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Abstract 
This is a part of lecture notes on Solid State Physics (Phys 472/572). We discuss several 
important topics including Ewald sphere. This note may also be useful to the ongoing 
Senior Lab (Phys.427 and 429) and Graduate Lab (Phys.527). 
 
One of the authors (M.S.) has been studying the structural and magnetic properties of 
quasi two-dimensional systems such as graphite intercalation compounds using x-ray and 
neutron scattering since 1978. 
 
 
1. Introduction 
 
1.1 X-ray source 
 
 

 
 
Fig.1 Schematic diagram for the generation of x-rays. Metal target (Cu or Mo) is 

bombarded by accelerating electrons. The power of the system is given by P = 
I(mA) V(keV), where I is the current of cathode and V is the voltage between the 
anode and cathode. Typically, we have I = 30 mA and V = 50 kV: P = 1.5 kW in 
our laboratory. 
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We use two kinds of targets to generate x-rays: Cu and Mo. 
The wavelength of CuKα1, CuKα2 and CuKβ lines are given by 
 
 1αλK  540562.1=  Å, 2αλK  = 1.544390 Å, βλK = 1.392218 Å. 

 
The intensity ratio of CuKα1 and CuKα2 lines is 2:1. 
 
The weighed average wavelength αλK is calculated as 

 

 
3

2 21 αα
α

λλλ KK
K

+=  = 1.54184 Å. 

 
((Note)) The wavelength of MoKα is αλK  = 0.71073 Å. Figure shows the intensity versus 

wavelength distribution for x rays from a Mo target. The penetration depth of MoKα line 
into samples is much longer than that of CuKα line. 
 
 1αλK  = 0.709300 Å. 2αλK  = 0.713590 Å,  βλK = 0.632 Å 

 

 
3

2 21 αα
α

λλλ KK
K

+=  = 0.71073 Å. 

 
 

 
Fig.2 Intensitry vs wavelength distribution for x-rays from a Mo target bombarded by 

30 keV electrons from C. Kittel, Introduction to Solid State Physics. 
 
 
1.2 Principle of x-ray diffraction 
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x-ray (photon) behaves like both wave and particle. In a crystal, atoms are 
periodically located on the lattice. Each atom has a nucleus and electrons surrounding the 
nucleus. The electric field of the incident photon accelerates electrons. The electrons 
oscillate around a equilibrium position with the period of the electric field associated with 
incident photon. The nucleus does not oscillate because of the heavy mass. 

 
Classical electrodynamics tells us that an accelerating charge radiates an 

electromagnetic field. 
 
 

 
 
Fig.3 Schematic diagram for the interaction between an electromagnetic wave (x-ray) 

and electrons surrounding nucleus. The oscillatory electric field (E = E0e
iωt) of x-

ray photon gives rise to the harmonic oscillation of the electrons along the electric 
field. 

 
 
The instantaneous electromagnetic energy (radiation) flow is given by the pointing vector 
 

 nS 2

22 sin

R

v θ�

≈  

 
The direction of the velocity v (the direction of the oscillation) is along the x direction in 
Fig. 4. The direction of the photon radiation is in the (x, y) plane.  
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Fig.4 The distribution of instantaneous radiation energy due to the oscillation of 

electrons along the x direction. Thye Mathematica 5.2 (PolarPlot) is used. 
 
 
1.3 Experimental configuration of x-ray scattering 
 
 

 
 
Fig.5 Example for the geometry of Ω (= θ) – 2θ scan for the (00L) x-ray diffraction. 

The Cu target is used. The direction of the incident x-ray beam is 2θ = 0. The 
angle between the detector and the direction of the incident x-ray beam is 2θ. Ω is 
the rotation angle of the sample. 
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((Example)) x-ray diffraction  
 
We show two examples of the x-ray diffraction pattern whicha are obtained in my 
laboratory 
(a) Stage- 3 MoCl5 graphite intercalation compound (GIC). MoCl5 are intercalated 

into empty graphite galleries. There are three graphene layers between adjacent 
MoCl5 intercalate layers. 

