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Abstract

Optical pumping is to change the population number of atomic states by illumining of
light beam to the system from ones in thermal equilibrium. The spin of the circularly
polarized light is transferred to atoms, leading to the change of the angular momentum of
atoms. This method was first proposed by Kastler in France in 1950. Although this
method is very simple, one can make a surprisingly precise spectroscopy of atomic
sublevels. This method makes it possible to do detailed studies for the interactions
between atom and light. In 1966, Nobel prize was awarded to Kastler for his work on the
method of optical pumping. The atomic operation by light is now the main topics of the
atomic physics. We note that Cohen-Tannoudji got a Nobel prize in 1977 for the laser
cooling. Cohen-Tannoudji was a student of Kasler.

In our Advanced Laboratory course (Senior Laboratory for undergraduate students
and Graduate Laboratory for graduate students), we have an apparatus of optical pumping
of Rb, (TeachSpin). Some students have a difficulty in understanding the physics of
optical pumping. In this lecture note, we discuss the physics based on the atomic physics
and quantum mechanics. The splitting of the energy levels in *’Rb (nuclear spin 3/2) will
be discussed in terms of the eigenvalue problems with Mathematica. The transition
probability for the absorption and emission of light due to the interaction with electric
dipole moments will be discussed in terms of Wigner-Eckart theorem and Clebsch-
Gordan coefficient. The physics of optical pumping in ®Rb (nuclear spin 5/2) will not be
discussed here.
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Alfred Kastler (May 3, 1902 — January 7, 1984) was a French physicist, and Nobel Prize
laureate. Kastler was born in Guebwiller (Alsace) and later attended the Lycée Bartholdi
in Colmar, Alsace, and Ecole Normale Supérieure in Paris in 1921. After his studies, in
1926 he began teaching physics at the Lycée of Mulhouse, and then taught at the
University of Bordeaux, where he was a university professor until 1941. Georges Bruhat
asked him to come back to the Ecole Normale Supérieure, where he finally obtained a
chair in 1952. Collaborating with Jean Brossel, he researched quantum mechanics, the
interaction between light and atoms, and spectroscopy. Kastler, working on combination
of optical resonance and magnetic resonance, developed the technique of "optical



pumping". Those works led to the completion of the theory of lasers and masers. He won
the Nobel Prize in Physics in 1966 "for the discovery and development of optical
methods for studying Hertzian resonances in atoms". He was president of the board of the
Institut d'optique théorique et appliquée.

http://en.wikipedia.org/wiki/Alfred Kastler

1. Introduction

The process of optical pumping is an excellent example for the interaction between
light and matter. In our Advanced laboratory, one can use circularly polarized light to
pump a particular level in Rb vapor. Then, using DC magnetic field up to 10 Oe and
radio-frequency excitations, one manipulate the population of the pumped state. One will
determine the energy separation between the adjacent Zeeman levels in Rb in a strong
magnetic field as well as a weak magnetic field. Although the experiment is relatively
simple to perform, one will need to understand a fair amount of atomic physics and
quantum mechanics.

(1) Energy levels of ®Rb in the presence of spin-orbit interaction, hyperfine
interaction, and magnetic field.

(i1) Selection rule for the absorption of the circular polarized (&) photon of D; line,
due to the interaction of light with electric dipole moment. The total angular
momentum conservation of atom and light.

(iii))  The increase in the population of the specific state using optical pumping.

(iv)  The spacing of the Zeeman levels in the limits of weak and strong magnetic fields.

(v) Solving the eigenvalue problems.

(vi)  Wigner-Eckart theorem and the Clebsch-Gordan coefficients

2, Overview on the optical pumping experiment

Optical pumping is a process in which absorption of light produces a population of
the energy levels different from one in thermal equilibrium. In the present experiment, Rb
atoms (87Rb) in the presence of an external magnetic field are irradiated with circularly
polarized photons in a narrow range of energies for the induction of 5 281/2 —5 2P1/2 (D,



line) electric dipole transitions. The absorption can occur only if the total angular
momentum of the incident photon and atom is conserved in the process. If the incident
photon have angular momentum of 7 the only allowed transition are those in which Amg
= 1. Thus every absorption produces an excited atom with one unit more of projected
angular momentum just it had before the transition. On the other hand, the emission
between the 5 2Py, and 5 °Sy, level occur with only the restriction Am¢=-1, 0, and 1. The
net result is a pumping of the atoms in the 5 S Zeeman levels toward the highest value of
Mmg.

