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1. Introduction 

According to the empirical law (Cauchy's equation), the index of refraction n() in a material 
decreases with increasing wavelength  of light in the visible range. The index of refraction n() 
is related to the wave velocity as n() = c/v() (>1), where c is the speed of light in vacuum and 
v() is the speed of light in the material. Snell's law indicates that the angle of refraction when 
the light enters the material depends on the index of refraction. The violet light ( ≈ 400 nm) 
refracts more than red light (≈ 650 nm) when passing from air into the material. This 
phenomenon is called the dispersion. 

In order to understand the effects of dispersion, we consider what happens when light strikes 
a prism (see Figs. 1 and 2). A ray of light of a single wavelength that is incident on the first 
surface of the prism, emerges in a direction deviated from its original direction of travel by an 
angle of deviation . Suppose a beam of white light (a combination of all visible wavelength) is 
incident on a prism. Because of the dispersion, the different colors refract through different 
angles of deviation and the rays that emerges from the second surface of the prism, spread out in 
a series of colors known a visible spectrum; 
 
Table 1 
 

Red   780/630 nm 
Orange   630/600 nm 
Yellow   600/570 nm 
Greenish yellow 570/550 nm 
Green   550/520 nm 
Blueish/green  520/500 nm 
Blue   500/450 nm 
Violet   450/380 nm 

 
To measure the index of refraction n() for a specified wavelength , one use a goniometer. 

By determining the magnitude of the angle between the two sides of the prism (an apex angle ) 
and by measuring the angle of incidence (i1) on to the first surface and the minimum deviation 
angle for the refraction at the second surface, one can obtain the value of n() by simple 
calculation. 

The experiment of the minimum deviation angle in prism is one of the topics in the 
Sophomore laboratory (SUNY-Binghamton). We use the mercury and sodium lamps as light 
sources. These light sources have discrete characteristic wavelengths. We determine the index of 
refraction n() for each wavelength .  
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Fig.1 Refraction of light by a prism. A prism disperses rays of different colors. The ray of 

violet light is refracted more than the ray of red light. 
(http://en.wikipedia.org/wiki/File:Dispersive_Prism_Illustration_by_Spigget.jpg) 
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Fig.2 Refraction of a white light ray in a prism, which is simulated by using Mathematica (the 

detail how to draw this figure will be discussed later). The surfaces of the prisms are 
denoted by the blue lines. We choose  = 60 (the angle of apex of the prism) and the 
incident angle i1 = 48.59. The incident ray propagates along the positive x axis. We use 
n = 1.4 (red color), 1.45, 1.50 (green color), 1.55, 1.60, 1.65 (blue color), and 1.70 (pink). 
Note that the value of n used in the calculation is not related to the real colors of the 
visible spectrum. 

 
((Note)) Useful links are found in the following web site. 
 

http://www.youtube.com/watch?v=nk_kZu23xiw 
http://www.mtholyoke.edu/~mpeterso/classes/phys103/geomopti/MinDev.html 

 
2. Theory 
2.1 Definition 

The ray emerges refracted from its original direction of travel by an angle , called the angle 
of deviation.  depends on the apex angle  of the prism and the index of refraction n of the 
material. Since all the colors have different angles of deviation, white light will spread out into a 
spectrum.  

(a) Violet deviates the most. 
(b) Red deviates the least. 
(c) The remaining colors are in between. 
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Fig.3 Refraction of a light ray by a prism with the angle of apex (). The incident ray (denoted 

by the red line) propagates along the positive x axis and enters into the prism at the point 
O. The points A, O, D, and B are on the same circle with the center at the point O1. 

 
Suppose that the incident ray propagates along the positive x axis and enters into the prism at 

the point O. AE and AF are the surface of the prism. The point O is located on the first surface 
(AE) of the prism.  is the apex angle of the prism and  is the deviation angle. From the 
geometrical consideration, the points O,A, B, and D are on the same circle. Then we have the 
following relations, 
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where n is the index of refraction of the prism, which is dependent on the wavelength . 
 
