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Abstract

This is a part of lecture notes on Solid State Physicgs(R72/572). We discuss several
important topics including Ewald sphere. This note may aésaudeful to the ongoing
Senior Lab (Phys.427 and 429) and Graduate Lab (Phys.527).

One of the authors (M.S.) has been studying the stri@aocamagnetic properties of

guasi two-dimensional systems such as graphite intemraledimpounds using x-ray and
neutron scattering since 1978.
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Fig.1 Schematic diagram for the generation of x-raygtaMtarget (Cu or Mo) is
bombarded by accelerating electrons. The power of theesyis given by =
I(mA) V(keV), wherel is the current of cathode ahtis the voltage between the
anode and cathode. Typically, we have 30 mA andv = 50 kV:P = 1.5 kW in
our laboratory.



We use two kinds of targets to generate x-rays: Cu and Mo
The wavelength of Cul, CuKy, and Culg lines are given by

Acar =1.540562A, A, =1.544390 A A, ;= 1.392218 A.

The intensity ratio of Culs and Cuk;; lines is 2:1.

The weighed average wavelengt}), is calculated as
= 2o Az =1 54184 A,
3

((Note)) The wavelength of MaKis A,, = 0.71073 A. Figure shows the intensity versus
wavelength distribution for x rays from a Mo targelieTpenetration depth of MgHKine

into samples is much longer than that of Guike.

Aesr =0.709300 A. A, =0.713590 A, Avs=0.632 A

= 21t Mo = 9.71073 A.
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Fig.2 Intensitry vs wavelength distribution for x-raysnfr a Mo target bombarded by
30 keV electrons from C. Kittel, Introduction to Solid &t&hysics.

1.2 Principle of x-ray diffraction



x-ray (photon) behaves like both wave and particle.alncrystal, atoms are
periodically located on the lattice. Each atom hasdenis and electrons surrounding the
nucleus. The electric field of the incident photon ace#ds electrons. The electrons
oscillate around a equilibrium position with the periodhaf electric field associated with
incident photon. The nucleus does not oscillate becaube beavy mass.

Classical electrodynamics tells us that an accetgratcharge radiates an

electromagnetic field.
/ radiation
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Fig.3 Schematic diagram for the interaction betweemlaotromagnetic wave (x-ray)
and electrons surrounding nucleus. The oscillatory ridefitld (E = Be®) of x-
ray photon gives rise to the harmonic oscillation ofdleetrons along the electric

field.

The instantaneous electromagnetic energy (radiaflmm)is given by the pointing vector

©2 ain?2
s= YN Y ‘;'2 en
The direction of the velocity (the direction of the oscillation) is along tkelirection in
Fig. 4. The direction of the photon radiation ighe , y) plane.
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Fig.4 The distribution of instantaneous radiatiomergy due to the oscillation of
electrons along thedirection. Thye Mathematica 5.2 (PolarPlot) isduse

1.3 Experimental configuration of x-ray scattering

detector

Cuka line
L=1454184 4

28=0

sample

Fig.5 Example for the geometry @ (= ) — 2 scan for the (A0 x-ray diffraction.
The Cu target is used. The direction of the indideray beam is 8 = 0. The
angle between the detector and the direction oinitident x-ray beam is Q is
the rotation angle of the sample.



((Example)) x-ray diffraction

We show two examples of the x-ray diffraction pattevhicha are obtained in my

laboratory

€) Stage- 3 MoGlgraphite intercalation compound (GIC). Me@lre intercalated
into empty graphite galleries. There are three lyzap layers between adjacent
MoCI5 intercalate layers.