(a) Circularly polarized light

On the optical rail immediately after the lamp there is a Plano-convex lenses which
serves to minimize spherical aberration and provide a more coherent incident beam. The
focused beam then passes through an interference filter to isolate the 795 nm emission.
The photons that are allowed past this filter then pass through a linear polarizer and then
a quarter wave plate. The quarter wave plate is necessary to achieve a circularly polarized
emission. For optical pumping to be achieved, an atom must absorb radiation resonant to
that atom. Circularly polarized 795 nm light is a simple way to satisfy this criterion.

(b) Rb chamber

At the heart of our optical rail lies our Rubidium chamber. In this chamber, we have
Rb atoms and neon atoms. Neon is used specifically because it has no spin and as a noble
gas it makes an excellent buffer. Due to the presence of this buffer gas, collisions
between the rubidium atoms with each other or with the neon, occur frequently. If the
buffer gas was removed, the rubidium atoms would frequently collide with the chamber
walls and optical pumping would be unobtainable. Additionally, collisions between the
neon and rubidium atoms increase the number of excited rubidium atoms.

(©) DC magnetic field

Our Rb-Ne chamber is centered between three Helmholtz coils. In place is a
horizontal field which acts as a static vertical magnetic field adjustment, and two vertical
coils which provide horizontal magnetic fields. One of these vertical coils is used to
provide a variable “sweeping field” while the other is used to provide a static horizontal
field. Helmholtz coils are used to provide homogenous magnetic fields so it is not
surprising that both vertical coils are wound among a common core although they are
insulated from each other. Since there are three Helmholtz coils, using a common core for
the two vertical coils reduces any inhomogeneity that may result from having to align
another separate vertical coil. On opposite sides of the chamber, parallel to the optical
path, there are two coils that provide an adjustable RF magnetic field. Situated inside the
chamber is an adjustable oven which was usually set to 50°C.

(d) Detector

The circularly polarized radiation then enters the rubidium chamber where it radiates
in all directions. The photons which reach the inside of the chamber are absorbed by the
atoms, while the remaining intensity is emitted through the end of the chamber opposite
the incident beam. This is an important consideration because when optical pumping is
achieved there will be maximum transmission and minimal absorption. When transitions



between Zeeman levels occur, they are observable as the photon transmittance intensity
decreases as absorption increases. Although the rubidium atoms emit photons as they
decay to lower energy states, the photons are emitted in all directions so a negligible
amount reaches the photo-detector.

If optical pumping is achieved and a weak magnetic field is present, excited atoms
will decay to their ground state and spontaneously emit photons. At the end of the optical
rail opposite the incident beam, the photons emitted from within the chamber are focused
into a coherent beam by a second Plano-convex lens.

Before our beam passed through the interference filter, it is slightly pinkish in
color. However, only 795nm radiation is allowed past the filter which means that our
beam is no longer visible since 795nm is in the near-infrared region of the
electromagnetic spectrum. The distance between the first Plano-convex lens and the
rubidium lamp is adjusted until optimal coherence of the beam is achieved. This distance
is measured and used to separate the detector from the second Plano-convex lens since
visual adjustments are not possible as visible wavelengths are not present. Further
precision can be achieved, however, by monitoring the detector for maximum output as
the distance to the Plano-convex lens is adjusted. The heart of the detector is a simple
photodiode which allows us to measures the relative magnitude of the radiation that is
emitted by the excited atoms in the Rb chamber. Sensitivity settings are located on the
detector’s housing.
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Fig.1 Schematic diagram of the apparatus for a ribidium optical pumping
experiment.
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Fig.2 The basic setup for the optical pumping. The direction of a magnetic field

is the same as that of the propagation of the circularly-polarized light (o)
with D; line. An AC magnetic field with radio frequency (rf), which is
applied along a direction perpendicular to the propagation of the light, is
applied to drive transition within Zeeman levels.

3. Level splitting due to the spin-orbit interaction

Alkali atoms possess an electron configuration that can be exploited to simplify them
for angular momentum coupling and spectral analysis. Each of the alkali metals has an
electronic configuration of a noble gas plus one valence electron. In the case of Rubidium,
this is

15%25%2p®35%3p°3d'%4s%4p°5s'
or [Kr]SSl.
Rb
(Z=37,N=50)
Proton number = 37
Atomic mass = 85.4678
Nuclear spin | = 3/2
The electron configuration of Rb is represented by
15%25%2p®3s%3p°3d'%4s%4p°5s!