2.2 Minimum deviation of angle 

Here we discuss the angle  as a function of the incident angle i1. From the Snell’s law, 
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The angle of deviation is obtained as 
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Here we assume that  = 60º. We make a plot of the angle  as a function of i1, where the index 
of refraction n is changed as a parameter. It is found from Fig.4 that  takes minimum at a 
characteristic angle (the minimum deviation angle), 
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Fig.4 Deviation angle  vs incident angle i1, where n is changed as a parameter. 
 
 
What is the condition for the angle of minimum deviation? The condition is derived as 
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 (symmetric configuration) 

 
In other words, the ray OB should be parallel to the base of the prism (the isosceles triangle with 
the apex angle ) in the case of the angle of minimum deviation. 
 
((Proof)) 

The angle  has a minimum at the angle of minimum deviation, 
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From 21 tt   , we have 
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From the Snell's law, 
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From Eqs.(1), (2), and (3), we have 
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which leads to the condition given by 
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Using this condition, the incident angle can be calculated as 
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When  = 60º, we have 
 

 59.481i for n = 1.50. 

 13.531i for n = 1.60. 

 21.581i for n = 1.70. 

 
2.3 Index of refraction n, the angle of minimum deviation (symmetrical configuration) 
 

In Fig.5, a ray is incident on one surface of a triangular glass prism in air. The angle of 
incidence i1 is chosen so that the emerging ray also makes the same angle  with the normal to 
the other surface. Show that the index of refraction n of the glass prism is given by 
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where  is the vertex angle of the prism and  is the deviation angle, the total angle through 
which the beam is turned in passing through the prism. (Under these conditions, the deviation 
angle  has the smallest possible value, which is called the angle of minimum deviation). 
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Fig.5 Symmetric configuration for the minimum deviation angle.  = 60. n = 1.5. i1 = 48.59. 

 = 37.18. The vector OB is perpendicular to the vector AD . Note that the line AD is 
the diameter of the circle, passing through the points O1 and G.  

 
From the geometry for the symmetric configuration  
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Then the index of refraction n is derived as 
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3. Formulation for the calculation of minimum deviation of angle 
 

 
Fig.6 The geometry for the refraction of a light ray by a prism (in general case). The 

coordinates of all the points are expressed in terms of i1, i2, t1, t2, and . The line N1O 
is normal to the first surface of the prism, and the line N2B is normal to the second 
surface of the prism. The angle between the positive x axis and the line GC is the 
deviation angle of the prism. 

 
We consider the incident ray propagating along the positive x axis (the direction SO). The 

surfaces of the prism are denoted by blue lines. We assume that the prism is rotated around the 
origin O. The length OA (= 1) is fixed for simplicity. O = {0, 0} is the origin. From the geometry, 
the points O, A, B, and D are located on the same circle (the center position and radius will be 
discussed later). O1 is the center of the circle. From the geometry, we have 
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or 
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The Snell's law yields the relations as follows, 
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The unit vector of BC  is given by 
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(b) The position vector of the point B is given by 
 

)}sin(sin)sec(,sin)sec(){cos(

),(

111111 tittti

yx BBOB

 


. 

 
The point B is the intersection of the line OB given by  
 

xy ti )tan( 11   , (1) 

 
and the line AB given by 
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(c) The position vector of the point D is given by 
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The point D is the intersection of the line OD denoted by  
 

xy i1tan , (3) 
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and the line BD denoted by 
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. (4)

 

 
(d) The position vector of the point G is given by 
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The point G is the intersection of the x axis and the line BC denoted by  
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(e) The position vector of the center O1 of the circle is given by 
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The radius of the circle is  
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4. Minimum deviation of angle (Mathematica) 
 



12 
 

 
 