 
(b) Ni vemiculte. Vermiculite is a layered silicate (a kind of clays). In the 

interlamellar space, Ni layer are sandwiched between two water layers. 
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Fig.6  (00L) x-ray diffraction pattern of stage-3 MoCl5 GIC. [M. Suzuki, C. Lee, I.S. 

Suzuki, K. Matsubara, and K. Sugihara, "c-axis resistivity of MoCl5 graphite 
intercalation compounds," Phys. Rev. B 54, 17128 (1996).] 
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Fig.7 (00L) x-ray diffraction pattern of Ni-vermiculite with two water-layer hydration 

state. [M. Suzuki, I.S. Suzuki, N. Wada, and M.S. Whittingham, 
"Superparamagnetic behavior in Ni vermiculite intercalation compound," Phys. 
Rev. B 64, 104418 (2001)] 

 
 
2. Bragg condition 
 
2.1. Bragg law 

The incident x-rays are reflected specularly from parallel planes of atoms in the 
crystal.  
(a) The angle of incoming x-rays is equal to the angle of outgoing x-rays. 
(b) The energy of x-rays is conserved on reflection (elastic scattering). 
 
The path difference for x-rays reflected from adjacent planes is equal to ∆d = 2d sinθ (see 
Fig. 8). The corresponding phase difference is  
 
 ∆φ = k∆d = (2π/λ)2d sinθ . 
 
where k is the wave number (k = 2π/λ) and λ is the wave length. 
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Constructive interference of the radiation from successive planes occurs when ∆φ = 2lπ, 
where l is an integer (Bragg law). 
 
 2d sinθ = nλ 
 
The Bragg reflection can occur only for λ�

2d. 
 
The Bragg law is a consequence of the periodicity of the lattice. The Bragg law does not 
refer to the composition of the basis of atoms associated with every lattice point. The 
composition of the bases determines the relative intensity of the various orders of 
diffraction. 
 
 

 
 
Fig.8 Geometry of the scattering of x-rays from planar arrays. The path difference 

between two rays reflected by planar arrays is OA + OB = 2d sinθ.  
 
 
2.2  Concept of Ewald sphere: introduction of reciprocal lattice  
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Fig.9 The geometry of the scattered x-ray beam. The incident x-ray has the wavevector 

ki (= k), while the outgoing x-ray has the wavevector kf (= k’). λπ /2== fi kk , 

where λ is the wavelength of x-ray. Note that Q = kf - ki is the scattering vector. 
Q is perpendicular to the plane of atoms.  

 
 
Bragg law: 
 
 λθ ld =sin2  
 
ki is incident wavevector. 
kf is the outgoing wavevector. 
 

 
λ
π2== fi kk  

 
Q is the scattering vector: 
 
 fi kkQ −= , or if kkQ −=  
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Fig.10 The geometry of Fig.9 using a circle with a radius k (= 2π/λ). The scattering 

vector Q is defined by Q = kf – ki.  
 
 
This is a part of the Ewald sphere. The detail of the Ewald sphere will be discussed later. 
 
In the above configuration, Q is perpendicular to the surface of the system 
 

 l
dd

l
i

πλ
λ
πθ

λ
πθ 2

2

4
sin

4
sin2 ==== kQ  (Bragg condition) 

 
which coincides with the reciprocal lattice point. In other words, the Bragg reflections 
occur, when Q is equal to the reciprocal lattice vectors. 
 
 
3. Reciprocal lattice vector 
 
3.1 Definition 
 
Reciprocal lattice vector 
 
 π2=⋅ TG  
 
with  
 
 332211 aaaT uuu ++=  
 
We construct the axis vectors, b1, b2, and b3 of the reciprocal lattice 
 

 
],,[

2
321

32
1 aaa

aa
b

×
= π , 

],,[
2

321

13
2 aaa

aa
b

×
= π , 

],,[
2

321

21
3 aaa

aa
b

×= π  

 
where 
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 cV=×⋅= )(],,[ 321321 aaaaaa  = volume of unit cell 

 
b1, b2, and b3 are called the primitive vectors of the reciprocal lattice. 
 
