinear differential equation can be solved using the Mathematica (NDSolve program). 
For simplicity, we assume that m = m1 = m2 = 1, L = L1 = L2 = 5, g = 9.8, v1(t = 0) = v10 = 0, and 
v2(t = 0) = v20 = 0. 1(t = 0) = 10 = 0.5. Here we calculate 1(t), 2(t), 1’(t), 2’(t), when 2(t = 
0) = 20 is changed as a parameter, 20 = - 2.5, - 1.5, -0.5, 0, 0.5, 1.5, and 2.5. The 
numerical calculation is carried out for t = 0 – 300. The wave analysis in 1(t) thus calculated are 
carried out using the fast Fourier spectrum (FFT) (Mathematica program). This makes it so easy 
for one to determine the angular frequencies of the normal modes involved in the wave. The 
fundamental concept of the normal modes will be discussed in Sec.2. 

 

1.2.1 1 vs t and 2 vs t and FFT (fast Fourier transform) spectrum 

(i) In-phase mode: v10 = v20 = 0. 10 = 0.5° and 20 = 0.5° 

Figure 2(a) shows the plot of 1 and 2 as a function of t, where v10 = v20 = 0. 10 = 0.5° and 
20 = 0.5°. It is found that 1(t) = 2(t) at any t. Figure 2(b) shows the fast Fourier transform 
(FFT) of 1 vs t. This FFT spectrum indicates that there is only one normal mode with the 
angular frequency  = 0 = )4.1(/ Lg . This mode corresponds to the in-phase mode (see Sec. 

2). 

 

   
    (a) (b) 
Fig.2 (a) 1 vs t (blue) and 2 vs t (blue). m1 = m2 = 1. k = 1, L = L1 = L2 = 5, g = 9.8. The initial 
conditions are given by v10 = v20 = 0. 10 = 0.5° and 20 = 0.5°.  (b) FFT spectrum for 1(t) vs t 
(FFT intensity vs ). There is one peak at  ≈ 1.4.  

 

(ii) The out-of-phase mode: v10 = v20 = 0. 10 = 0.5° and 20 = -0.5° 

Figure 3(a) shows the plot of 1 and 2 as a function of t, where v10 = v20 = 0. 10 = 0.5° and 
20 = -0.5°. It is found that 1(t) = -2(t) at any t. Figure 3(b) shows the FFT spectrum of 1 vs t, 
which indicates that there is only one normal mode with the angular frequency  ≈ 2.0. This 
mode corresponds to the out-of-phase mode (see Sec. 2). 
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    (a) (b) 
Fig.3 (a) 1 vs t (red) and 2 vs t (blue). m1 = m2 = 1. k = 1, L = L1 = L2 = 5, g = 9.8. The initial 
conditions are given by v10 = v20 = 0. 10 = 0.5° and 20 = -0.5°.  (b) FFT spectrum for 1(t) vs t 
(FFT intensity vs ). There is one peak at  ≈ 2.0 corresponding to the out-of-phase mode. 

 

(iii) v10 = v20 = 0. 10 = 0.5° and 20 = 0°. 

Figure 4(a) shows the plot of 1 and 2 as a function of t, where v10 = v20 = 0. 10 = 0.5° and 
20 = 0°. Figure 4(b) shows the FFT spectrum of 1 vs t, which indicates that there ae two normal 
modes with the angular frequencies  ≈ 2.0 and  ≈ 1.4. The curve of 1 vs t (also 2 vs t) is 
formed of the superposition of two waves with the normal modes ( ≈ 2.0 and  ≈ 1.4). The 
peak height at  ≈ 2.0 is almost the same as that at  ≈ 1.4. 

 

   
    (a) (b) 
Fig.4 (a) 1 vs t (red) and 2 vs t (blue). m1 = m2 = 1. k = 1, L = L1 = L2 = 5, g = 9.8. v10 = v20 = 0. 
10 = 0.5° and 20 = 0°. (b) FFT spectrum for 1(t) vs t (FFT intensity vs ). There are two peaks 
at  ≈ 2.0 and  ≈ 1.4.  

 

 (iv) v10 = v20 = 0. 10 = 0.5° and 20 = -1.5° 

In the case of the initial conditions with v10 = v20 = 0. 10 = 0.5° and 20 = -1.5°, it is found 
from Figs.5(a) and 5(b) that the curve of 1 vs t (also 2 vs t) are formed of the superposition of 
two waves with the normal modes ( ≈ 2.0 and  ≈ 1.4). The peak height at  ≈ 2.0 is higher 
than that at  ≈ 1.4, indicating the dominance of the normal mode with  ≈ 2.0. 
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  (a) (b) 
Fig.5 (a) 1 vs t (red) and 2 vs t (blue). m1 = m2 = 1. k = 1, L = L1 = L2 = 5, g = 9.8. v10 = v20 = 0. 
10 = 0.5° and 20 = -1.5°. (b) FFT spectrum for 1(t) vs t (FFT intensity vs ). There are two 
peaks at  ≈ 2.0 and  ≈ 1.4.  

 

(v) v10 = v20 = 0. 10 = 0.5° and 20 = 1.5° 

In the case of the initial conditions with v10 = v20 = 0. 10 = 0.5° and 20 = 1.5°, it is found 
from Figs.6(a) and 6(b)  that the curve of 1 vs t (also 2 vs t) is formed of the superposition of 
two waves with the normal modes ( ≈ 2.0 and  ≈ 1.4). The peak height at  ≈ 1.4 is higher 
than that at  ≈ 2.0, indicating the dominance of the normal mode with  ≈ 1.4. 