(b) Ni vemiculte. Vermiculite is a layered silicat@ kind of clays). In the
interlamellar space, Ni layer are sandwiched betvie® water layers.

stage-3 MoCl; GIC
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Fig.6 (0Q) x-ray diffraction pattern of stage-3 MaGBIC. [M. Suzuki, C. Lee, I.S.
Suzuki, K. Matsubara, and K. Sugihara, "c-axis stesty of MoCk graphite
intercalation compounds,” Phys. Revs48 17128 (1996).]
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Fig.7 (0Q) x-ray diffraction pattern of Ni-vermiculite wittwo water-layer hydration
state. [M. Suzuki, 1.S. Suzuki, N. Wada, and M.S. hitfihgham,
"Superparamagnetic behavior in Ni vermiculite iotdation compound,” Phys.
Rev. B 64, 104418 (2001)]

2. Bragg condition

2.1. Bragglaw
The incident x-rays are reflected specularly froaraflel planes of atoms in the
crystal.
(a) The angle of incoming x-rays is equal to thgl@f outgoing x-rays.
(b) The energy of x-rays is conserved on reflec{elastic scattering).

The path difference for x-rays reflected from adjatcplanes is equal td = 2d sin@ (see
Fig. 8). The corresponding phase difference is

Ap=k4d = (2714)2d sind.

wherek is the wave numbek & 2771) andA is the wave length.



Constructive interference of the radiation fromcassive planes occurs whdp= 277
wherel is an integer (Bragg law).

2d sind= nA
The Bragg reflection can occur only fé£2d.
The Bragg law is a consequence of the periodidithe lattice. The Bragg law does not
refer to the composition of the basis of atoms @ased with every lattice point. The

composition of the bases determines the relativensity of the various orders of
diffraction.

Incoming beam Cutgoing beam

OA=0B=d sing

Fig.8 Geometry of the scattering of x-rays fromnala arrays. The path difference
between two rays reflected by planar arrays is G@Bt= A siné.

2.2 Concept of Ewald sphere: introduction of reciprocal lattice



Fig.9 The geometry of the scattered x-ray beam.ifitident x-ray has the wavevector
ki (= k), while the outgoing x-ray has the wavevedto(= k). |k|= k|=27/4,
whereA is the wavelength of x-ray. Note that= ks - k; is the scattering vector.
Q is perpendicular to the plane of atoms.

Bragg law:
2dsing =14

ki is incident wavevector.
ks is the outgoing wavevector.

—k |=2"
|ki|_‘kf‘_ 1
Q is the scattering vector:

Q=k,-k,, or Q=k; —k;



Fig.10 The geometry of Fig.9 using a circle witlragliusk (= 27#4). The scattering
vectorQ is defined byQ = k; —k;.

This is a part of the Ewald sphere. The detaihefEwald sphere will be discussed later.

In the above configuratio is perpendicular to the surface of the system

. an . 27 .
=2k.|sind =—sind =—— =—1 (Bragg condition
Q| = 2k, | y g - g (Bragg )

which coincides with the reciprocal lattice poiht.other words, the Bragg reflections
occur, wherQ is equal to the reciprocal lattice vectors.

3. Reciprocal lattice vector

3.1 Definition
Reciprocal lattice vector
GIT=2n
with
T =u,a,tu,a, + ua,
We construct the axis vectots, b,, andbs of the reciprocal lattice

a, Xa a, Xa a, Xa
bl = 2”#’ b2 =og—3 1 , b3 =o—r "2
[al’az’a.?:] [al’az’a.?:] [al’az’a.?:]

where



[a,,a,,8;] =&, [{a, xa,) =V, = volume of unit cell
b1, b, andbs are called the primitive vectors of the reciprdatice.
Note that
a b, =2m, a,,=2m, a,b,=2m7
b; is perpendicular to botdy andas.
b, is perpendicular to botdy anda;.
b3 is perpendicular to botdy anday.
The reciprocal lattice vect@ is expressed by
G =hb, +kb, +1b,.
Then we have

G OO0 = (hb, + kb, +1b,) qu,a,+u,a, +u,a,) = 277(hu, + ku, +Iu,)

3.2. Miller indices and reciprocal lattice vector
Index of planes
(hkl) plane
Consider thehkl) plane.
(hkl) are the smallest three integers (Miller indices).
(1) The reciprocal lattice vector is defined by
G = hb, +kb, +1b,.
G is perpendicular to théal) plane.

((Proof))

10
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Fig.11 Definition of fikl) plane wherd, k, andl are the smallest three integers.