Note that 
 
 π211 =⋅ ba , π222 =⋅ ba , π233 =⋅ ba  

 
b1 is perpendicular to both a2 and a3. 
 
b2 is perpendicular to both a3 and a1. 
 
b3 is perpendicular to both a1 and a2. 
 
The reciprocal lattice vector G is expressed by 
 
 321 bbbG lkh ++= . 

 
Then we have 
 
 )(2)()( 321332211321 lukuhuuuulkh ++=++⋅++=⋅ πaaabbbTG  

 
 
3.2. Miller indices and reciprocal lattice vector 
 
Index of planes 
 
(hkl) plane 
 
Consider the (hkl) plane. 
 
(hkl) are the smallest three integers (Miller indices). 
 
(1) The reciprocal lattice vector is defined by 
 
 321 bbbG lkh ++= . 

 
G is perpendicular to the (hkl) plane. 
 
((Proof)) 
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Fig.11 Definition of (hkl) plane where h, k, and l are the smallest three integers. 
 
 
First we find the intercepts on the axes in terms of the lattice constants a1, a2, and a3: a1/h, 
a2/k, a3/l (see Fig. 11). We take the reciprocals of these numbers and then reduces to three 
integers having the same ratio, usually the smallest three integers: (hkl). These indices 
(hkl) may denote a single phase or a set of parallel planes. If a plane cuts an axis on the 
negative side of the origin, the corresponding index is negative, indicated by placing a 
minus sign above the index )( lkh . 
 
The vectors HK  and KL  are given by 

 
hk

HK 12 aa −=  

 

 
kl

KL 23 aa −=  

 
These two vectors are perpendicular to G. 
 

 0)( 321
12 =++⋅

�
�

�
�
�

�

−=⋅ bbb
aa

G lkh
hk

HK  
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 0)( 321
23 =++⋅

�
�

�
�
�

�

−=⋅ bbb
aa

G lkh
kl

KL  

 
by using the relations 
 
 ijji πδ2=⋅ ba , 

 
where 1=ijδ  for ji = , and 0 for ji ≠ . Then the (hkl) plane is perpendicular to G. 

 
(2) The distance between two parallel adjacent (hkl) planes is 
 

 
G
π2

)( =hkld  (nearest neighbor distance) 

 
where (hkl) indices are the smallest integers. 
 
 

 
 
Fig.12 Adjacent (hkl) planes. 
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Fig.13 The nearest neighbor distance between the adjacent (hkl) planes. 
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Since (hkl) plane is perpendicular to G, 
 

 
GGhh

hkld
π211

)( 11 =⋅=⋅= G
ana  

 
or 
 

 
G

hkld
π2

)( =  

 
What is the separation distance between the n(hkl) plane and (n+m) (hkl) plane? 
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Fig.14 Two (hkl) planes. 
 
 

 )(
211

11 hklmd
G

m

G
m

h
m

h
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ana . 

 
 
3.3 Reciprocal lattice vector 
 
A different pattern of a crystal is a map of the reciprocal lattice of the crystal. 
 
(a) Square lattice 
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Fig.15 Real space for the square lattice and the corresponding reciprocal lattice plane  
 
 
a1 and a2 are the lattice vectors, and b1 and b2 are the reciprocal lattice vectors. The 
direction of b1 (b2) is the same as that of a1 (a2). 
 
 π22211 =⋅=⋅ baba  
 

 π211 =ba , or 
1

1

2

a
b

π=  

 π222 =ba , or 
2

2

2

a
b

π=  

 
(b) Hexagonal lattice (or triangular lattice) 
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Fig.16 Real space for the hexagonal (triangular) lattice and the corresponding reciprocal 

lattice plane  
 
 
a2 is perpendicular to b1. 
a1 is perpendicular to b2. 
 