Fig.7 The point of apex in the prism is rotated around the origin (the fixed point) along the 

green line. The color of the surfaces of the prism changes on each rotation. The incident 
ray propagates along the x axis. The apex angle of the prism is  = 60. n = 1.50. As the 
incident angle increases, the deviation angle decreases and reaches a minimum value. 
With further increasing the incident angle, the deviation angle starts to increase 
(minimum deviation of angle in prism). i1 = 30º - 60º (i1 = 2º). 
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Fig.8 n =1.5.  = 60. i1 = 40 (red). i1 = 45 (yellow). i1 = 48.59 (green, minimum 

deviation of angle), i1 = 55 (blue), and i1 = 60 (purple). This figure is made by the 
Mathematica (see Appendix). 
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Fig.9 n =1.5.  = 60. i1 = 30 (red). i1 = 35 (yellow). i1 = 40 (green), i1 = 45 (dark 
green), i1 = 50 (blue), i1 = 55 (purple), and i1 = 60 (pink). This figure is made by 
the Mathematica. 

 
6. Cauchy's equation 
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Cauchy's equation is an empirical relationship between the refractive index and wavelength 
of light for a particular transparent material. It is named for the mathematician Augustin Louis 
Cauchy, who defined it in 1836. The most general form of Cauchy's equation is 

 

...)(
42



 CB

An  

 
where n is the refractive index, λ is the wavelength, A, B, C, and so on., are coefficients that can 
be determined for a material by fitting the equation to measured refractive indices at known 
wavelengths. The coefficients are usually quoted for λ as the vacuum wavelength in m. 
Usually, it is sufficient to use a two-term form of the equation: 
 

2
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An  . 

 
where the coefficients A and B are determined specifically for this form of the equation. The 
theory of light-matter interaction on which Cauchy based this equation was later found to be 
incorrect. In particular, the equation is only valid for regions of normal dispersion in the visible 
wavelength region. In the infrared, the equation becomes inaccurate, and it cannot represent 
regions of anomalous dispersion. Despite this, its mathematical simplicity makes it useful in 
some applications. The Sellmeier equation is a later development of Cauchy's work that handles 
anomalously dispersive regions, and more accurately models a material's refractive index across 
the ultraviolet, visible, and infrared spectrum. 
 
7. Experiment 

The index of refraction for any wavelength can be determined from a measurement of the 
minimum angle of deviation in refraction of light by a prism. The deviation produced by a prism 
depends on the angle of incidence (1i), the apex angle of the prism (), and the index of 
refraction. The angle of deviation is a minimum in the symmetric situation when the angles of 
the incoming and outgoing rays make equal angles with the prism surfaces. 

In this symmetric case, the index of refraction is given by the relation 
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where  is the angle of minimum deviation for the particular wavelength used. The value of n() 
can thus be obtained experimentally for any  at which we have a spectral line available. 
 
8. Spectrum of mercury light source 

The prominent mercury lines are at 404.6563 nm, 407,8980 nm (violet), 435.835 nm (blue) 
and 546.074 nm (green). 
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Fig.10 Mercury vapor lamp spectrum 

http://upload.wikimedia.org/wikipedia/en/9/94/Mercury_Vapour_Lamp_Spectrum.jpg 
 

 
Table 2 Wavelength of the mercury vapor lamp spectrum 
 
 
9. Spectrum of sodium light source 
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Experimentally, we observe two closely separated yellow lines - known as the sodium D 
lines - one at 589.592 nm and other at 588.995 nm. The sodium D lines correspond to the 3p  
3s transition. 
 

D1 line (589.6 nm):  2P1/2 2S1/2 

D2 line (589.0 nm):  2P3/2 2S1/2 
 

We consider a sodium atom. From standard atomic spectroscopy, the ground-state 
configuration is (1s)2(2s)2(2p)6(3s). The inner 10 electrons can be visualized to form a 
spherically symmetrical electron cloud. We are interested in the excitation of the eleventh 
electron from 3s to a possible higher state. the nearest possibility is excitation to 3p. Because the 
central potential is no longer of the pure Coulomb form, 3s and 3p are now split. The fine 
structure brought by spin orbit coupling (VLS) refers to even a finer split within 3p, between 2P1/2 
and 2P3/2, where the subscript refers to the j (= l + 1/2 and l - 1/2 with l = 1 for orbital and s = 1/2 
for spin). The lower 2S1/2 has no spin-orbit interaction.  
(a) For the electron with 3s state (l = 0, s = 1/2) 
 