 

   
  (a) (b) 
Fig.6 (a) 1 vs t (red) and 2 vs t (blue). m1 = m2 = 1. k = 1, L = L1 = L2 = 5, g = 9.8. v10 = v20 = 0. 
10 = 0.5° and 20 = 1.5°. (b) FFT spectrum for 1(t) vs t (FFT intensity vs ). There are two 
peaks at  ≈ 2.0 and  ≈ 1.4.  
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((Mathematica)) The program used in order to get the FFT spectrum shown in Fig.4(b). 
 

 

 

1.2.2 The plot of 1(t) vs 2(t) under various conditions 

Here we make a plot of 1(t) vs 2(t) under various conditions. The results are shown in 
Figs.7(a) – (g). The in-phase mode is observed under the condition that 10 = 0.5 and 20 = 0.5. 
It is found from Fig.7(e) that 1(t) = 2(t) any t, showing a straight line with a positive slope (= 1) 
in the plane of 1(t) vs 2(t). The out-of-phase mode is observed under the condition that 10 = 
0.5 and 20 = -0.5, It is found from Fig.7(c) that 1(t) = -2(t) any t, showing a straight line with 
a negative slope (= -1) in the plane of 1(t) vs 2(t).  

 

m1  1; m2  1.0; k  1; l1  5; l2  5; g  9.8;

time10_, v10_, 20_, v20_, tmax_, N1_ :

Modulenumsol, numtable,

numsol 

NDSolve
1''t 

m1l11't2  g  kl1Sin1t  kl2Sin2t
m1l1Cos1t,

2''t 

m2l22't2  g  kl2Sin2t  kl1Sin1t
m2l2Cos2t, 10  10, 1'0  v10, 20  20,

2'0  v20, 1t, 2t, t, 0, tmax;

numtable  Tablet, Evaluate180


1t . numsol, t, 0, tmax,

tmax

N1
;

eq1  time0.5 °, 0, 0 °, 0, 200, 8192 ; d1  Dimensionseq11;

list1  Tableeq1i, 21, i, 1, d1  1; list2  Fourierlist1  Chop;

list3  Table 2 

200
n, Abslist2n2, n, 1, 1024;

s1  ListLogPlotlist3, Joined  True, PlotRange  0, 4, 0.01, 300,

PlotStyle  Hue0.0, Thickness0.01,

AxesLabel  "", "FFT intensity",

PlotLabel  StyleFramed 10  0.5, 20  0, 16, Blue,

Background  LighterYellow, Background  Gray, PlotRange  All,

Ticks  Automatic, DisplayFunction  Identity;

Shows1, DisplayFunction  $DisplayFunction



   
  (a) 10 = 0.5 and 20 = - 2.5. (b) 10 = 0.5 and 20 = - 1.5. 
 

   
  (c) The out-of-phase mode.  (d) 10 = 0.5 and 20 = 0. 
 10 = 0.5 and 20 = - 0.5. 
 
Fig.7 (a) - (g) Plot of 1(t) vs 2(t) when 2(t = 0) = 20 is changed as a parameter, 20 = - 2.5, - 
1.5, -0.5, 0, 0.5, 1.5, and 2.5. 10 = 0.5 is fixed. m1 = m2 = 1. k = 1. L1 = L2 = 5. g = 9.8. 
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 (e) The in-phase mode. (f) 10 = 0.5 and 20 = 1.5. 
 10 = 0.5 and 20 = 0.5.  
 

  
  (g) 10 = 0.5 and 20 = 2.5.  
 
Fig.7(a) - (g) Plot of 1(t) vs 2(t) when 2(t = 0) = 20 is changed as a parameter, 20 = - 2.5, - 
1.5, -0.5, 0, 0.5, 1.5, and 2.5. 10 = 0.5 is fixed. m1 = m2 = 1. k = 1. L1 = L2 = 5. g = 9.8. 
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((Mathematica)) The Mathematica program used for Fig.7(a). 
 

 

 

1.2.3 The phase plane of 1(t) vs 1
’(t) under various conditions 

Here we assume that m1 = m2 = m = 1, L1 = L2 = 5, g = 9.8, v1(t = 0) = v10 = 0, and v2(t = 0) = 
v20 = 0. 1(t = 0) = 10 = 0.5. 2(t = 0) = 20 is changed as a parameter. 20 = - 2.5, - 1.5, -0.5, 
0, 0.5, 1.5, and 2.5. We make a plot of the phase plane 1(t) vs 1’(t) under various 
conditions. The results are shown in Figs.8(a) – (g). There are two normal modes (the in-phase 
mode and the out-of-phase mode). The in-phase mode is observed under the condition that 10 = 
0.5 and 20 = 0.5, showing a simple ellipse in the phase plane of 1(t) vs 1

’(t). The out-of-
phase mode is observed under the condition that 10 = 0.5 and 20 = -0.5, showing a simple 
ellipse in the phase plane of 1(t) vs 1

’(t). In the case when the curve of 1(t) vs 1’(t) [or 2(t) vs 
2’(t)], the shape of the phase plane is deviated from the simple ellipse, becomes a kind of spiral 
depending on the value of 20. The results are shown in Figs.8 (a) – (g) 

 

Clear"Global`"
m1  1; m2  1; k  1; l1  5; l2  5; g  9.8;

time10_, v10_, 20_, v20_, tmax_, opts__ :

Modulenumsol, numgraph1,

numsol 

NDSolve
1''t 

m1l11't2  g  kl1Sin1t  kl2Sin2t
m1l1Cos1t,

2''t 

m2l22't2  g  kl2Sin2t  kl1Sin1t
m2l2Cos2t, 10  10, 1'0  v10, 20  20,

2'0  v20, 1, 2, t, 0, tmax;

numgraph1  ParametricPlotEvaluate1t, 2t . numsol,

t, 0, tmax, opts, DisplayFunction  Identity
timelist  time0.5 °, 0, 2.5 °, 0, 100,

PlotStyle  Hue0, Thickness0.005, Hue0.5, Thickness0.01,

AxesLabel  "1", "2",

PlotLabel  StyleFramed 10  0.5, 20  2.5, 16, Blue,

Background  LighterYellow, Background  Gray, Ticks  Automatic,

DisplayFunction  Identity;

$



   
  (a) 10 = 0.5 and 20 = - 2.5. (b) 10 = 0.5 and 20 = - 1.5. 
 