 π22211 =⋅=⋅ baba  
 

 π2)30cos(11 =
�

ba , or 
1

1
3

4

a
b

π=  

 π2)30cos(22 =
�

ba , or 
2

2
3

4

a
b

π=  

 

 )1,3(
3

2

1

1 −=
a

π
b  and  )1,0(

3

4

1

2 −=
a

π
b   

 
The angle between a1 and b1 is 30º. The angle between a2 and b2 is 30º.  
 
(c) Graphite 2D lattice (honeycomb) 
 
There are two atoms per cell. The lattice constant a is equal to 2.46 Å. 
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Fig.17 Two dimensional lattice for graphite layer (honeycomb). There are two carbon C 

atoms per unit cell. 
 
 

The lattice constant of graphite is a = 2.46 Å. The graphite has a A-B stacking 
sequence along the c axis. We now consider the reciprocal lattice plane of the graphite 
lattice. The vectors a1 and a2 are the in-plane lattice vectors. The vectors b1 and b2 are the 
reciprocal lattice vectors. Note that 021 =⋅ ba  and 012 =⋅ba . The angle between a1 and 
b1 is 30º.  
 
 

 
 
Fig.18 In-plane structure and the corresponding reciprocal lattice of the graphite lattice. 

a1 = 2.46 Å. b1 = 4π/( 13a ) = 2.95 Å-1. 
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 π22211 =⋅=⋅ baba  
 

 π2)30cos(11 =
�

ba , or 95.2
3

4

1

1 ==
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b
π

Å-1. 

 π2)30cos(22 =
�

ba , or 95.2
3

4

2

2 ==
a

b
π

Å-1. 

 
 
4. Electron density 
 
4.1 Fourier analysis 

A crystal is invariant under any translation of the form 
 
 332211 aaaT uuu ++=  

 
where u1, u2, u3 are integers and a1, a2, a3 are the periods along the crystal axes. 
 
Any local physical property of the crystal is invariant under T: charge concentration, 
electron number, magnetic moment density. 
 

Electron number density n(r) is a periodic function of r, with periods a1, a2, a3 in the 
directions of the three axes. 
 
 )()( rTr nn =+  
 
We consider the Fourier series 
 
 )exp()(

�
⋅=

G

rGr inn G  

 
 )()exp()]exp[)](exp[)( rrGTGTrGTr

GG

niniinn GG =⋅⋅=+⋅=+ ��  

 
or 
 
 lπ2=⋅ TG  
 
where l is an integer. 
 
The extension of the Fourier analysis to periodic function n(r) in the 3D is given by 
 
 )exp()(

�
⋅=

G

rGr inn G  

 
where G is the reciprocal lattice vector, and nG determines the x-ray scattering amplitude. 
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Derivation of the Fourier component nG:  
 
 VnVdendeenden i

V

ii

V

i
G

G

rGG
G

rG

G

rG
G

rG rrrr === � �� �� ⋅−⋅−⋅⋅−

'

)'(
'

'

'
')(  

 
or 
 

 � ⋅−=
V

i den
V

n rr rG
G )(

1
 

 
where V = N Vcell 
 
 

 
 
Fig.19 Systsm consisting of periodic cells. T is the translation vector. 
 
 
 'rTr +=  
 
 )'()'()( rrTr nnn =+=  
 
 ')'( rGTrGrG ⋅−+⋅−⋅− == iii eee  
 
Then we have 
 

 �� ⋅−⋅− ==
cellcell V

i

cellV

i

cell

den
V

denN
NV

n rrrr rGrG
G )(

1
])([

1
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Here we define the structure factor as 
 
 � ⋅−=

cellV

i denS rr rG
G )(  

 
or 
 

 GG S
V

n
cell

1=  

 
 
4.2 One dimensional case 
 

For simplicity, we consider a function n(x) with a period a in the x direction (one 
dimensional case). 
 
