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In May 2010, we heard from one of our friends about a lecture (youtube) by Dr Walter Lewin 
on the physics of rainbow. Note that a series of his lectures are presented in the Web site [MIT 
8.02 Electricity and magnetism (Spring 2002)]. We saw his lecture in the Web site several times 
and were very impressed with his explanation of the physics on the rainbow. His lecture reminds 
us of the photo of rainbow over the Niagara Falls taken by one of the authors (I.S.S.) on June 1, 
2002. The rainbow consisted of the primary rainbow, the secondary rainbow, and the 
Alexander’s dark space between the primary and secondary rainbows. We realize that the nature 
of such a rainbow can be essentially explained in terms of the nature of waves, such as refraction 
and reflection (Snell’s law), polarization (Brewster angle, Fresnel equation), and diffraction. 
Motivated by his lecture by Prof. Lewin, furthermore we have read several papers (including the 
paper of J.D. Jackson (his book on Classical Electrodynamics is very famous) and books 
(including the book of Boyer on the physics of rainbow). Thanks to these references, we 
understand the fundamental physics on the rainbow much more than previously.  

In this note, we make a lot of figures using the Mathematica 7.0. We think that these figures 
make it much easier for students (undergraduate and graduate students) to understand the wave-
nature of the rainbow. If one wants to study more advanced physics on the rainbow, it is 
suggested that one should read review articles such as the paper of Adam. In this note we discuss 
the fundamental physics on the rainbow. We need to point out that in this note, there is no 
physics which is newly discovered. 
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1. Overview 

A rainbow is an optical phenomenon, which can be explained by the wave nature of light. A rainbow 

consists of the primary rainbow and the secondary rainbow (see Figs.1 - 3). The primary (main) 
rainbow is caused by two refractions and one internal reflection inside a rain droplet. The 
secondary rainbow, which appears outside the primary one, is caused by two refractions and two internal 

reflections inside the spherical water droplet. The colors of the secondary rainbow are reversed from 
the primary bow, and the secondary bow is twice as broad. There are many excellent references 
on the physics of the rainbow, including lectures, book, and papers in journals. The references 
which we use in this article are presented in REFERENCES.1-9 

The dark band between the two rainbows (Alexander's dark space, named after Alexander of 
Aphrodisias, a follower of Aristotle and head of the Lyceum in Athens around AD 200) is a 
region of negligible scattering (from higher orders). The polarization of the rainbow is caused by 
the internal reflection. The rays strike the back surface of the drop close to the Brewster angle, so 
almost all the light reflected is polarized perpendicular to the incidence plane As the incidence 
plane is determined for each drop by the plane containing the sun, the drop, and the observer, the 
rainbow is polarized tangential to the arch. The primary rainbow is 94% polarized while the 
secondary is 90% polarized.  

Figures 4 and 5 show the pattern of ray (red light) entering the upper and lower halves of the 

water droplet, where the incident angle i is changed from 0° to 90° as a parameter. The colors 
used for rays in this figure has nothing to do with the color of the lines for rainbow. 
 

 
 



Fig.1(a) Typical rainbow. The rainbow consists of a primary rainbow, a secondary 
rainbow (note reversed colors), and an Alexander’s dark space between the 
primary and secondary rainbows. 
http://climate.met.psu.edu/data/frost/frosttraining.php 

 

 
 
Fig.1(b) Rainbow over the Niagara Falls seen from Canadian side. This photo was taken 

by Itsuko Suzuki on June 1, 2002. One can see clearly both the primary rainbow 
and secondary rainbow. The inside of the primary rainbow is white in color, while 
the space between the primary and secondary rainbows (Alexander’s dark space) 
is dark. 

 
 



 
 

Fig.2 Forming of a primary rainbow. The sun is directly behind an observer.  = 42.37° for the 
red light and 40.65° for the blue light. 

 
 

 
 

Fig.3 Structure of rainbow; a primary rainbow, a secondary rainbow (note, reversed 
colors), Alexander’s dark space between the primary and secondary rainbows, and 
the supernumerary bows due to the interference. 
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Fig.4 The pattern of rays entering the upper half of the water droplet. Note that the 

pattern of rays entering the lower half of the droplet is the same but flipped upside 

down. nwater = 1.331 for the red line. The incident angle i is changed from 0° to 
90° as a parameter. The colors used for rays in this figure has nothing to do with 
the color of the lines for rainbow. 

 



 
Fig.5(a) The pattern of rays entering both the upper and lower halves of the droplet. nwater 

= 1.331 for the red light. The incident angle i is changed from -90° to 90° as a 

parameter (i = 5°). The colors used for rays in this figure has nothing to do with 
the color of the lines for rainbow. This figure is drawn using Mathematica 7.0. 