There is one electron outside the closed shell.
For n=5, we have lx=n-1=5-1=4

I =4(9), 3(f), 2(d), 1(p) and 0(S).



(a) Spin-orbit coupling
n=>5

I=1lands=1/2
D x Dip = D3, +Dyp,
leading to j=3/2 and j = 1/2.

Dsn (j=3/2,m=3/2,1/2,-1/2, -3/2)

or
P =1),,=R, = SRy,
Dis (= 1/2,m=1/2,-112)
or
PURI=D=R, SR,
|=0ands=1/2

Do x D12 = Dy,
leading to the state with j = 1/2.
Dip (J =1/2,m=1/2, -1/2)

2s+1:28(| = O)j:l/2=281/2



Hyperfine interaction
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Fig.3 Level diagram of *’Rb with the nuclear spin | = 3/2. The splittings are not

to scale. Dy line: (5 2S12 — 5 *P1j). 4 = 794.978851156(23) nm. D;, line:
(5 2S12 — 5 *P3pn). 4 = 780.241209686(13) nm. D;: 377.107463380 THz

(794.978851156 nm).

4 Energy level splitting due to the hyperfine interaction

Nuclear spin 3/2 for *’Rb
(1) j=3/2(5°P,,)and I=3/2
D32 x D3jp=D3 +D2 + D1 + Do
leading to the magnetic substates
F=3(m=-3,-2,-1,0, 1,2, 3),
F=1(ms=-1,0,1),
(2)  j=1/2.(5°P,,)and I=3/2
D3 x D12 =D, +D;

leading to the magnetic substates

F=2(me=-2,-1,0, 1,2)

F=0(m;=0).



F=2me=2,1,0,-1,-2), F=1(me=1,0,-1).
(3) j=1/2(57S,,)and I=3/2.

D3 x D1z =D, +Dy
leading to the magnetic substates

F=2(m=2,1,0,-1,-2), F=1(@m:=1,0,-1).

The energy level diagrams of 87Rb is schematically shown below.

Hyperfine interaction
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Fig.4 Schematic energy level diagram of ®'Rb in the presence of spin-orbit
interaction, hyperfine interaction, and magnetic fied (Zeeman splitting).
Note that the Landé g-factor for F =1 is negative, implying that the highest
energy level is mg=-1 for F = 1. D; line (1 =794.978851156 nm).
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Fig.5 Splitting of energy level 5 *Si;, due to the hyperfine interaction. Ay =

4.271677 GHz, Av, =2.563006 GHz, and Av=6.834682610904324 GHz.
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Fig.6 Splitting of energy level 5 “P;;, due to the hyperfine interaction. Av | =

0.50905 GHz, A4v, =0.30543 GHz, and Av=0.8145 GHz.

S. Absorption and emission of light due to the interaction with electric-dipole
moment
We now consider the transition probability for the absorption and emission of the
light due to the interaction with electric dipole moments. As will be shown in the
Appendix (classical and quantum theory of radiation), the absorption cross section is
obtained as
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where E; and Ey are the enegy levels of the system in the initial state and the final state,
respectively. € is the polarization vector, and p is the quantum mechanical momentum.
Here we assume that

o[ w
e""=e =l+i—n-r+---=1
C
and
® 27 o nr _r,
—:k:—,—n-r;—(n r)z ~ _alom ¢ ]
C A cC K

where A = A1/(27). This approximation is valid for A » rom (atomic dimension). Then
we have

p|é >‘25(0)ﬁ - ha))

where oy =

For simplicity we assume that

g=e (n =e, ; the propagating direction).
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With the electric dipole approximation, we have
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In atomic physics, we define oscillator strength f5;

Thomas-Reiche-Kuhn sum rule
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The FEinstein's A and B coefficient:
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Fig.7 The Einstein's A and B coefficients for the absorption, stimulated emission,

and spontaneous emission.