 )()( axnxn +=  
 
Suppose that n(x) may be expressed by 
 
 )exp()( igxnxn

g
g

�
=  

 
 )()()exp()exp()exp()](exp[)( xnxnigaigxnigaaxignaxn

g
g

g
g ===+=+ ��  

 
In other words 
 
 )exp(iga =1 
 
or 
 

 l
a

g
π2=  

 
Thus we have 
 
 )exp()( igxnxn

g
g

�
=  

 

 � −=
a

igx
g exdxn

a
n

0

)(
1
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((Example)) What is the value of ng? We consider the simplest case. 
 
 

 
 
Fig.20 A simple one dimensional array with a lattice constant a. 
 
 

 
a

edxx
a

n
a

g

1
)(

1

0

== � δ  

 

with l
a

g
π2=  

 
where )(xδ  is the Dirac delta function. 
 
((Example 2)) 
There are two atoms in each unit cell with the lattice constant a. 
 
 

 
 
Fig.21 One dimensional array with to atoms per unit cell with a lattice constant a. 
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with l
a

g
π2=  

 

((Mathematica 5.2)): 
2

gn  vs l where a = 1 and b = 0.3. 

 

f � 4

a2
Cos

� � b L

a

� 2

 

 

4 Cos � b L �
a � 2

a2  
 f1=f/.{a � 1, b � 0.3} 

 4 Cos �0.942478 L 	 2 
 ListPlot[Table[f1,{L,1,16}],PlotRange � {0,5}, 
PlotStyle � Hue[0], Prolog � AbsolutePointSize[5], 
Background � GrayLevel[0.8]] 
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 Graphics 
  
 

Fig.22 Intensity 
2

gn  vs Bragg index l for the 1D system shown in Fig.21. 

 
This figure shows the intensity vs the Bragg index l (integers). 
 
 
4.3 Two dimensional case 
 
We calculate the electron density of the triangular lattice using Mathematica 5.2. Note 
that the reciprocal lattice vectors of the system is discussed before. 
 
((Mathematica 5.2)) 
In-plane density contour plot of n(r) for the triangular lattice 
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(*example of n(r), triangular lattice*) 
 
f ��

�����1 � Cos � 4 �� � � ��
3 a

Cos 	30°



x � 4 �� � � ��
3 a

Sin 	30°



y
� � Cos � 4 �� � � ��

3 a
Cos 	150°



x � 4 �� � � ��

3 a
Sin 	150°



y

� �

Cos � 4 �� � � ��
3 a

Cos 	270°



x � 4 �� � � ��
3 a

Sin 	270°



y
� �
���� � . a � 1

 

 
1 � Cos � 4 � y� � � ��

3

� � Cos �2 � x � 2 � y� � � ��
3

� � Cos �2 � x � 2 � y� � � ��
3

�
 

 Plot3D � f 2, � x, � 1, 1 � , � y, � 1, 1 � , PlotPoints � 50�  
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 SurfaceGraphics 

Fig.23 Plot3D of electron density of the 2D triangular lattice. We assume ng = 1 for 

simplicity. We use Mathematica 5.2. 
 

 ContourPlot � f 2, � x,  2, 2 ! , � y,  2, 2 ! , PlotPoints " 50, ColorFunction " # Hue $0.7#
%

&
& '
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 ContourGraphics 

Fig.24 The corresponding Contour plot. 
 
DensityPlot � f 2, � x, � 2, 2 � , � y, � 2, 2 � , PlotPoints � 50, Mesh � False, ColorFunction � � Hue�0.7#

�
&

� 	
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 DensityGraphics 


Fig.25 The corresponding Density plot. 
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5.  Structure factor 
 
5.1 Fourier analysis of the basis 
 
SG is called the structural factor and defined as an integral over a single cell. 
 
 

 
 
Fig.26 Unit cell having more than two atoms 
 
 
Let nj(r-rj) be defined by the contribution of atom j to the electron concentration. 
 

 �
=

−=
s

j
jj rnrn

1

)()( r  

 
over the s atoms of the basis. 
 