First we find the intercepts on the axes in teriihe lattice constants, ap, andas: ai/h,
a/k, a/l (see Fig. 11). We take the reciprocals of thesebaus and then reduces to three
integers having the same ratio, usually the sniallege integers:hkl). These indices
(hkl) may denote a single phase or a set of parabeigsl. If a plane cuts an axis on the
negative side of the origin, the corresponding xndenegative, indicated by placing a

minus sign above the indekkl).

The vectorsHK and KL are given by

_—

HK =

=~ |,\§3J
> &

ﬁ=%—

=~ |,\§3J

These two vectors are perpendiculaGto

HK [G =[a—;—a—ﬁ]mhbl+kb2 +1b,) =0

11



KL G =[%—a—k2jtmbl+kb2+|b3)=o

by using the relations
a b, =2y,
whereg; =1 fori=j, and O fori # j. Then thelfkl) plane is perpendicular .

(2) The distance between two parallel adjackki) planes is

d(hkl) _ 2 (nearest neighbor distance)

<

where (ikl) indices are the smallest integers.

a3

fn+1has (hk plane

naall

[n+13320k o 72

R

Fig.12 Adjacentitkl) planes.
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Fig.13 The nearest neighbor distance between tlaeext fkl) planes.

n (hkl) plane
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adjacentif+1) (hkl) plane

1 1 1 _h k |
N+l n+l n+l n+1 n+1 n+1
h k |

Since bkl) plane is perpendicular B,

1 1 27
dhk)y=ta m=1a 2=2"
(hk)y=fam=1ate=7
or
27
d(hl) =27
(hkt) S

What is the separation distance betweemthld) plane andr{+m) (hkl) plane?

13



(hkl plane

(n+rmiasl

nasdl

(n+rmagfk

o 52

naith
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a
Fig.14 Two (kl) planes.
1 1 2/m
d == (h == Bci:—:md hkl) .
n =3 mey (= may G = = = md(hk)

3.3 Reciprocal lattice vector
A different pattern of a crystal is a map of theipeocal lattice of the crystal.

€) Square lattice

14
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Fig.15 Real space for the square lattice and thegponding reciprocal lattice plane
a, and a, are the lattice vectors, ard and b, are the reciprocal lattice vectors. The
direction ofb; (by) is the same as that af (a,).

a, b, =a, b, =27

2n
ab =2m, or b=—
a

ab, =2m, or bzzg

&

(b) Hexagonal lattice (or triangular lattice)

15
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Fig.16 Real space for the hexagonal (triangulaticand the corresponding reciprocal
lattice plane

ay is perpendicular tb;.
a, Is perpendicular tb,.

a, b, =a, b, =27

4n

cos@0) =2m, or =
4n

b, cosB0’) =2, or b =——
aZ 2 6 ) 7T 2 \/§a2

b1 = 2_77(\/5’—1) and b2 = 4_77
3a,

V3 /33,

The angle betwees andb; is 30°. The angle betweapandb, is 30°.

0-1)

(c) Graphite 2D lattice (honeycomb)

There are two atoms per cell. The lattice constdstequal to 2.46 A.

16



3

Fig.17 Two dimensional lattice for graphite layBoileycomb). There are two carbon C
atoms per unit cell.

The lattice constant of graphite @& = 2.46 A. The graphite has a A-B stacking
sequence along theaxis. We now consider the reciprocal lattice plah¢he graphite
lattice. The vectora; anda; are the in-plane lattice vectors. The vectmrandb, are the
reciprocal lattice vectors. Note thatb, = &hda, b, = Q The angle betweea and

by is 30°.

by
EF

Y
®

Reciprocal lattice plane

Fig.18 In-plane structure and the correspondingprecal lattice of the graphite lattice.
a; = 2.46 Aby = 4rY(~/33,) = 2.95 AL,

17



a, b, =a, b, =27

4n

abcos@0)=2m, or b= NEY = 295A™",
ab,cos@0) =2, or Db,= ;—37;2 = 295A™,

4, Electron density

4.1 Fourier analysis
A crystal is invariant under any translation of them

T=ua, +ua, +tua,
whereu, Uy, Uz are integers anal, a, ag are the periods along the crystal axes.