6. Selection rule for the absorption and emission
We now calculate the matrix element

2

= [l [fls)

where
(p: [Fl8) = (01 XY, + (0 |9]6 e, + (o |2l e,

is a vector. Then we have
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Here we have

(o0 e +is1a)] = (o [k +i516) (o, [% +19]6) = (0%~ 9|8, Yo, [% +i514,)
or

2
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Similarly we have

(o1 lx=51)] =[]0} + (o0 |50

Then we have
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Spherical tensor of rank 1 is defined as

T _ R+
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TV =2
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To =20

NG

From Wigner-Eckart theorem
(F,m' [TV F,me) £ 0

for m.'=m; +q and for F'=F +1,F,F -1, whereq=-1, 0, 1.
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Fig.8 Linearly polalized light and circularly polarized lights.
The linearly polarized wave (z-polarization) is expressed by
E_(t)=E.e, cosat
eia)t +e—ia)t

=Ee ]

The circularly polarized (counter clockwise, o -polarization) in the x-y plane, is
expressed by

E_ ()= %(eX cos wt + e, sin wt)
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242 2 i
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We use the expression of E_, (t) as
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E . ()=—" (e, +ie,)e"

The circularly polarized (clockwise, o polarization) in the X-y plane
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Then the interaction between the electric field and atom is
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Hy,=—er-E, +r-E_ +r-E )
E, (X+i§) X—=iy)
D R e R
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The matrix elements are given by
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corresponding to the contributions from the o+ polarization, o-polarization, and 7
polarization, respectively.

7 Wigner-Eckart theorem
The electric dipole moment of the hyperfine structure between the initial state

| F.,m, > and the final state ‘ F..m; > is represented by
e(F,.m, ‘Tq(")| F.m),

where the polarization state of the light is expressed by | k=1, q> , where the angular
momentum is # and g =-1, 0, and 1. According to the Wigner-Eckart theorem,

' (k)
<a ,Fe,my ’Tq

is proportional to the Clebsch-Gordan coefficient.

a:Fiami>a



<05',Ff,mf "I:q(k)|a,Fi,mi> =<Fi,k;m-,q

F.k;F,,m; >>< term independent of m’, m,
and Q.

or

(a',F ”'I:(k)“a, F)
J2F +1

(o Fm [F}] s Fom)) = (Fksm,

F.k;F.m,)

where a and a, represent any additional quantum numbers required to specify the state.
<a', F ”'I:(k)“ a, Fi> is called the reduced matrix element which is independent of g, my, and

m;. The numerical value of the Clebsch-Gordan coefficient is zero unless the triangular
condition

F = Fi+ k, Fi+ k-l, veey |Fi-k|,
is satisfied. Note that

DFi ®D, = DFi+k + DFﬁkf1 +ot D‘Frk‘ .

The Clebsch-Gordan coefficient is also zero unless the condition
mf = mi + q ’

is satisfied. These two conditions ensure essentially the conservation of the total angular
momentum of the system and of the component of this angular momentum on the axis of
quantization. The transition probability is proportional to the square of the magnitude of
the matrix element of the electric dipole moment, or is proportional to the absolute value
of the Clebsch-Gordan coefficients.

8 Intrinsic angular momentum of photon (ot+-polarization)

The emission of radiation 5 2P;, — 5 Sy, the angular momentum of the atom
decreases by one unit. The principle of conservation of angular momentum therefore
requires that the emitted photon shall have an intrinsic angular momentum of the angular
momentum The emitted photon shall have an intrinsic angular momentum of 7 .
Similarly in the decay of the

Whether m changes by +1, -1, or 0 depends on the nature of the photon. If the applied
magnetic field is parallel to the direction of propagation of the photon, then a right-
circularly polarized photon will always induce transition that have Am = 1. Left-
circularly-polarized light produces Am = -1. The same thing is true for emission. An
electron can fall from the 5 *Py,, level to Sy, level and emit a photon with right or left
circular polarization, depending on whether 4m is +1 or -1.

The electric-dipole selection for circularly polarized light require either



me=m;+1, ormg=m;- 1.

where My and mi are the final and initial angular momentum-projection numbers along
the direction of propagation of the light. The Hamiltonian for the circularly-polarized
light as a spherical tensor operator. We use the Wigner-Eckart theorem to decide which
transition probabilities are zero and which are not. Whether m¢ changes by +1, -1, or 0
depends on the nature of the photon. If the applied magnetic field is parallel to the
direction of propagation of the photon, then a right-circularly polarized photon will
always induce transition that have Amg=1.
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Fig.9 Transition between the energy levels of *'Rb resulting from the effects of
spin-orbit interaction, hyperfine interaction, and Zeeman effect (in the
presence of magnetic field), caused by the circularly o -polarization (D,
lines). The transition processes are illustrated schematically in the figure,
which depicts the histories of several atoms which are initially in various
magnetic substates of a lower electronic state. Under irradiation by
circulary polarized light, they make upward transitions to magnetic
substates of an upper electronic state subject to the restriction Am¢= 1.