   
  (c) The out-of phase mode. (d) 10 = 0.5 and 20 = 0. 
 10 = 0.5 and 20 = - 0.5. 
 
Fig.8(a) - (g) Plot of the phase plane 1(t) vs 1’(t), when 2(t = 0) = 20 is changed as a 
parameter, 20 = - 2.5, - 1.5, -0.5, 0, 0.5, 1.5, and 2.5. 10 = 0.5 is fixed. m1 = m2 = 1. k = 
1. L1 = L2 = 5. 
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  (e) The in-phase mode (normal mode) (f) 10 = 0.5 and 20 = 1.5. 
 10 = 0.5 and 20 = 0.5. 
 

  
  (g) 10 = 0.5 and 20 = 2.5. 
 
Fig.8(a) - (g) Plot of the phase plane 1(t) vs 1’(t), when 2(t = 0) = 20 is changed as a 
parameter, 20 = - 2.5, - 1.5, -0.5, 0, 0.5, 1.5, and 2.5. 10 = 0.5 is fixed. m1 = m2 = 1. k = 
1. L1 = L2 = 5. 
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((Mathematica))  The programs to derive Fig.8(a). 

 

 

2. Normal modes in the coupled pendulum (from the book of Feynman lectures1) 

2.1 Linear differential equations 

The solution of the coupled pendulum is shown by Feynman as follows (see the book of 
Feynman Lectures on Physics volume-1, chapter 48). This method is very useful for one in 
understanding the concept of the normal modes. 

 

Clear"Global`"
m1  1; m2  1; k  1; l1  5; l2  5; g  9.8;

time10_, v10_, 20_, v20_, tmax_, opts__ :

Modulenumsol, numgraph1,

numsol 

NDSolve
1''t 

m1l1 1't2  g  kl1Sin1t  kl2Sin2t
m1l1Cos1t,

2''t 

m2l2 2't2  g  kl2Sin2t  kl1Sin1t
m2l2Cos2t, 10  10, 1'0  v10, 20  20,

2'0  v20, 1, 2, t, 0, tmax;

numgraph1  ParametricPlotEvaluate1t, 1't . numsol,

t, 0, tmax, opts, DisplayFunction  Identity
timelist  time0.5 °, 0, 2.5 °, 0, 75,

PlotStyle  Hue0., Thickness0.01, Hue0.5, Thickness0.01,

AxesLabel  "1", "1'",

PlotLabel  StyleFramed 10  0.5, 20  2.5, 16, Blue,

Background  LighterYellow, Background  Gray, PlotRange  All,

Ticks  Automatic, DisplayFunction  Identity;

Showtimelist, DisplayFunction  $DisplayFunction



    
Fig.9 Geometry of the pendulum. The mass is located at the co-ordinate (x, y) from the vertical 
reference line.  

 

Using the geometry, we have 

1

2
12

1

1
1

12
1111

1
1

11
1111

2
)

2
(2

2
sin2)cos1(

2
sin2

2
cos

2
sin2sin

L

x

L

x
LLLy

LLLx









,

 (2.1) 

for the mass-1 and 

2

2
22

2

2
2

22
2222

2
2

22
2222

2
)

2
(2

2
sin2)cos1(

2
sin2

2
cos

2
sin2sin

L

x

L

x
LLLy

LLLx









,

 (2.2) 

for the mass-2. The mass m1 and m2 are located at the x-coordinates x1 and x2 from each vertical 
reference line. The Lagrangian can be given by 
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(i) The Lagrange's equation 
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 (ii) The Lagrange's equation 
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((Note)) The standard derivation of Eqs (2.4) and (2.5) will be shown in Sec.5 without using the 
Lagrangian method. 

Then we get the two linear differential equations, 

212
2

2

121
1

1

)(

)(

x
L

g
xx

m

k
x

x
L

g
xx

m

k
x









. (2.6) 

 

2.2 Steady-state solutions 

For simplicity, we assume that m1 = m2 = m. 
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where the characteristic angular frequencies are defined by 
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In order to get steady solutions, we assume that the solutions are given by the forms, 
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Then we have 
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with 2  . This is an eigenvalue problem. is the eigenvalue. This eigenvalue problem can be 
easily solved by using Mathematica.  

 

((Mathematica)) The solution of eigenvalue problem 

 

 

We find that there are two normal modes; the in-phase mode and the out-of phase mode. 

(i) In-phase mode with 0
)1(    

The eigenvector corresponding to this mode is given by 
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where this vector is normalized to the unity. 

(ii) Out-of-phase mode 2
1

2
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The frequency of the out-of-phase mode is higher than that of the in-phase mode. The 
eigenvector corresponding to this mode is 
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The spring is never stretched and both masses oscillate at the frequency (1), as if the spring were 
absent. The spring contributes a restoring force and raises the frequency. The spring is 
periodically stretched and shrunk and therefore the spring constant k contributes to the 
expression for the frequency (2). 