Any local physical property of the crystal is iniant underT: charge concentration,
electron number, magnetic moment density.

Electron number densityr) is a periodic function of, with periodsa;, a,, az in the
directions of the three axes.

n(r+T)=n(r)
We consider the Fourier series

n(r) = Y n, exp(G )

n(r+T)=> n,expliG {r +T)] =expliG ()]> n; exp(G ) =n(r)

or
GIT=2d
wherel is an integer.

The extension of the Fourier analysis to periodictionn(r) in the 3D is given by

n(r) => n,exp(G 1)
G
whereG is the reciprocal lattice vector, angd determines the x-ray scattering amplitude.

18



Derivation of the Fourier componem:
Jn(r)e‘mdr :JZ n, €% e’ dr :ZnG.Iei‘G"G)der =ngV
Y v G G’
or
1 -G
N, =—|n(r)e™"dr
<=y o)

whereV =N Ve

4
)4

0

Fig.19 Systsm consisting of periodic cellsis the translation vector.

r=T+r'
nir)=n(T+r")=n(r")

@ iG0 = giGIr+T) — oiGI’

Then we have

1
NVceI |

N = [N jn(r)e"Gmdr]zvi [nrye™eTdr

Ve cell Vi

19



Here we define the structure factor as

S = In(r)e“Gmdr

Vceﬂ

or

4.2 Onedimensional case

For simplicity, we consider a functiam(x) with a perioda in the x direction (one
dimensional case).

n(x) =n(x+a)
Suppose that(x) may be expressed by
n(x) = > n, expigx)
9

n(x+a) = n, explig(x+a)] = exp(ga)y n, exp(gx) = expiga)n(x) = n(x)
g g

In other words

exp(ga) =1
or
2n
g=—1I
a

Thus we have

n(x) =>_n,exp(gx)

n, = 1 [dxn(x)e™
a 0

20



((Example)) What is the value n§? We consider the simplest case.

A
@ @ @ @

!

Fig.20 A simple one dimensional array with a l&tmonstana.

F

4

n 1
9 a

(X)ed = l
a

O'.:Q

with g = nl
a

where J(x )is the Dirac delta function.

((Example 2))
There are two atoms in each unit cell with thadattonstana.

h b{

4

Fig.21 One dimensional array with to atoms per ceiit with a lattice constarat
— 1 ¢ —igx — 1 —igh
n, == [[8(x) + 5(x - b)le Pk = = (L+ &™)
as a

2_
‘ng‘ —ngn

2

_@+e™)are®) 4 o (gb)
a a

21



with g :2_77|
a

((Mathematica 5.2))‘ng‘2 vs| wherea = 1 andb = 0.3.

4 wblL _2

f = — Cos| ]
a2 a

4 Cos [ BL7 )2

a
a2l

fl=fl{a  -»1,b -0.3}
4 Cos [0.942478 L12

ListPlot[Table[f1,{L,1,16}],PlotRange -{0,5},
PlotStyle  -»Hue[0], Prolog -AbsolutePointSize[5],
Background -GrayLevel[0.8]]
or
4t °
° ° °
3L
[ [ [ [
2}
[ J [ [ ]
1t
I [ J [ [ J
2.5 5 7.5 10 12.5 15
-G aphi cs-

Fig.22 Intensityin,| vs Bragg index for the 1D system shown in Fig.21.
9 :

This figure shows the intensity vs the Bragg int@rtegers).

4.3 Twodimensional case

We calculate the electron density of the triangud#tice using Mathematica 5.2. Note
that the reciprocal lattice vectors of the systemiscussed before.

((Mathematica 5.2))
In-plane density contour plot afr) for the triangular lattice

22



(*example of n(r), triangular lattice*)

f o

1+ Cos| 4r Cos[30°1 X + 4r Sin [30°1Y] + Cos| 4r Cos[150° 1 X + AI" Sin [150°1y] +
3a V3a v3a v3a
4 4x
Cos|[ Cos[270° 1 X + Sin [270° ] y]] /.a -1
/3 a Ja )
1+Cos[4ﬂ}/}+Cos[27rx—2ﬂ}}+Cos{27rx+ 2”}’}
3 NE] 3

PoBD [f4 (x -1,1}, ¢y, -1 1}, PoPons - 50]

W

\\\\ NS / %

NN s 0
e 2

SRR
L

S>>

-0.5

-Sur f aceG aphi cs-

Fig.23 Plot3D of electron density of the 2D triatagulattice. We assumpy = 1 for
simplicity. We use Mathematica 5.2.