9 Fi=1 and k = 1 (ot+-polarization)
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F=1m =0 =\/E|Fi=2,mi=1|k=1,q=—1)—\E|Fi=2,mi=0)|k=1,q=o)
\/7|F 2,m =-1)k=1,q=1)

F=1m =-1)= [Fi= 2’m'_0|k_1q_ \/7|F 2,m; =-1)k =1,q=0)

\/7|F 2,m ==2)k=1Lq=1)




11.  Clebsch-Gordan coefficients
The Clebsh-Gordan coefficients are shown in the following figures. The transition
prbability for each process is proportional to the square of the Clebsch-Gordan coefficient.

ms=-2 ms=—1 ms=0 ms=1 ms=2
F=2
Fi=1
mj=—1 m;=0 mj=1
Fig.16 Clebsch-Gordon coefficients for the transition between F =2 and F; = 1.
The square of the Clebsch-Gordan coefficient corresponds to the
probability.
me=-1 m¢=0 ms=1
F=1
Fi=1
mj=-1 m;=0 m;=1
Fig.17 Clebsch-Gordon coefficients for the transition between F =1 and F; = 1.

The square of the Clebsch-Gordan coefficient corresponds to the
probability.



F=2

Fi=2
m;=-2 m;=-1 m;=0 mj=1 m;=2
Fig.18 Clebsch-Gordon coefficients for the transition between F = 2 and F; = 2.
The square of the Clebsch-Gordan coefficient corresponds to the
probability.
F=1
Fi=2
mi:2
Fig.19 Clebsch-Gordon coefficients for the transition between F = 1 and F; = 2.
The square of the Clebsch-Gordan coefficient corresponds to the
probability.
12 Optical pumping: transition from F =2 to F =1 through absorption

of light D; with o+ polarization
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Fig.20 Selection rule for the transition between the Zeeman levels for F =2 of 5
281/2 and the Zeeman levels for F = 2 of 5 *Py. Am; = 1 for the ot

circularly polarization light. The population of the state [F =2,m, = 2> of

5%p, » becomes maximum.

13 Optical pumping: transition from F =1 to F = 1 through absorption
of light D; with o+ polarization
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Selection rule for the transition between the Zeeman levels for F=1 of 5
281/2 and the Zeeman levels for F =1 of 5 2P1/2. Ame = 1 for the o
circularly polarization light. The population of the state |[F =1,m; = 1> of

Fig.21

2 .
5 “P1» becomes maximum.

14. The transition of F=1and F=1.
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increased by the optical pumping.
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Fig.23
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Fig.24



15. Pumping process (simple model)
Before pumping, the atoms are divided evenly between the energy levels A and B.

Level

000000 Level B
. . . . . Level A

Fig.25 (a)

Suppose we irradiate a sample of these atoms with alight beam which the spectral line
BC has been filtered. The beam contains photons that can excite atoms in the level A but
not in level B. Atoms excited out of A absorb energy and rise to C. They will remain
there for a short time (as little as a ten millionth of a second) and then emit energy,
dropping back either to the A or B state. After absorbing photons from a beam of light
(circularly polarized) and being raised to energy level C, atoms drop back in equal
numbers to energy levels A and B.



A A A A A
Ahsarption

not allowdd Allowed

Fig.25 (b) and (c¢)



Fig.25 (d) and (e)



»Q

9000000000

Fig.25 (f) and (g)

As the process continues all atoms are in the level B. The is no atom in the level A. In
other words, given enough time, every atom must end up in the B state and the material is
then completely pumped.

When an rf magnetic field is applied, electron precesses and acts as partially open shutter.
If some atoms are suddenly returned to the A state, light will again be absorbed, and the
brightness of the transmitted beam will drop sharply. Population of the state my = 2 is
increased by the optical pumping.

o>—0—0—0—0—0—@—@—-
rffield
O O O O @+

Fig.25 (h)

16.  Linear Zeeman effect in a weak magnetic field
In a weak magnetic field limit, the spacing of the Zeeman splitting between the m
levels of a given F state. In this case, the Hamiltonian (spin-orbit, hyperfine interaction,



Zeeman (magnetic field)) is diagonal in the ‘F,mf> basis. However, in the strong

magnetic field limit, the spacing between the levels is not equal. Here we show the
simple model for the Zeeman splitting in the weak magnetic field limit.