D0 × D1/2 = D1/2 
 
Thus we have j = 1/2. The state is described by 2S1/2. 
 

j  1/ 2,m 1/ 2  ml  0,ms 1/ 2  

j  1/ 2,m  1/ 2  ml  0,ms  1/ 2  

 
(b) For the electron with 3p state (l = 1, s = 1/2) 
 

D1 × D1/2 = D3/2 + D1/2 
 
Thus we have j = 3/2 and j = 1/2. The state is described by 2P3/2 and 2P1/2 
 

j  3/ 2,m  3 / 2  ml  1,ms  1/ 2  

j  3/ 2,m  1/ 2 
2

3
ml  0, ms  1/ 2 

1

3
ml  1,ms 1/ 2  

j  3/ 2,m  1/ 2 
1

3
ml  1,ms  1/ 2 

2

3
ml  0, ms  1/ 2  

j  3/ 2,m  3 / 2  ml  1, ms  1/ 2  

j  1/ 2,m  1/ 2 
1

3
ml  0,ms  1/ 2 

2

3
ml  1,ms  1/ 2  

j  1/ 2,m 1/ 2 
2

3
ml 1, ms  1/ 2 

1

3
ml  0,ms  1/ 2  

 
Table 2 
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Term j l s 
2P3/2 3/2 1 1/2 
2P1/2 1/2 1 1/2 
2S1/2 1/2 0 1/2 

 

 
 
Fig.11  Sodium vapor lamp spectrum 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/modpic/mertube.jpg 
 
______________________________________________________________________________ 
APPENDIX 
Animation program for the minimum deviation of angle in prism by Mathematica 
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A1  Cos
2
 i1, Sin

2
 i1; O1  0, 0; AM1  0.4 A1;

B11  Cosi1  t1 Sec  t1 Sin, Sec  t1 Sin Sini1  t1;

D11  Cosi1 Tan  t1, Sini1 Tan  t1; BD11  B11  D11; AD11  A1  D11;

R1 
1

2
AD11.AD11  Simplify; CN1 

1

2
A1  D11  Simplify;

F11  Csc  i1  i2 Sec  t1 Sin Sin  i2  t1, 0;

BC1  10 Cosi1  i2  , Sini1  i2  ; C1  B11  BC1  Simplify;

rule1  t1  ArcSin 1

ng
Sini1; rule2  i2  ArcSinng Sint2;

rule3   t2    ArcSin 1

ng
Sini1; A11  A1 . rule2 . rule3 . rule1;

AM11  AM1 . rule2 . rule3 . rule1; BC2  BC1 . rule2 . rule3 . rule1;

C12  C1 . rule2 . rule3 . rule1; B12  B11 . rule2 . rule3 . rule1;

D12  D11 . rule2 . rule3 . rule1; CN2  CN1 . rule2 . rule3 . rule1;

BD12  BD11 . rule2 . rule3 . rule1; F12  F11 . rule2 . rule3 . rule1;

R2  R1 . rule2 . rule3 . rule1;
f_ :
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LineO1, A11, LineA11, B12  0.4 B12  A11, LineO1, AM11, Black,

Thin, LineD12, B12, LineB12, B12  0.6 BD12, LineO1, D12, Line0.6 D12, O1,

LineF12, B12, Hue
i1  

6


6

, Thick, Arrow0.4, 0, 0, 0, ArrowO1, B12,

ArrowB12, C12 , Black, Thin, CircleCN2, R2, PointSize0.03, Hue0, PointC12 .

i1  ;

ng  1.5;   60 °; ManipulateShowf, PlotRange  All, AspectRatio  Automatic,

,


6
,

1.2 

3




20 
 

 

θ