ContourPlot [f2, X -2,213, {y, -2 2}, PlotPonts - 50, ColorFunction - (Hue[07# 1 & |

23



-2 -1
-Cont our Gr aphi cs -
Fig.24 The corresponding Contour plot.

DensityPlot [f2, X -2,213, {y, -2 2}, Potoints - 50, Mesh - False, ColorFunction - (Hue[07# 1 & |
2_‘ " ' " "]

-2 -1
-DensityGraphics -

Fig.25 The corresponding Density plot.
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5. Structur e factor

5.1  Fourier analysisof thebasis

s is called the structural factor and defined aseagral over a single cell.

‘e P 5
NZ /Q»

CRFORE

T/
/

cell

Fig.26 Unit cell having more than two atoms

Let nj(r-r;) be defined by the contribution of atom j to thectron concentration.

n(r):ZS:nj(r—rj)

over thes atoms of the basis.

Then we have

S =Y, Inj (r—r,)e"®%dr

I Vg

S =" [n(perp

Vceﬂ

We now define the atomic form factor as

f, = j n,(p)e **dp

Vceﬂ

25



The atomic form factor is a measure of the scatjepower of thg-th atom in the unit
cell. The value of involves the number and distribution of atomiccalens.

ThenSs is given by the form
_ ~iG I
S = Z fe
J
The structure factos need not to be real because the scattering ityemsi involve

S* S =[S/

5.2 Atomic form factor

WhenG = 0,f; is equal to the total number of electrons aroinednucleuss)

f,= [n(p)dp=2

Vceﬂ

The value off for atoms may be found in the international tables x-ray
crystallography.

Suppose that the electron distribution is sphdgicaimmetric about the origin:
n;(p) =n;(0)

sin(Gp)
Go

f, = 4nf dop’n, (p)

We now calculate the form factor of atomic hydrogernhe ground state. The number
density is given by

1 -2ra
n(p) =— €™
8]

wherea is the Bohr radiusag = 0.53 A)

_ 16
(4+G%,)’

G

((Mathematica 5.2))
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Fig.27 The atomic form factor of hydrogen in thewnd state. Note thé¢ = 1 atG = 0.

The structure factor for the 1D case is given by
S, = jn(x)e"Gdex

S depends only o6y, which leads to the Bragg plane.

ks
F Y

Fig.28 Bragg planek{ = (2ri/a, I: integer) in the reciprocal lattice space, whishai
significant feature common to the 1D system whéeoena are arranged along the
z axis with a lattice constaat

27



5.3.2 Two dimensional case

The structure factd®s for the 2D case is given by
S =[x y)e " axy

S depends only o andGy, which leads to the Bragg ridge (or Bragg rod).

- by

Brago ridge or Bragg rod

Fig.29 Bragg ridge (or rod) in the reciprocal ledtispace (in the case of square lattice),
which is a significant feature common to the 2Diays

5.3.3 Three dimensional case

The structure factd®s for the 3D case is given by
S = [n(x,y, 29" Aaxdyaz

S depends only o6, Gy, andG,, which leads to the Bragg point.

6. Diffraction conditions

6.1 Scattering amplitude

. The set of reciprocal lattice vectors determinesgbssible x-ray reflections.

28



Crystal specimen

Incident heam Qutgoing beam

Fig.30 Geometry of the x-ray scattering.

ki= k is the incident wavevector.
ki =k’ is the outgoing wavevector.

The difference in phase factor is expik’) r] between beams scattered from volume
elementsr apart. The amplitude of the wave scattered fromolume element is
proportional to the local electron concentratigr).