Hyperfine interaction

5 2P3/2

2
5 S
1=2/ -2

5 Q
F=1
5281, (1=0,5=1/2, j = \r < 0 gr=—122
Spin—orbit interaction Zeeman splitting
Fig.26 Schematic energy levels of *Rb (I = 3/2) in the presence of spin-orbit

interaction, hyperfine interaction, and the magnetic field.

If the magnetic field is relatively weak, the Zeeman energy is given by a simply
expression

E(F,m;) =0 u5Bm, + E(F,m; =0)

in the state ‘F, m; > with mg=F, F-1, ..., and -F. The spacing between the Zeeman levels

in the presence of a magnetic field along the z axis, is independent of mg,
AE = gFluBAmf Bz = gFluBBz

since Amy = 1. When AE =hw=#h(27zv) [v is the frequency, and ® is the angular
frequency], we have

hW(2zv
(B ): Orlg

z

or



V. _9eHs _1 399629, (MHZ/O®).
B, 27

When gp = 1/2

BL =1.399629, = 0.69981 (MHz/Oe).

The linear relationship between energy levels and magnetic field only holds for small
magnetic fields. When the Zeeman splitting grows relative to the hyperfine energy
difference one has to take into account the quantum mixing of the states.

(a) Landé g-factor g;

L=L +L,+L;+..,S=S+S,+S;+..

The total angular momentum J is defined by
J=L+8S,

where L is the orbital angular momentum L and S is the spin angular momentum. The
total magnetic moment g is given by

n=—u(L+28),

where 45 is the Bohr magneton. The Landé¢ g-factor is defined by
Hy, =—0,4d

Suppose that
L=aJ+L, and S=bJ+S ,

where a and b are constants, and the vectors S, and L, are perpendicular to J.
Here we have the relation a+b=1, and L, +S, =0. The values of a and b are
determined as follows.

Here we note that



J-12-8 J-17+8?

J-S=(L+S)-S=S>+L-S=8"+ : :

b

or

P-U+8* n*

Js==— S +D-LL+1)+5(S+1)],

using the average in quantum mechanics. The total magnetic moment u is
p=—u (L+2S)=—u[(a+2b)J+ (L, +2S))].

Thus we have the component of g along the direction of J as
By, =—p(@+2b)J =—p(1+b)J = -9, 15T,

with

J-S_3, S(S+h-L(L+D

=l+b=14+—-
9, 32 2J(J +1)

(b) Landé g-factor gr
The total angular momentum F is defined by

F=J+1.
where | is the nuclear spin. The total magnetic moment g is given by

n=—19,d+ 9,140 =—p5(9,J -9, IZ_NI)

B

where ¢, 1 is the nuclear magnetic moment. Note that g0 and g>0. The direction of

the nuclear magnetic moment is anti-parallel to that of the electron magnetic moments.
Suppose that

J=aF+J, and I=bF+1,

where a and b are constants, and the vectors J, and I, are perpendicular to F. Here we

have the relation a+b=1, and J, +I, =0. The values of a and b are determined as
follows.




Here we note that

2 2 2 2 2 2
J'F:J'(J+I):J2+J-I:J2+F 12 J :J I'+F ’

2
since
F’=J*+1"+2J-1
Then we have
2 y2 2 2
J-Fz%z%[\](\] +D)-1(1+)+F(F+1)],

using the average in quantum mechanics. The total magnetic moment g is

n=—u09,d+ 1,9 1=—p[0,(@F+J,)—-09, ,u_N(bF +1))

Hg

=—ug((ag, _blu_Ng| F+(9,J, _lu_Nglll)]

B B

The Landé g-factor g for F is defined by

Me =—0eusF =—5(ag, _blZ_Ngl)F ~ —gag, F

B

Here we neglect the contribution from the magnetic moment from the nuclear spin. Thus
we get

J-F JUA+D)-1{+D)+F(F+1)
=al = — =
9 =20, F’ 9 =0l 2F(F +1)

1.