Then we have 
 

 � � ⋅−−=
j V

i
jj

cell

denS rrr rG
G )(  

 

 � � ⋅−⋅−=
j V

i
j

i

cell

j deneS �� �GrG
G )(  

 
We now define the atomic form factor as 
 

 � ⋅−=
cellV

i
jj denf �� 	G)(  
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The atomic form factor is a measure of the scattering power of the j-th atom in the unit 
cell. The value of f involves the number and distribution of atomic electrons. 
 
Then SG is given by the form 
 

 � ⋅−=
j

i
j

jefS rG
G  

 
The structure factor SG need not to be real because the scattering intensity will involve 
 

 
2

* GGG SSS =  

 
 
5.2 Atomic form factor 
 
When G = 0, fj is equal to the total number of electrons around the nucleus (Z) 
 

 Zdnf
cellV

jj == � �� )(  

 
The value of f for atoms may be found in the international tables for x-ray 
crystallography.  
 
Suppose that the electron distribution is spherically symmetric about the origin: 
 
 )()( ρjj nn =�  

 

 �=
ρ

ρρρρπ
G

G
ndf jj

)sin(
)(4 2  

 
We now calculate the form factor of atomic hydrogen in the ground state. The number 
density is given by 
 

 0/2
3
0

1
)( are

a
n −=

π
ρ  

 
where a0 is the Bohr radius (a0 = 0.53 Å) 
 

 
22

0
2 )4(

16

aG
fG +

=  

 
((Mathematica 5.2)) 
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Fig.27 The atomic form factor of hydrogen in the ground state. Note that fG = 1 at G = 0. 
 
 
5.3 The structure factor for 1D, 2D and 3D systems 
 
5.3.1  One dimensional case 
 
The structure factor for the 1D case is given by 
 

 � −= dxexnS xiG x)(G  

 
SG depends only on Gx, which leads to the Bragg plane. 
 
 

 
 
Fig.28 Bragg plane (kz = (2πl/a, l: integer) in the reciprocal lattice space, which is a 

significant feature common to the 1D system where atoms are arranged along the 
z axis with a lattice constant a. 
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5.3.2  Two dimensional case 
 
The structure factor SG for the 2D case is given by 
 

 � +−= dxdyeyxnS
yGxGi yx )(

),(G  

 
SG depends only on Gx and Gy, which leads to the Bragg ridge (or Bragg rod). 
 
 

 
 
Fig.29 Bragg ridge (or rod) in the reciprocal lattice space (in the case of square lattice), 

which is a significant feature common to the 2D system. 
 
 
5.3.3  Three dimensional case 
 
The structure factor SG for the 3D case is given by 
 

 � ++−= dxdydzezyxnS
zGyGxGi zyx )(

),,(G  

 
SG depends only on Gx, Gy, and Gz, which leads to the Bragg point. 
 
 
6. Diffraction conditions 
 
6.1 Scattering amplitude 
 �� The set of reciprocal lattice vectors determines the possible x-ray reflections. 
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Fig.30 Geometry of the x-ray scattering. 
 
 
ki= k is the incident wavevector. 
kf = k’ is the outgoing wavevector. 

The � difference in phase factor is exp[i(k-k’) .r] between beams scattered from volume 
elements r apart. The amplitude of the wave scattered from a volume element is 
proportional to the local electron concentration n(r). 
 
The scattering amplitude F is 
 

 
rG

G

rQrkkr ⋅⋅−⋅−
� ��

== i
G

ii endveedvnF )'()(  

 
where Q is the scattering vector 
 
 kkQ −= '  
 
Then F is rewritten as 
 

 � � ⋅−=
G

rQG )(i
G dvenF  

 
F = nGV for Q = k’ – k = G, and F = 0 otherwise. This is the Bragg law.  
 
In elastic scattering (energy is conserved), kk ='  

 
Then we have 
 
 GkGkGkk ⋅++=+= 2)(' 2222  
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or 
 

 22 GGk −=⋅ ,  or  0
2

)
2

( =⋅+ GG
k  

 
 

 
 
Fig.31 Geometry of k, k′, and reciprocal lattice vector G. 
 