Here we note that  
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when m = m1 = m2 = 1, L = L1 = L2 = 5, g = 9.8. These values are in good agreement with the 
results derived from Sec.1.2.  

Since the differential equations are linear, the general form is given by any superposition of 
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where C1 and C2 are complex constants and are determined from the initial conditions. Then we 
have 
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and the initial conditions, 
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(i) Initial condition for the observation of the in-phase mode 

To this end, it is necessary to have C2 = 0. Then we get 

]Re[
2

1
)(

]Re[
2

1
)(

12

11

ti

ti

eCtx

eCtx









,

 (2.16) 

which leads to x1(t) = x2(t). In other words, if we have the initial condition such that  

)0()Re(
2

1
)0( 211  txCtx

,
 )0()](Re[

2

1
)0( 211 xCix   

.
 (2.17) 

Then the in-phase mode can be realized experimentally. 

(ii) Initial condition for the observation of the out-of-phase mode 

To this end, it is necessary to have C1 = 0. Then we get 
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which leads to x1(t) = -x2(t). In other words, if we have the initial condition such that  
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Then the out-of-phase mode can be realized experimentally. 

 

2.3 Steady-state solutions in the case of m1 ≠ m2. 

We consider the steady-state solution when m1 ≠ m2, L1 = L2 = L. The equations of motion is 
given by 
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with 
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In order to get steady solutions, we assume that the solutions are given by the forms, 
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Then we have 
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with 2  . This is an eigenvalue problem. is the eigenvalue. This eigenvalue problem can be 
easily solved by using Mathematica. 

 



((Mathematica)) The solution of the eigenvalue problem using Mathematica 
 

 

(i) In-phase mode with 0
)1(    

The eigenvector corresponding to this mode is given by 











1

1)1(u
,
 (2.24) 

where this vector is not normalized to the unity. In this case we have the in-phase mode, 
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(ii) Out-of-phase mode 2
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The frequency of the out-of-phase mode is higher than that of the in-phase mode. The 
eigenvector corresponding to this mode is 
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where this vector is not normalized to the unity. In this case we have the out-of-phase mode, 
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Figure 10 show the plot of )1(  and )2(  as a function of the mass ratio m2/m1, where m1 = 1, L = 
L1 = L2 = 1, k = 1, and g = 9.8. )1( is independent of the mass ratio m2/m1;  

4.1/0
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In contrast, )2(  is strongly dependent on the mass ratio m2/m1 = , for <1, 
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In the limit of  →∞, 
)2(  tends to 72.196.2  .  
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Fig.10 The angular frequencies of the in-phase mode, (1), and the out-of-phase mode, (2) as a 
function of the mass ratio m2/m1. m1 = 1. k = 1. L1 = L2 = 5. g = 9.8. The values of (2) derived 
from the FFT spectrum are also plotted as a function of m2/m1 (see Sec.3). 

 

3. Numerical calculation in the case when m1 is not equal to m2 for the coupled 
pendulum  

Here we proceed the further discussion of Sec.2 for the case of m1 ≠ m2.Using the 
Mathematica, numerical calculations is made where m1 = 1, L1 = L2 = 5, g = 9.8, and the mass m2 
is changed as a parameter (0.1≤m2≤2.0). For simplicity we adopt the initial conditions such that 

1(t = 0) = 10 = 0.5º 2(t = 0) = 20 = 0º 

v1(t = 0) = v10 = 0, v2(t = 0) = v20 = 0. 

The results are shown in Fig.11, (i) the plot of the 1(t) vs 2(t), (ii) the phase plane [1(t) vs 
1'(t)], and (iii) the FFT spectrum of 1(t) vs t for each mass m2. As shown in the FFT spectrum, 
we find that there are two normal modes; the in-phase mode with (1) and the out-of-phase mode 
(2). The angular frequency (1) is independent of the mass m2, while (2) is strongly dependent 
on the mass m2 for m2<1.0. The values of (2) obtained from the FFT spectrum for each mass are 
plotted in Fig.10 as red points. These points fall very well on the theoretical curve given by 
Eq.(2.28). The phase plane (1(t) vs 1'(t)) exhibits complicated patterns depending on the mass 
m2. When m2 = 0.69, the phase plane becomes very simple, consisting of big ellipse, medium 
ellipse, and small ellipse. The time dependence of 1(t) and 2(t) is shown in Fig.11(h).  

We can conclude that the change of mass m2 does not give rise to any significant change in 
the motion of coupled pendulum since the differential equations are still linear. The situation 
may be different for the large angle cases where the differential equations becomes nonlinear. 
We do not discuss this problem in this note in spite of much interest. 

 



 

(a) m1 = 1, m2 = 1.0. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.01. 

 

 

(b) m1 = 1, m2 = 0.9. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.04. 

 

Fig.11 (a) - (s) The plots of plot of (i) the 1(t) vs 2(t), (ii) the phase space [1(t) vs 1'(t)], and 
(iii) the FFT spectrum of 1(t) vs t for each mass m2. The values of 1(t) and 2(t) are 
calculated as a function of the time t for t = 0 - 200 (typically). m2 = 1, 0.9, 0.8, 0.73, 0.71, 
0.696, 0.692, 0.690, 0.688, 0.684, 0.68, 0.67, 0.66, 0.60, 0.50, 0.40, 0.30,  
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(c) m1 = 1, m2 = 0.8. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.07. 

 

 

(d) m1 = 1, m2 = 0.73. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.10. 