17 Quadratic Zeeman effect

17.1 Clebsch-GFordan coefficients
(a) spin-orbit interaction (j = 1/2,1=0,s=1/2)

1 1
_’m_:—
272
o1 1

=L =)o =ofs=12m =1

>:|| =0,m =0)|s=1/2,m, =~1/2)



(b) spin-orbit + hyperfine interaction

F=2(j=1/2,1=0,5=1/2;1=3/2)

Fig.27

peameiehn et
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‘F_z’mf __1>__|:i’m|=_i :l,m=l +£|=§,m| --1 J=l,m=—l
2 2 2 2 2 2 2 2 2

pein - frdme Yirbee

F=1(3=1/2,1=0,s=1/2;1=3/2)



31
537 e I==>
E=1m.=1
=l,mf:—1> =1’mf:0> H—1> ml
® 1 11/2 1 301
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Fig.28
|F:1,m|: :1>:—|:§,m|:l :l,m:l —ﬁlzéj |_§ :l,m:_l
yM = iEpmEg ) o =y mEg =mEy

18. Hamiltonian
We need to calculate the matrix elements of the Hamiltonian defined by

H=H, +H

Zeeman

where
R=—pg0,d + 49,1

where 5 is the Bohr magneton and gy is the nuclear magneton.
H zeeman = 1B = 1£59,J,B — 14y0,1,B

where
My =—0, 45



My =0, 45l

He = =0 pgF
where

F=J+1

Hy,=Al-J
where

I-J=IXJX+Iny+IZJZ

:l(J*+J‘)(I*+I‘)—l(J*—J‘)(I*—I‘)+IZJZ
4 4
or
A, 2 2 A T

H, :AI.J:E(F -1'-J )_)E[F(F +D) =1 +D)—j(j+D)]
where

By

A—T—3.417341305 GHz.
with

E,; = 6.834682610 GHz for *'Rb

18 Calculation of matrix elements for the Hamiltonian



Hy F:Z,mF=2> F(F+1)—I(I+l)—j(j+l)]‘l—% |

3A 3 3\ . 1 1
_ I :_’ml = — J:—’m:—
4 2 2 2 2
HZeeman F 2 m _2> (:uBgJ‘]zB :uNgllzB)‘l =

= (459, MB — 1 9, M, B)‘I =

3 37, 1 1
= B :—,m = — :—,m = —
(/uBgJ N e )‘ P >‘J 5 >

wlw le
Il

N | W
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. [ S—
Il

N | —
3

Il

N | —
'

hf|F 2m —1> 3A[£|:§’m|=l J=l,m=l _|_l|=
4 "2 2 2 2 2/ 2
\/_ 3 .
Zeeman|F 2m _l> (/uBgJ‘]zB /uNgllzB) E > =
1 3 3\. 1 1
+-l== My =— J=—.m=——)]
2 2’ 2 2 2
1
z(,uBng

3|, 3 1\

B- Y21 o B)_‘|=57m|25>‘J=
3
2

1
+(- :uBgJ B MY~ )_‘IZ

3
I
[

3 L\. 1 1
Hy|F=2,m.=0)= l=—m=-—)j=—,
" [\/ ‘ M 2>‘J 2 >

A

1
HZeeman F :2’mF :O> (/uBgJ‘]zB :uNgllzB)

1 1

+Ll—ém _1L j==m=——=)]
V2l 27 2 2’ 2

1 1 1 3 I\[. 1
=<ﬂ89JaB+ﬂNglzB>[ﬁ" " =“>" 2

2 2

1 1 1 3 1\]. 1

+ (- —B- —B)—|l==m ==)[]=—
(uBQJz uNg.2 ) 5‘ > M 2>‘J 5
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Y2 27 2 2



3A 1 3 3\ . 1 1
th FZzamF: >:_[_‘ =7 |:__>‘J:§9m:_>

2 2 2

1 3 3\. 1 1
HZeeman F :2’mF :_1>:(;uBgJ‘JzB_:uNgllzB)[E‘l :E’ml :__>‘J :Eam:_>

2

\/2_‘| _%7ml :_l>‘1 :%,m:_l>]

1 3 3\. 1 1
= B—|— I:—,m = —— =—,m:—
(/uBg.] V2N T )2‘ > 2>‘ 5 2>
3 3 1\. 1
+ B+ —(l==m=—)j=—m=——
(459, = > ;uNg| B) > 5 5 J >
3A 3 3 1 1
P =2m =)= =Sim =S fi=fm=3)
3 3\ . 1 1
Zeema”|F 2,m >=(/uBgJ‘JzB_/UNgIIZB)‘I :E’ml =_E>‘J Zz’m:_§>

1 3 3 o1
:(_,uBgJ EB+ﬂNg|EB)‘I :E,ml :__>‘J:E’