 



 
 
Fig.5(b) The pattern of rays entering both the upper and lower halves of the droplet. nwater 

= 1.331 for the red light. The incident angle i is changed from -90° to 90° as a 

parameter (i = 2°). The colors used for rays in this figure has nothing to do with 
the color of the lines for rainbow. This figure is drawn using Mathematica 7.0. 

 
 
2. Index of refraction for water7 

The beautiful color of the rainbow are a consequence of the variation of the index of 
refraction of water with wavelength. The dispersion is shown in Fig.6. 
 



 
 
Fig.6 Index of refraction of water as a function of wavelength. The visible light interval 

is between 400 and 700 nm. n = 1.331 for the red light (n = 1.331,   700 nm). n 

= 1.343 for the blue light (  420 nm). n = 1.344 for the violet light (  400 
nm). 

 
3. A primary rainbow 

A rainbow is produced by the reflection of sunlight by spherical drops of water in the air. As 
shown in Fig. 7, a ray that refracts into a drop at point A, is reflected from the back surface of 

drop at the point B, and refracts back into the air at the point C. The angles of incidence (i) and 

refraction (r) are shown at points A, B, C, and D. We define an angle of deflection  (= 

HOG),  
 

ri  42  , (2) 

 

where the direction of HO is that of the incident ray, and the direction of OG is that of the 
outgoing ray (see Fig.7). At the refraction at the point A of the water droplet, we have a Snell's 
law, 
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Note that nwater is the index of refraction for water; nwater = 1.331 for the red light and 1.343 for 

the blue light (dispersion). Then  can be rewritten as 
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Fig.7 Primary rainbow. The blue circle denotes the spherical surface of water droplet. 

There is one reflection at the point B, and two refractions at the point A and C on 
the surface of the water droplet. The index of refraction of water depends on the 

wavelength. The angle of deflection  is equal to HOG. Note that OG  is 

parallel to CE . HO  is parallel to the direction of the incident ray. i = 59.5267° 

and  = max = 42.3698°. nw = 1.331 for the red light. 
 
 

We calculate the derivative of  with respect to i. 
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Note that i = 59.9267° for nwater = 1.331 (red light, see Fig.8) and i = 58.8303° for nwater = 

1.343 (blue light, see Fig.9). A rainbow will form when the angular deflection  is stationary in 

the incident angle i, that is, when 0
id

d




.If this condition is satisfied, all the rays with incident 

angle close to i will be sent back in the same direction, producing a bright zone in the sky (see 
Figs. 4 and 5). 

Figure 10 shows the ideal path of the red light and blue light through a spherical water 

droplet for the primary rainbow, where i = 59.5267° and max= 42.3698° for the red light (nwater 

= 1.331) and i = 58.8303° and max = 40.6459° for the blue light (nwater = 1.343). In summary, 
the different colors of light correspond to different wavelengths of light, which are refracted at 
slightly different angles, thus splitting the white sunlight into mainly red and blue lights 
(dispersion). 

The color of the primary rainbow are spread over about 2º out of the 42º away from the anti-
solar point. The viewer sees the rainbow with the red at the outer side of the arc and the blue on 
the inner side.  
 

 
 

Fig.8 Plot of the angle of deflection, , as a function of i (the primary rainbow) where 

nwater = 1.331 for the red light. The angle  has a local maximum (max = 

42.3698°) at i = 59.5267°. 
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Fig.9 Plot of the angle of deflection, , as a function of i (for the primary rainbow) 

where nwater = 1.343 for the blue light. The angle  has a local maximum (max = 

40.6459°) at i = 58.8303°. 
 

 
 
Fig.10 Ideal path of a light ray through a spherical water droplet for the primary rainbow. 

The primary rainbow is formed by rays that undergo two refractions at the points 

A and C, and internal reflection at the point B. Red light: i = 59.5267°, nwater = 

1.331. Blue light: i = 58.8303°, nwater = 1.343. The angle of defection as a 

function of i has a local maximum; max = 42.3698° for the red light and max = 

40.6459° for the blue light. The angle max for the red light is larger than that for 
the blue light. 

 
4. Secondary rainbow 
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In Fig.11, we show the path of the light in the secondary rainbow. There are two refractions ( A 

and D) and two internal reflections (B and C). The angle of deflection  is defined by given by 

FOG. Note that the direction of GO is that of the incident ray, and the direction of OF is that 

of the outgoing ray (see Fig.11). Noting that FOD = AOG = i and AOF = i – , we have 
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where nair sin(i) = nwater sin(r) (Snell’s law). 
 