 

Fig.11 (a) - (s) The plots of plot of (i) the 1(t) vs 2(t), (ii) the phase space [1(t) vs 1'(t)], and 
(iii) the FFT spectrum of 1(t) vs t for each mass m2. The values of 1(t) and 2(t) are 
calculated as a function of the time t for t = 0 - 200 (typically). m2 = 1, 0.9, 0.8, 0.73, 0.71, 
0.696, 0.692, 0.690, 0.688, 0.684, 0.68, 0.67, 0.66, 0.60, 0.50, 0.40, 0.30,  
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(e) m1 = 1, m2 = 0.71. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.14. 

 

 

(f) m1 = 1, m2 = 0.696. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 
1 vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.14. 

 

Fig.11 (a) - (s) The plots of plot of (i) the 1(t) vs 2(t), (ii) the phase space [1(t) vs 1'(t)], and 
(iii) the FFT spectrum of 1(t) vs t for each mass m2. The values of 1(t) and 2(t) are 
calculated as a function of the time t for t = 0 - 200 (typically). m2 = 1, 0.9, 0.8, 0.73, 0.71, 
0.696, 0.692, 0.690, 0.688, 0.684, 0.68, 0.67, 0.66, 0.60, 0.50, 0.40, 0.30,  
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(g) m1 = 1, m2 = 0.692. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 
1 vs 1’ (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.14.  

 

Fig.11 (a) - (s) The plots of plot of (i) the 1(t) vs 2(t), (ii) the phase space [1(t) vs 1'(t)], and 
(iii) the FFT spectrum of 1(t) vs t for each mass m2. The values of 1(t) and 2(t) are 
calculated as a function of the time t for t = 0 - 200 (typically). m2 = 1, 0.9, 0.8, 0.73, 0.71, 
0.696, 0.692, 0.690, 0.688, 0.684, 0.68, 0.67, 0.66, 0.60, 0.50, 0.40, 0.30,  
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 (h) m1 = 1, m2 = 0.69. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.14. (iv) time 
dependence of 1 and 2 for 0≤t≤50. 

 

Fig.11 (a) - (s) The plots of plot of (i) the 1(t) vs 2(t), (ii) the phase space [1(t) vs 1'(t)], and 
(iii) the FFT spectrum of 1(t) vs t for each mass m2. The values of 1(t) and 2(t) are 
calculated as a function of the time t for t = 0 - 200 (typically). m2 = 1, 0.9, 0.8, 0.73, 0.71, 
0.696, 0.692, 0.690, 0.688, 0.684, 0.68, 0.67, 0.66, 0.60, 0.50, 0.40, 0.30,  
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(i) m1 = 1, m2 = 0.688. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 
1 vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.14. 

 

 

(j) m1 = 1, m2 = 0.684. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 
1 vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.14. 

 

Fig.11 (a) - (s) The plots of plot of (i) the 1(t) vs 2(t), (ii) the phase space [1(t) vs 1'(t)], and 
(iii) the FFT spectrum of 1(t) vs t for each mass m2. The values of 1(t) and 2(t) are 
calculated as a function of the time t for t = 0 - 200 (typically). m2 = 1, 0.9, 0.8, 0.73, 0.71, 
0.696, 0.692, 0.690, 0.688, 0.684, 0.68, 0.67, 0.66, 0.60, 0.50, 0.40, 0.30,  
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(k) m1 = 1, m2 = 0.68. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.14. 

 

 

(l) m1 = 1, m2 = 0.67. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.14. 

 

Fig.11 (a) - (s) The plots of plot of (i) the 1(t) vs 2(t), (ii) the phase space [1(t) vs 1'(t)], and 
(iii) the FFT spectrum of 1(t) vs t for each mass m2. The values of 1(t) and 2(t) are 
calculated as a function of the time t for t = 0 - 200 (typically). m2 = 1, 0.9, 0.8, 0.73, 0.71, 
0.696, 0.692, 0.690, 0.688, 0.684, 0.68, 0.67, 0.66, 0.60, 0.50, 0.40, 0.30,  
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(m) m1 = 1, m2 = 0.66. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.14. 

 

 

(n) m1 = 1, m2 = 0.6. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.17. 

 

Fig.11 (a) - (s) The plots of plot of (i) the 1(t) vs 2(t), (ii) the phase space [1(t) vs 1'(t)], and 
(iii) the FFT spectrum of 1(t) vs t for each mass m2. The values of 1(t) and 2(t) are 
calculated as a function of the time t for t = 0 - 200 (typically). m2 = 1, 0.9, 0.8, 0.73, 0.71, 
0.696, 0.692, 0.690, 0.688, 0.684, 0.68, 0.67, 0.66, 0.60, 0.50, 0.40, 0.30,  
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(o) m1 = 1, m2 = 0.5. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.26. 

 

 

(p) m1 = 1, m2 = 0.4. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.36. 

 

Fig.11 (a) - (s) The plots of plot of (i) the 1(t) vs 2(t), (ii) the phase space [1(t) vs 1'(t)], and 
(iii) the FFT spectrum of 1(t) vs t for each mass m2. The values of 1(t) and 2(t) are 
calculated as a function of the time t for t = 0 - 200 (typically). m2 = 1, 0.9, 0.8, 0.73, 0.71, 
0.696, 0.692, 0.690, 0.688, 0.684, 0.68, 0.67, 0.66, 0.60, 0.50, 0.40, 0.30,  
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(q) m1 = 1, m2 = 0.3. 10 = 0.5º and 20 = 0º. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.54. 

 

 

(r) m1 = 1, m2 = 0.2. 10 = 0.5º and 20 = 0. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 2.86. 