The scattering amplitude is

F =Idvn(r)e‘(""")m =J'dve“‘?m;neeiGm

whereQ is the scattering vector
Q=k'-k
ThenF is rewritten as
F =3 n [avee-or
G
F =ngV for Q =k’ — k =G, andF = 0 otherwise. This is the Bragg law.
In elastic scattering (energy is conserveid)= k|

Then we have

k?=(k +G)*=k*+G*+ 2k [G

29



or

K G = -G?, or (k+%)t%=o

Fig.31 Geometry ok, k', and reciprocal lattice vect@.

The vector k+G/2) is always perpendicular to the vec&/P.

6.2 Brillouin zone

If G is a reciprocal lattice vector, so &-With this substitution, we have
k-k'=G

and

(k-G/2)[G/2=0.

30
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{7 i o «
O O ®

Fig.32 Condition for the Bragg reflection. It ixjuered that the wavevect@éris located
at the zone boundary of the first Brillouin zonetlve reciprocal lattice plane.
Whenk is not on the zone boundary, no Bragg reflecticcues.

We construct a plane normal @ at its midpoint. This plane forms a part of thaeo
boundary. A x-ray beam will be diffracted if its vewectork has the magnitude and
direction required by

2k [G =G?
The diffracted beam will then be in the directior= k —G.
The set of planes that are the perpendicular lmsecfG is of general importance in the
theory of wave propagation in crystals. The firsll@iin zone is the smallest volume
entirely enclosed by planes that are perpendichisectors of the reciprocal lattice

vectors drawn from the origin.

A wave whose wavevector drawn from the origin teates on any of these planes will
satisfy the condition of diffraction: x-ray, phonanagnon, and electron.

31



eciprocal lattice point
2nfa

fone houndary

.—f’fﬂf

2nfa

Ky

™~ First Brillouin zone

Fig.33 First Brillouin zone for the 2D square ledtilattice constard).

(@)

Brilloun zone for square lattice with the unit cell of ax a (by M. Trott)
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Fig.34, 35, 36

The lines of Fig.34 are perpendicular bisectorsc@ded bisector lines) of the reciprocal
lattice vectors. The first and higher Brillouin zofor the square lattice. See the book of
M. Trott, Mathematica Guide Book, Springer 2006)tfte detail how to draw them.

(b)

Brillouin zone for thetriangular lattice (by M/ Trott).

33



f1%}= = Graphics -

Fig.37, 38
The first and higher Brillouin zone for the triangu(hexagonal) lattice. See the book of
M. Trott, Mathematica Guide Book, Springer 2006)tfte detail how to draw them.

(c) Onedimensional case

We now consider the 1D case of the Brillouin zone

The Bragg condition occurs wh&n k' = 21va.

fone houndary

-2nia {n'a 0 '3 Dala

Fig.39 First Brillouin zone for the 1D system wahlattice constard. Bragg reflection
occurs only ak = 77a.
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7. Ewald sphere and scattering

7.1 Construction of Ewald sphere

by

recipracal lattice

Ewald sphere

Fig.40 Ewald sphere. The origin of the reciproedtid¢e is located at the end of the
wavevectok of the incident beam.

We draw a sphere of radiks2774 about the starting point &f. The origin of the
reciprocal lattice plane corresponding to the spaice of the sample is at the end point of
k. A diffracted beam will be formed if this sphemtersects any other point in the
reciprocal lattice. The Ewald sphere intercept®iatpconnected with the end kfby a
reciprocal lattice vectd®. This construction is due to Paul Peter Ewald.

Paul Peter Ewald: He was born in Berlin, Germany on January 23, 18&8was a U.S.
(German-born) crystallographer and physicist. Hs @waioneer of the x-ray diffraction
methods. He was also the eponym of Ewald construetind the Ewald sphere. He was a
Professor of Physics Department, Brooklyn Polytechnstitute (1949 — 1959), New
York. He was the father-in-law of Prof. Hans Befliee late). He died at Ithaca, New
York on August 22, 1985. He was awarded the Mardkanedal in 1978.
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7.2 Experimental configuration

Qis the angle of sample an@ & the angle between the direction of the incideray
and the outgoing x-ray.

b3 th 0 scan

(0al scan [ e i e

(hod scan

Fig.41 Schematic diagram dfl{) scan for the x-ray scattering experiment.