 
 
Fig.11 Secondary rainbow, there are two reflections at the points B and C, and two 

refractions at the point A and D. nwater = 1.331 for the red line. i = 71.9072° and 

 = min = 50.3651°. The angle of deflection f is defined by FOG. OFDE // . 

FOD = AOG = i. The angle  as a function of i has a local minimum 

(min).  
 
We calculate the derivative of  with respect to i. 
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Note that min = 50.3657° at i = 71.9072° for nwater = 1.331 (red light) and min= 53.4778° at i = 

71.5215° for nwater = 1.343 (blue light). A rainbow will form when the angular deflection  is 

stationary in the incident angle i, that is, when 0
id

d




. If this condition is satisfied, all the rays 

with incident angle close to i will be sent back in the same direction, producing a bright zone in 
the sky.  

Figure 14 shows the ideal path of the red and blue lights through a spherical water droplet for 

the secondary rainbow, where i = 71.9072° and min = 50.3651° for the red light (nwater = 1.331) 

and i = 71.5215° and min = 53.478°. for the blue light (nwater = 1.343). In summary, the 
secondary rainbow is about 10° further out from the anti-solar point than the primary bow, is 
about twice as wide, and has its colors reversed.  
 

 
 

Fig.12 Plot of the angle of deflection, , as a function of i (for the secondary rainbow), 

where nwater = 1.331 for the red light. The angle  has a local minimum (min = 

50.3651°) at i = 71.9072°. 
 

70.0 70.5 71.0 71.5 72.0 72.5 73.0 73.5
i Degrees50.35

50.40

50.45

50.50

50.55
f Degrees

Red line nwaterred= 1.331

fmin=50.3651°

at i=71.9072°



 
 

Fig.13 Plot of the angle of deflection, , as a function of i (for the secondary rainbow) 

where nwater = 1.343 for the blue light. The angle  has a local minimum (min = 

53.4778°) at i = 71.5215°. 
 

  
 

Fig.14 The light path for the secondary rainbow. The red light: i = 71.9072°, nwater = 

1.331. min = 50.3651°. The blue light: i = 71.5215°, nwater = 1.343. min = 

53.478°. min is the minimum angle of the deflection (for the secondary rainbow).  
 
5. Polarization4 
5.1 Brewster angle 
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David Brewster showed in 1812 that the scattered rainbow light was almost completely 
polarized, confirming earlier observations of Biot (of the Biot-Savart law in magnetism). More 
brilliant photographs of rainbows may be obtained by using a polarizer on the camera lens, 
because one finds that the intensity of the rainbow colors is affected by the rotation of the 
polarizer. The plane of polarization of the primary rainbow is tangent to the rainbow arc (see 
Fig.15). This polarization arises at the internal reflection in the water drop which is near the 
Brewster angle.  

Here we apply the Snell’s law to the reflection at the point B (see Fig.7)  
 

iairrwater nn  sinsin  . 

 
The condition for the Brewster angle is  
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When nwater = 1.331 (the red light), the Brewster angle is evaluated as rB = 36.918°. When nwater 

= 1.343 (the blue light), the Brewster angle is evaluated as rB = 36.671°. 
 

(a) For nwater = 1.331 (the red light) and i = 59.5267°, we get 
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which is close to the Brewster angle (rB = 36.918°). 
 

(b) For nwater = 1.343 (the blue light) and i = 58.8303°, we get 
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which is also close to the Brewster angle (rB = 36.918°). 
 

5.2 Degree of polarization 
The polarization of the rainbow is caused by the internal reflection at the point B. The rays 

strike the back surface of the droplet close to the Brewster angle, so almost all the light reflected 
is polarized perpendicular to the incidence plane. As the incidence plane is determined for each 
drop by the plane containing the sun, the drop, and the observer, the rainbow is polarized 
tangential to the arc (see Fig.15). 

 

 

Fig.15 The primary rainbow which is almost linearly polarized. The green arrows 
indicate the direction of electric fields, which is tangentially polarized. 
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The primary rainbow is 94 % polarized while the secondary rainbow is 90% polarized. The extra 
brightness of the sky inside the primary rainbow (and outside the secondary rainbow) is also 
polarized tangentially (but to a lesser degree) as it has the same origin as the bows. 
 
5.3 Fresnel’s equation4 

The degree of polarization can be calculated from Fresnel’s equations which relate reflected 
and transmitted amplitudes to incident amplitude as a function of angle of incidence (see Fig.16). 
 