 

Fig.11 (a) - (s) The plots of plot of (i) the 1(t) vs 2(t), (ii) the phase space [1(t) vs 1'(t)], and 
(iii) the FFT spectrum of 1(t) vs t for each mass m2. The values of 1(t) and 2(t) are 
calculated as a function of the time t for t = 0 - 200 (typically). m2 = 1, 0.9, 0.8, 0.73, 0.71, 
0.696, 0.692, 0.690, 0.688, 0.684, 0.68, 0.67, 0.66, 0.60, 0.50, 0.40, 0.30,  
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(s) m1 = 1, m2 = 0.1. 10 = 0.5º and 20 = 0. v10 = v20 = 0. (i) 1 vs 2, (ii) the phase plane 1 
vs 1’ and (iii) the FFT spectrum (FFT intensity vs ). (1) = 1.4. (2) = 3.64. 

 

Fig.11 (a) - (s) The plots of plot of (i) the 1(t) vs 2(t), (ii) the phase space [1(t) vs 1'(t)], and 
(iii) the FFT spectrum of 1(t) vs t for each mass m2. The values of 1(t) and 2(t) are calculated 
as a function of the time t for t = 0 - 200 (typically). m2 = 1, 0.9, 0.8, 0.73, 0.71, 0.696, 0.692, 
0.690, 0.688, 0.684, 0.68, 0.67, 0.66, 0.60, 0.50, 0.40, 0.30,  

 

4. Forced oscillations of coupled pendulum 

4.1 Linear differential equations 

 

  
Fig.12 Schematic diagram of coupled pendulum with mass m1 and mass m2. An external force 

Fext with the angular frequency  is applied to the mass m2. 
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We consider the motion of coupled pendulum where the external driving force (= )cos(0 tF  ) 

is applied to a mass m2. We assume that each pendulum has the same damping constant .  

1
1

112111 )( x
L

gm
xmxxkxm   

 

)cos()( 0222
2

1222 tFxmx
L

gm
xxkxm  

,
 (4.1) 

where m1 = m2 = m, 
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4.2 Steady-state solution 

Here we assume that 
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Then we have 









































































































ii

ii
m

F

ii

ii
m

F

m

F
i

i

X

X

22)2(22)1(

22)2(22)1(
0

22
1

2
0

22
0

22
1

2
0

22
00

0

1

22
1

2
0

2
1

2
1

22
1

2
0

2

1

11

11

2

2

11
2

11

2

0

.

 (4.6) 

where 0
)1(    is the angular frequency of the in-phase mode and 2

1
2

0
)2( 2   is the 

angular frequency of the out-of-phase mode. 

 

((Mathematica-1)) Calculation of the inverse matrix 

 

 

((Mathematica-2)) Plot of Re[X1], Im[X1], Re[X2], and Re[X2] normalized by F0/2m, as a 
function of . 
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where 0 = 1, 1 = 0.5,and  is changed as a parameter. 
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 (a) 
 

  

 (b) 
 
Fig.13(a) and (b) Plot of Re[X1]/(F0/2m) and Im[X1]/(F0/2m) as a function of , where  = 0.01 
(red), 0.03, …, 0.09, and 0.11 is changed as a parameter. 0 =1. 1 = 1/2. 
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 (a) 
 

  
 (b) 
 
Fig.14  (a) and (b) Plot of Re[X2]/(F0/2m) and Im[X2]/(F0/2m) as a function of , where  = 0.01 
(red), 0.03, …, 0.09, and 0.11 is changed as a parameter. 0 =1. 1 = 1/2. 

 

5. Coupled pendulum (Sophomore laboratory of the Physics Department, Binghamton 
University) 

5.1 Linear differential equation 

The system consists of two pendulums, having a physical pendulum with large mass M (the 
driving pendulum) and a simple pendulum with small mass m (the system under investigation). 
The amplitudes of the motion of the pendulums are assumed to be small. So we can consider the 
motion as taking place along the horizontal line. 
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Fig.15 Schematic diagram. The system consists of coupled pendulum (or pendula) having a 
physical pendulum with a large mass M (the driving pendulum) and a simple pendulum with 
small mass m. We are interested in the motion of the mass m. Since M>>m, The motion of the 
large mass M is not influenced by that of small mass. In other words, the coordinate x2 changes 
with time t as X20 cos(t), where X20 is a constant amplitude and  is the angular frequency. The 
movement of the point at x2 leads to the external force on the pendulum with the small mass m. 

 

The Lagrangian LT is given by 
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where the expression for y1 in terms of x1, x2, and L is derived in Sec.2 (see Eq.(2.1)). The 
Lagrange’s equation: 
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leads to the differential equation 
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When 0 is defined as 
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We have the linear differential equation given by 
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Note that in the limit of x2→0, this differential equation expresses a simple harmonics. When the 
damping force (-m 1x ) is newly added to the original differential equation, we have 
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Note that Fext = 2
2

0 xm  is the external driving force with the angular frequency .  

 

5.2 Steady-state solution 

We assume that the form of the steady state solutions is given by 
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where X1() is the complex amplitude and X20 is a given constant (real) amplitude. Then we get 
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 (5.9) 

The real part Re[X1()] (so-called the dispersion) and the imaginary part Im[X1()] (so-called 
the absorption) are obtained as 
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 (5.10 a) 

Note that the magnetic susceptibility for the magnetic system is similar to the so-called 
susceptibility () defined by 

()  = Re[X1()] - i Im[X1()], (5.10b) 

where we use the negative sign (-1) instead of the plus sign before the imaginary part. 