 
The vector (k+G/2) is always perpendicular to the vector G/2. 
 
 
6.2 Brillouin zone 
 
If G is a reciprocal lattice vector, so is –G. With this substitution, we have 
 
 Gkk =− '  
 
and 
 
 02/)2/( =⋅− GGk . 
 
 



 31 

 
 
Fig.32 Condition for the Bragg reflection. It is required that the wavevector k is located 

at the zone boundary of the first Brillouin zone in the reciprocal lattice plane. 
When k is not on the zone boundary, no Bragg reflection occurs. 

 
 
We construct a plane normal to G at its midpoint. This plane forms a part of the zone 
boundary. A x-ray beam will be diffracted if its wavevector k has the magnitude and 
direction required by 
 
 22 GGk =⋅  
 
The diffracted beam will then be in the direction k’ = k – G. 
 
The set of planes that are the perpendicular bisectors of G is of general importance in the 
theory of wave propagation in crystals. The first Brillouin zone is the smallest volume 
entirely enclosed by planes that are perpendicular bisectors of the reciprocal lattice 
vectors drawn from the origin. 
 
A wave whose wavevector drawn from the origin terminates on any of these planes will 
satisfy the condition of diffraction: x-ray, phonon, magnon, and electron. 
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Fig.33 First Brillouin zone for the 2D square lattice (lattice constant a). 
 
 
(a) 
 
Brilloun zone for square lattice with the unit cell of a x a (by M. Trott) 
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Fig.34, 35, 36 
The lines of Fig.34 are perpendicular bisectors (so called bisector lines) of the reciprocal 
lattice vectors. The first and higher Brillouin zone for the square lattice. See the book of 
M. Trott, Mathematica Guide Book, Springer 2006) for the detail how to draw them. 
 
 
(b) 
 
Brillouin zone for the triangular lattice (by M/ Trott). 
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Fig.37, 38 
The first and higher Brillouin zone for the triangular (hexagonal) lattice. See the book of 
M. Trott, Mathematica Guide Book, Springer 2006) for the detail how to draw them. 
 
 
(c) One dimensional case 
 
We now consider the 1D case of the Brillouin zone 
 
The Bragg condition occurs when k - k’ = 2π/a. 
 
 

 
 
Fig.39 First Brillouin zone for the 1D system with a lattice constant a. Bragg reflection 

occurs only at k = π/a. 
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7. Ewald sphere and scattering 
 
7.1 Construction of Ewald sphere 
 
 

 
 
Fig.40 Ewald sphere. The origin of the reciprocal lattice is located at the end of the 

wavevector k of the incident beam. 
 
 
We draw a sphere of radius k=2π/λ about the starting point of k. The origin of the 
reciprocal lattice plane corresponding to the real space of the sample is at the end point of 
k. A diffracted beam will be formed if this sphere intersects any other point in the 
reciprocal lattice. The Ewald sphere intercepts a point connected with the end of k by a 
reciprocal lattice vector G. This construction is due to Paul Peter Ewald. 
 
Paul Peter Ewald: He was born in Berlin, Germany on January 23, 1888. He was a U.S. 
(German-born) crystallographer and physicist. He was a pioneer of the x-ray diffraction 
methods. He was also the eponym of Ewald construction and the Ewald sphere. He was a 
Professor of Physics Department, Brooklyn Polytechnic Institute (1949 – 1959), New 
York. He was the father-in-law of Prof. Hans Bethe (the late). He died at Ithaca, New 
York on August 22, 1985. He was awarded the Max Planck medal in 1978. 
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7.2 Experimental configuration 
 
Ω is the angle of sample and 2θ is the angle between the direction of the incident x-ray 
and the outgoing x-ray.  
 
 

 
 
Fig.41 Schematic diagram of (hkl) scan for the x-ray scattering experiment. 
 
 
7.2.1.  (00l) scattering 
 
Ω (= θ) -2θ scan 
 
Ewald sphere-1 (θ-2θ scan) 
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Ewald sphere-2 (θ-2θ scan) 

 
 
Ewald sphere-3 (θ-2θ scan) 
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Figs.42 Examples for the Ewald construction for the (00l) x-ray diffraction. Ω (= θ) – 2θ 

scan. 
 