7.2.1. (00I) scattering
0Q (=6 -260scan

Ewald sphere-1426scan)

36



Ewald sphere-2426 scan)

bs

(b)

a3
by

28
=l

Ewald sphere-3426scan)
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Figs.42 Examples for the Ewald construction for (@) x-ray diffraction. (= 6) — 20
scan.

7.2.2 In-plane (h, k,0) scattering

0=(90° +9) - 28scan

b3

]

Figs.43 Example for the Ewald construction for HO0) x-ray diffraction.2 (= 8 +90°)
— 26 scan.
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7.2.3 Rocking curve around (00l) Bragg point.

20is fixed, whileQ is rotated.

Note thatQ = %sin @ = const

b3

Rocking cure

Fig.44 Schematic diagram of the reciprocal plamefe rocking curve experiment.

Fig.45 Example for the Ewald construction for theking curve where 2= fixed. 2 is
rotated.
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Using this curve, one can estimate the mosaic dgrethe sample.

8. X-ray diffraction in L ow dimensional systems

8.1 Onedimensional system

For the one dimensional system with the latticestamt d, there exist Bragg planes with
k., = (2vd)l. The Bragg reflections occur on the surface of [Hvaphere where the
Bragg planes intersect with the sphere. The intideam of x-ray is perpendicular to the
line of atoms.

2n'dd

""" Qrigin of

reciprocal lattice

-2mid

Qrigin of real space

Fig.46 Schematic diagram of the Ewald constructi®ecause of the 1D chain, there are
Bragg planes in the reciprocal lattice plane. Tineation of 1D chain is the same
as the direction of incident beam.

The interference condition is

kcosa = (2n/d)l.
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Sincek = 277, this is rewritten ag2771) cosr = (2r/d)l. or d cosx = A, whered is the
lattice constant of the 1D systelms an integer, and is the angle between the diffracted
beam and the line of atoms.

We also consider the case when the incident beaaraf is parallel to the line of atoms.

We note that a 1D system has Bragg planes in ttiprogal lattice. The direction of
diffracted beam is determined using the Ewald spher

- ‘ ‘ Qrigin of reciprocal lattice

10 sample ‘ ‘

a2 T —— ]

- ———————

Fig.47 Schematic diagram of the Ewald constructi®ecause of the 1D chain, there are
Bragg planes in the reciprocal lattice plane. Theection of 1D chain is
perpendicular to the direction of incident beam.

The interference condition is
k (1-cosa)= (2rvd)l.

Sincek = 2774, this is rewritten a277.1) 2 sirfa = (2a)l.
or 2sina =2 :
d

wherea is the angle between the diffracted beam andrkeof atoms.
8.2 Twodimensional system
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A single plane of atoms form a square lattice tifda constant. The plane is normal to
the incident beam. There exist Bragg rods (Bradge). The Bragg reflections occur on
the surface of Ewald sphere where the Bragg rddssiect with the sphere.

<

Braog rod

20 system

b9

Fig.48 Schematic diagram of the Ewald constructi®ecause of the 2D system, there
are Bragg rods (ridges) in the reciprocal lattipece. The direction of 2D plane is
perpendicular to the direction of incident beam.

8.3 Relation between the lattice and reciprocal lattice for the 2D
squar e and hexagonal lattice

For the square lattice, the shape of the latticktha reciprocal lattice is the same. The
rotation angle between these two lattices is emua?.
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Qrigin of reciprocal space

B

Qrigin of real space

Fig.49 A part of the Ewald sphere diagram. Relatibthe real space and the reciprocal
space for the 2D square lattice. The rotation abgteveen they axis ando; axis
is 0°.

For the hexadonal lattice, the shape of the laticg the reciprocal lattice is the same.
The rotation angle between these two lattices usp 30°.

/

/

] Qrigin of reciprocal space

2rigin of real space
Fig.50 A part of the Ewald sphere diagram. Relatibthe real space and the reciprocal

space for the 2D triangular (hexagonal) latticee Totation angle between the
axis andb; axis is 30°.
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