 

  
Fig.16 Plot of Re[X1()]/X20 as a function of /0. /0 = 0.01, 0.02, …, 0.09, and 0.10 from the 
top to the bottom at /0 = 1. 
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Fig.17  Plot of -Im[X1()]/X20 as a function of /0, where /0 = 0.01, 0.02, …, 0.09, and 0.10 
(from the top to the bottom at /0 = 1 are changed as a parameter. 

 

We now make a numerical calculation of the relative amplitude |X1()|/X2, given by 
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 (5.11) 

where X20 is a positive constant. This ratio shows a sharper peak at  = 0. The peak value (= 
0/) increases as  decreases. The function I() can be expressed by 
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in the vicinity of  = 0. On the other hand, in the limit of 1/ 0  , we also have 
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The relative amplitude approaches to unity in the limit of 1/ 0  . 
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Fig.18 Amplitude |X1()|/X2 as a function of /0, where /0 = 0.01, 0.02, …, 0.14, and 0.15 
(from the top to the bottom) is changed as a parameter. 

 

4.3 Absorption of energy by the system 

We now evaluate the energy absorbed in the system from the external force. The averaged 
energy absorbed per period T (= 2/) is given by 
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where T (= 2/) is the period. Fext(t) is the external force, 
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and the velocity of the mass m is given by 
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where F0
* and V1

* are the complex conjugates of F0 and V1, respectively. Then we have 
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Using this expression (very convenient one), we can calculate the averaged power P() as 
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Noting that 

22222
0

22
0

2
020

22
0

2
020*

1
)(

)(
)(














iX

i

X
X

,
 (5.20) 

we get the expression of the averaged power as 
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Pavg() has a peak at  = 0. The peak value is given by )2/()( 2
20

2
0max  XmP  . This peak 

increases with decreasing . Then Pavg()/Pmax can be expressed by 

2
0

2

2
0

2
2

2
0

2

2
0

2

2
0

2

22222
0

22

max )1()(

)(

























P

Pavg

.

 (5.22) 

This function is expressed by a Lorenzian form in the vicinity of /0 = 1, since 
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 (5.23) 

Pavg()/Pmax becomes 1/2 when u = 0 + /2 and l= 0 - /2 around  = 0. Then the Full-
width at half maximum (FWHM)   is obtained as   lu . The FWHM become 

small as  is reduced to zero. The Q-value is defined by 
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which provides a measure for the narrowness of the width for the resonance curve. It is noted 
that Pavg() is related to Im[X1()] through  
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So Pavg() is proportional to the absorption [imaginary part of X1()]. 

 

  
Fig.19  Plot of P/Pmax as a function of /0. where /0 = 0.01, 0.02, …, and 0.10 (from the 
bottom to the top) is changed as a parameter. 
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5.4 The power dissipated by a friction force 

Where is the average power absorbed by the external force? We show that the average power 
absorbed by the system is dissipated by the friction force given by 
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In fact, the averaged power dissipated by the friction force during the period T (= 2/) is 
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where 
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So we find that 

avgndissipatio PP  . (5.29) 

 

6. Coupled pendulum (Junior laboratory of the Physics Department, Binghamton 
University) 

6.1 Differential equation 

Discussions of thermal properties of solids often begin with a treatment that is essentially, or 
sometimes explicitly, one dimensional (1D). The model is that of a series of masses connected 
by springs. This experiment attempts to duplicate this model, the one complication being that the 
masses are suspended on strings. This means that when there is a displacement of the mass from 
equilibrium, this pendulum-type restoring force must be included. For example, Newton’s law 
written for the displacement xn of the n-th mass is: for longitudinal displacements 
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 (6.1) 

where KL is the spring constant, l is the distance between the ceiling and the masses. The second 
and the third terms are due to the springs.  
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Fig.20 Coupled pendulums consisting of N masses (mass m). Masses are connected by spring 
constant K. 

 

((Note)) 

The first term of this equation is due to the gravitational force. This is derived as follows. In 
Fig.9, we have 
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where x is the x-coordinate of the mass and s is the distance of arc AC. The equation of motion 
for the mass m is expressed by 
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Using the relation (x = L), we have 
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 (6.4) 



  
Fig.21 Simple pendulum with a mass (m). T is the tension. mg is the gravitational force directed 
downward. The length of arc AC is s = l.  

 

6.2 Dispersion relation 

We assume that xn can be expressed by the form 
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with n = 1, 2, .., N, where A is a real amplitude, a is the length of the unstretched spring, and k is 
the wave number. The validity of this assumption is given in the Lecture Note on Oscillations 
and Waves. From the boundary condition that xN+1 = 0,. we have 
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where j = 1, 2, 3, ..., N. The substitution of the form of xn into the original equation of motion 
leads to the dispersion relation, 
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for a longitudinal waves, and a similar equation results for transverse waves 
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In the long-wave-length limit (k0) the slope of the  versus k curve is the speed of wave 
propagation. From this one can determine the spring constants KT and KL except that in the 



situation here the term g/l means that the slope approaches zero as k approaches zero. One can 
thus get an estimate for KL or for KT, but the data near k = 0 must be disregarded. A bit of thought 
will enable you to plot the data as straight lines and use least squares fits to make appropriate 
estimates. 

  
Fig.22 Dispersion relation for either the longitudinal wave or the transverse wave. The slope of 
 vs. k at k = 0 (denoted by the dotted line) corresponds to the velocity. The velocity 
(corresponding to the slope in  vs k) is different between the longitudinal wave and the 
transverse wave.  