 
7.2.2 In-plane (h, k,0) scattering 
 
Ω=(90º +θ) - 2θ scan 
 

 
 
Figs.43 Example for the Ewald construction for the (H00) x-ray diffraction. Ω (= θ  +90º) 

– 2θ scan. 
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7.2.3 Rocking curve around (00l) Bragg point. 
 
2θ is fixed, while Ω is rotated. 
 

Note that constQ == θ
λ
π

sin
4

 

 
 
Fig.44 Schematic diagram of the reciprocal plane for the rocking curve experiment. 
 
 

 
 
Fig.45 Example for the Ewald construction for the rocking curve where 2θ = fixed. Ω is 

rotated. 
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Using this curve, one can estimate the mosaic spread of the sample. 
 
 
8. X-ray diffraction in Low dimensional systems 
 
8.1 One dimensional system 
 
For the one dimensional system with the lattice constant d, there exist Bragg planes with 
kz = (2π/dc)l. The Bragg reflections occur on the surface of Ewald sphere where the 
Bragg planes intersect with the sphere. The incident beam of x-ray is perpendicular to the 
line of atoms.  
 
 

 
 

Fig.46 Schematic diagram of the Ewald construction. Because of the 1D chain, there are 
Bragg planes in the reciprocal lattice plane. The direction of 1D chain is the same 
as the direction of incident beam. 

 
 
The interference condition is  
 
 ldk )/2(cos πα = . 
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Since k = 2π/λ, this is rewritten as (2π/λ) cosα = (2π/d)l. or d cosα = lλ, where d is the 
lattice constant of the 1D system, l is an integer, and α is the angle between the diffracted 
beam and the line of atoms. 
 
We also consider the case when the incident beam of x-ray is parallel to the line of atoms. 
We note that a 1D system has Bragg planes in the reciprocal lattice. The direction of 
diffracted beam is determined using the Ewald sphere. 
 
 

 
 
Fig.47 Schematic diagram of the Ewald construction. Because of the 1D chain, there are 

Bragg planes in the reciprocal lattice plane. The direction of 1D chain is 
perpendicular to the direction of incident beam. 

 
 
The interference condition is  
 
 k (1-cosα)= (2π/d)l. 
 
Since k = 2π/λ, this is rewritten as (2π/λ) 2 sin2α = (2π/a)l.  
 

or l
d

λα =2sin2 , 

 
where α is the angle between the diffracted beam and the line of atoms. 
 
 
8.2 Two dimensional system 
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A single plane of atoms form a square lattice of lattice constant a. The plane is normal to 
the incident beam. There exist Bragg rods (Bragg ridge). The Bragg reflections occur on 
the surface of Ewald sphere where the Bragg rods intersect with the sphere. 
 
 

 
 
Fig.48 Schematic diagram of the Ewald construction. Because of the 2D system, there 

are Bragg rods (ridges) in the reciprocal lattice space. The direction of 2D plane is 
perpendicular to the direction of incident beam. 

 
 
8.3 Relation between the lattice and reciprocal lattice for the 2D 

square and hexagonal lattice 
 
For the square lattice, the shape of the lattice and the reciprocal lattice is the same. The 
rotation angle between these two lattices is equal to 0º. 
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Fig.49 A part of the Ewald sphere diagram. Relation of the real space and the reciprocal 

space for the 2D square lattice. The rotation angle between the a1 axis and b1 axis 
is 0º. 

 
 
For the hexadonal lattice, the shape of the lattice and the reciprocal lattice is the same. 
The rotation angle between these two lattices is equal to 30º. 
 
 

 
 
Fig.50 A part of the Ewald sphere diagram. Relation of the real space and the reciprocal 

space for the 2D triangular (hexagonal) lattice. The rotation angle between the a1 
axis and b1 axis is 30º. 
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