 
 
Fig.16 The configuration of the Brewster angle. When r + i = 90° is satisfied, the 

electric field E parallel to the plane of incidence vanishes, leading to the linearly 
polarized ray with E perpendicular to the plane of incidence. 

 
We have 
 

rwateriair nn  sinsin    (Snell’s law). 

 
The TE polarization (s-polarization). E is normal to the plane of incidence (). The TM 
polarization (p-polarization). E lies in the plane of incidence (//). 
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Observe that while R can never be zero, R// is indeed zero when the denominator is infinite, i.e., 
when r + i = 90°. The reflectance, for linear light with E parallel to the plane of incidence, 
thereupon vanishes. The degree of the polarization is given by 
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Fig.17 Degree of polarization as a function of r for the red light. nwater = 1.331. 
 
The degree of polarization has a maximum at i = 53.0819° (r = 36.9181°). When i = 59.5627°, 
the degree of polarization for the red light (the primary rainbow) is 93.6% (see Figs. 17 and 18).  
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Fig.18 Degree of polarization for the red light (nwater = 1.331) and blue light (nwater = 

1.341). 
 
6. Supernumerary rainbows 
6.1 Interference phenomena2, 6, 9 

A series of fine weakly colored bows (so called supernumerary, see Fig.19) that can 
frequently be seen just inside the primary rainbow. These arise from the interference of two 
parallel rays with different paths. The supernumerary bows are the repeated green and purple 
bands just inside the primary bow. 
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Fig.19 The supernumeraries are the closely spaced greenish purple arcs on the inner 

(blue) side of the primary bow. Supernumerary bow arises from the interference 
of two rays having the same angle of deflection. 
http://www.atoptics.co.uk/rainbows/ 

 
Figure 20 shows the angle of deflection for the primary rainbow as a function of the incident 

angle i for the red light (nwater = 1.331). The angle  has a local maximum (max = 42.3698º at i 
= 59.5267º. When <max, there are two intersection points of i; for example, i = 58.8592° and 
i = 60.1895° for  = 42.36º. In other words, for each angle of deviation there are two rays at 
different incident angles. The interference between two rays emerging at the same angle, but 
travelling different optical paths within the water droplets explain for the existence of 
supernumeraries. Figure 21 shows the light path of the light with such values of i. Because of 
the same value of , the outgoing rays are parallel to each other. Since the values of i are 
different for these two rays, there is a path difference between these two rays, leading to the 
interference. The constructive interference occurs when the path difference is given by  = n , 
where is the wavelength and N is an integer. The destructive interference occurs when   = 
(N + 1/2). Because of coherence in the path differences within the water droplet, the 
supernumeraries may be created by small, uniform sized raindrops. 

 



 
 
Fig.20 Plot of the angle of deflection  as a function of i for nwater = 1.331 (for the 

primary rainbow). The angle  has a local maximum (max = 42.3698°) at i = 
59.5267°. There is one intersection point of i when  = max, but there are two 
intersection points of i when <max; for example, i = 58.8592° and i = 
60.1895° for  = 42.36º. 

 

 
 
Fig.21(a) Interference of two rays with i = 58.8592° and i = 60.1895° in the primary 

rainbow. Two rays emerge at the angle of deflection ( = 42.36°) (near the 

primary rainbow) for the index of refraction, n = 1.331 (the red light). OG  is 

parallel to CE . HO  is parallel to the direction of the incident ray. The 
interference of two rays leads to the supernumerary inside the primary rainbow. 
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Fig.21(b) Interference of two rays with i = 72.6112° and i = 44.2996° in the primary 

rainbow. 
 

Figure 22 shows the angle of deflection for the secondary rainbow as a function of the 
incident angle i for the red light (nwater = 1.331). The angle  has a local minimum min = 
50.3651° for i = 71.9072°). When >min, there are two intersection points of i; for example, i 
= 68.1956° and 75.5141° for  = 51.0º. Figure 23 shows the light path of the light with such 
values of i. Because of the same value of , the outgoing rays are parallel to each other. Since 
the values of i are different for these two rays, there is a path difference between these two rays, 
leading to the interference. The secondary supernumerary is the faint and broad arc outside the 
secondary bow. The secondary supernumerary is very rare, while the supernumeraries inside the 
primary bow are not unusual. 

 
 
Fig.22 Plot of the angle of deflection  as a function of i for nwater = 1.331 (for the 

secondary rainbow). The angle  has a local minimum min = 50.3651° for i = 
71.9072°. There are one intersection point of i when  = min, but two 
intersection points of i when <max. For a pair of i = 68.1956° and 75.5141°, 
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the angle of deflection is the same ( = 51.0°), leading to the parallel rays. The 
path difference of two rays contributes to the interference. 