 

6.3. Initial conditions for the normal modes for the transverse wave 

We consider the method how to measure the dispersion relation for the transverse waves, 
where the displacement of the masses is perpendicular to the chain axis. We can apply similar 
method to the longitudinal wave, where the displacement of the masses is parallel to the chain 
axis. The position of the n-th mass at the equilibrium position is given by 

)cos()sin()( tnakAtx jjjn  , (6.9) 

for the normal mode j. The velocity of the n-th mass at the equilibrium position is obtained as 

)sin()sin()( tnakAtx jjnj  . (6.10) 

From these two Eqs. we get the initial conditions to get the characteristic angular frequency of 
the normal mode j experimentally. 
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The pattern for the positions (xnj) of the masses for j = 1, 2, 3, 4, and 5 at t = 0 for N = 20 are 
shown in Fig. All the masses stay at rest at t = 0. The initial pattern for each j is set up at t = 0. At 
t>0, these masses are released at the same time. Since 
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 (6.12) 

the initial pattern periodically appears at the period given by Tj (=2/j), for the j-mode. Note 
that it is very difficult to do such an experiment for j>5, since the initial pattern becomes 
complicated. So the experimental data of the dispersion relation is limited only for j<5. 

 

  
Fig.23 The initial pattern for the positions (xnj) of the masses for j = 1, 2, 3, 4, and 5. N = 20. xn is 
the displacement for the transverse wave. For the longitudinal wave, the displacement is parallel 
to the chain axis. 

 

6.4 Experimental Procedure 

(i) Measure  versus k experimentally. (This is the dispersion relation). Take the data of j 
vs kj for the mode j = 1, 2, 3, 4, and 5, where aNjk j )1/(   , where (N+1)a is the total 

length of the chain. Before the measurements, the initial pattern for each mode j needs to 
be formed. Note that the initial pattern for the longitudinal waves is different from that 
for the transverse waves. 

(ii) Obtain the constant KL (N/m), from the analysis by the least-squares fitting. 

(iii) Obtain the constant KT in units of N/m. Note that KT should be much smaller than KL. 

(iv) Exhibit "experimental" and "theoretical"  versus k data. 

 

CONCLUSION 

The motion of coupled pendulum is mainly expressed by nonlinear differential equations. In 
the limiting case where the differential equations become linear differential equations, the 
normal modes can be derived from the eigenvalue problems. The general solution can be 
expressed by a superposition of such normal modes. We discuss the case when an external force 
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is newly applied to the system with the normal mode. When the angular frequency of the 
external force is very close to that for one of the normal modes, there occurs absorption by the 
system from the external force. The dispersion relation is derived for the one dimensional chain 
of the masses, where each mass is kept by string coming from ceiling. This is the simple model 
of the 1D lattice system, which is closely related to the lattice of the real crystals. 
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APPENDIX 

We use the following Mathematica 7.0 programs in the present notes.  

 

1. VariationalD 

 

 

VariationalD

VariationalD f , ux, x
returns the variational derivative of the integral  f „ x with respect to ux, where the integrand f  is a function of u, its derivatives, and x.

VariationalD f , ux, y, …, x, y, … 
returns the variational derivative of the multiple integral  f „ x„ y… with respect to ux, y, …, where f  is a function of u, its derivatives 

and the coordinates x, y, ….

VariationalD f , ux, y, …, vx, y, …, …, x, y, … 
gives a list of variational derivatives with respect to u, v, ….

MO RE INFO RMATIO N

 To use VariationalD, you first need to load the Variational Methods Package using Needs"VariationalMethods`".



2. NDSolve 

 

 

3. Fourier 

 

 

 

 

 

 

 

NDSolve

NDSolveeqns, y, x, xmin, xmax
finds a numerical solution to the ordinary differential equations eqns for the function y with the independent variable x in the range xmin to xmax. 

NDSolveeqns, y, x, xmin, xmax, t, tmin, tmax
finds a numerical solution to the partial differential equations eqns. 

NDSolveeqns, y1, y2, …, x, xmin, xmax
finds numerical solutions for the functions yi. 

MO RE INFO RMATIO N

Fourier

Fourierlist
finds the discrete Fourier transform of a list of complex numbers. 

MO RE INFO RMATIO N

 The discrete Fourier transform vs of a list ur of length n is by default defined to be 1

n
r1

n ur e2 p i r1s1n .  »

 Note that the zero frequency term appears at position 1 in the resulting list. 

 Other definitions are used in some scientific and technical fields. 

 Different choices of definitions can be specified using the option FourierParameters. 

 With the setting FourierParameters  a, b the discrete Fourier transform computed by Fourier is 1

n1a2
r1

n ur e2 p i b r1s1n .  »

 Some common choices for a, b are 0, 1 (default), 1, 1 (data analysis), 1, 1 (signal processing). 

 The setting b = -1 effectively corresponds to conjugating both input and output lists. 

 To ensure a unique inverse discrete Fourier transform, b  must be relatively prime to n.  »

 The list of data supplied to Fourier need not have a length equal to a power of two. 

 The list given in Fourierlist can be nested to represent an array of data in any number of dimensions. 

 The array of data must be rectangular. 

 If the elements of list are exact numbers, Fourier begins by applying N to them. 

 Fourier can be used on SparseArray objects. 



4. ParametricPlot 

 

 

 

ParametricPlot

ParametricPlot fx, fy, u, umin, umax
generates a parametric plot of a curve with x and y coordinates fx and fy as a function of u. 

ParametricPlot fx, fy, gx, gy, …, u, umin, umax
plots several parametric curves. 

ParametricPlot fx, fy, u, umin, umax, v, vmin, vmax
plots a parametric region. 

ParametricPlot fx, fy, gx, gy, …, u, umin, umax, v, vmin, vmax
plots several parametric regions. 