 

  
 
Fig.23 Interference of two rays (which are parallel) with  = 75.5141° and i = 68.1956° 

in the secondary rainbow.  = 51.0°. This interference leads to the secondary 
supernumerary outside the secondary rainbow. 

 
6.2 Optical path calculation6, 9 
 

 
 

Fig.24 Geometrical optics of a primary rainbow for the calculation of optical path. GJ  is 

perpendicular to CE .  = max = 42.3698° and i = 59.5267°. nwater = 1.331. 
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Referring to Fig.24, the lines HI and GJ are convenient ones for defining the optical path of a ray 

in the neighborhood of the critical ray ( = max). According to Jackson, The phase  is 
evaluated by 
 

)cos2cos1(2 rwateri nka   , (17) 

 
with 
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, (18) 

 

where a is the radius of the water droplet, the )cos1(2 ia   represents the sum of the distance 

from the line HI to the drop's surface and the line GJ to the drop's surface, and ran cos4  is the 

length (times n) of the path interior to the drop. k is the wavenumber and is given by 2/. The 

angle of deflection  is given by 
 

ri  42  . (19) 
 

For simplicity we use sini = x. Then the phase  and f can be rewritten using x as 
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and 
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where n = nwater for the sake of simplicity. The derivatives of  and  with respect to x are given 
by 
 

)
2

1

1
(2

222 xnx
kax

dx

d









,
 

 
and 
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From these expressions, we get a relation given by 
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When x = x0 +  in the limit of very small ,  
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Integration on both sides from 0 to  yields 
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Here we assume that 
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where )(  has a local maximum at  = 0; 0)0('   and 0)0(''  . Inserting the form of )(  in 

the integral, we have 
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or 
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Note that 0)0('   and )0(" <0 for the local maximum. With equal and opposite small , the 

phase difference   is obtained as 
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The constructive interference occurs when   is equal to 2N (N; integer); 

 

3/13/1 )
3

()]0("[
ka

N
n

  . (29) 

 
Then the angle of deflection for the constructive interference is given by 
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(Actually, a more correct procedure has N + ¼ replacing N). The angles of constructive 

interference mark the positions of supernumerary rainbows. They lie at smaller angles than max. 

The angle max)(  n  depends on the droplet size, varying as (ka)-2/3. For small drops, the angle 

becomes large. In order to see clearly the supernumerary, one needs small drops, uniform in size. 
 
6.3 Huygens' construction, Airy integral6, 9 

Consider the line GJ in Fig.25. A wave along this line will have the form of the wave 
function, 
 

)]((exp[ //    rkzki , (31) 

 

where z is the direction of scattering at max (the direction of CE ) and r  is measured along GJ , 

with value of R x0 = R sini for  = max. If the wave is propagating in the direction  (the 

direction of OL ), then we have 
 

xkR )( max   rk , (32) 

 

where |r| = Rx and |k| = )( max  k (see Fig.25). 



 
 

Fig.25 Geometrical optics of a primary rainbow. nwater = 1.331. i = 59.5267° and max = 

42.3698°. i = 70° and  = 39.6432° (as an example). KL = )( max  k . The 

direction of KL  is antiparallel to that of GJ  (the direction of r). 
 
 

Since <max, k  and r  are antiparallel. Since z is constant on the line GJ , the relevant parts of 

the wave's overall phase are 
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Along the line GJ , the wave amplitude in the vicinity of  = 0 has the approximate form 
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Following Jackson,6 it can be shown using the Kirchoff integral for the diffraction that the 

amplitude of the scattered wave near  = max is 
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This function is proportional to the Airy integral defined by 
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(see Fig.26), where 
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Since 
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we have 
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The maxima occur at 



 

 = 1.01879 (N = 0, 1.11546), 4.8201(N = 2, 4.82632), 7.37218 (N = 4, 7.37485), 
9.53545 (N = 6, 9.93705), 11.4751(N = 8, 11.4762), 13.2622 (N = 10, 13.263), 
14.9359 (N = 12, 14.9366). 

 
The minima occur at 

 = 3.2482 (N = 1, 3.26163), 6.16331 (N = 3, 6.16713), 8.48849 (N = 5, 8.49051), 
10.5277 (N = 7, 10.529), 12.3848 (N = 9, 12.3857), 14.1115 (N = 11, 14.1122), 
15.7382 (N = 13, 15.7388). 

 

The number of parentheses are values of 3/2]
2

)4/1(3
[


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N  for N = 0, 1, 2,...For larger N 

values, the agreement is excellent. 
 

 
 

Fig.26 Plot of the Airy integral Ai(-) as a function of . 
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