Hy|F =1m. =1) [F(F+l)—|(|+1)—j(j+1)][%‘| %,m,
3 :z,m,_z>‘ :1,m2_1>]
2 2 2 2 2
5,1 3 1\|. 1 1
‘_ZA[E‘ =M 5>‘J—5”“—5>
B 23 |:§>‘j:1,m:_1>]
2 2 2 2 2

-(= /uBgJ B /‘Ng| B)—

3 ﬁ|=§,m|=§
27 T2




_L|—§m —l>J—l m—_l>]
V2 Y P 2
1

~ (130, 5 B+ iy )[3‘|=§,m.——%>‘j=%,m=5
- (9, 2B 1,0, B)ﬁl% .=%>‘J=%,m=—%>]
e
ey
H zeeman| F = 1. M =—1>=(ﬂBgJ%B+ﬂNg.§B)§‘I =%,m. =‘%>‘J :% m:%>
~(Ha8, 5 B+ 83 B) ‘I—% .=—%>‘j=%,m:—%

19 The matrix of Hamiltonian under the basis of ‘ F,m; = 2>

H|F =2,m =2)=

3 1 3 3 3 1
=(=A+ —B- =B)l==m, ==)|]=—
(4 Ms9, 5 yZ el 5 )‘ P 2>‘J >

.1 1
Jz_am:_
2 2

=A,



H|F =2,m, =1)=

3 1 1.3, 3
=[=A+ —B- —B)]—|I =
[4 (159, > My, > )] 5 5
3 1 3 1 3
+[—-A- —B+ —B)]-|l ==
[4 (ﬂsgaz Mo )]2 2
3 3\ . 1 1
= I:—,m = — :—’m:—— —+
Ay > M 2>J > 2> Ay

3 1
H|F =2,m, :O>:[ZA+(,uBgJE

3 1
[ZA_(/UBgJ 5
:A34 ==, =

3
HIF =2,m; =- > [4A+(/UBQJ_B+:UN9|_B)] ‘I—

1 1

B+ﬂNg|EB)]T

2

B+uNg.1B)]T

E 1

3
+[4A+( M9, B+:uNg| B)]_‘I_

= A46

H|F =2,m, =-2)=[ i

HF_lmf—1> [__A+(/uBgJ B :UNgl_B)] ‘l—

5
[4 A+ (19, —

= A,

B+:uNgI

3 .1
=3 =3z :‘5>+A63'

3 1. 1
1=2m =) j=tm=—
2 2/|" 2 2

o)

2’
3 m
2’




H|F =1m, =0)= [——A+(yBgJ B+/¢Ng|

HIF =1m; =- > [__A+(:uBgJ B+:UN9|_B)

where

4

=A,

1

+[_A+(;uBgJ B /uNgI

3 1\ . 1
= l=—m =——)]=—
A 5o 2>‘J 2
3 1 3
AH:ZA+(IuBgJE_1uNgIE)B
3 1 3 1
A, :[ZA_(/JBQJ ) B+uy9, = ) )]E
3 1 lg ﬁ
A Z[ZA+(,UBQJ ) B—uy9, = 2 2
3 1 1 1
A34:[ZA_(:uBgJ EB+;UN9|EB)]$
s=1y M9, 5 Hn G, 5 \/5
; 3
[4A+( MsQ; B+,UNg| )]7

3
A [4A+(:uBgJ B+:uNgI B)]_

A [iA‘f‘( MgQ; B+:uNg| B)]

N
Il

-t
f 27 2
+[§A+(ﬂBgJ_B+/‘Ng|_B)_‘I =-.Mm :l>‘

2 2 2 27 2

3 . 1 1
l=—m==)j=—mM=——
2 2 2 2

[N



S V3
A, = 4A+(:uBgJ B+/‘Ng| B)]?
1

5 1
A63:[_ZA+(;uBgJ B Y21 i )]5

5 1 1 1
A, :[ZA"‘(,UBQJ EB+ILlNg| 58)3
5 1 1 1
Ass =[_ZA+(:uBgJ §B+ﬂNgl EB)]ﬁ

A [5A+(/uBgJ B- /uNgI )]l

4 2
3
A, _[__A+(/uBgJ B+1uNgI B)]T
Then we get
[F=2m=2)) (A, 0 0 0 0 0
[F=2m=1) | |0 A, A, 0 0 0
‘F:Z,mf = > 0 0 0 A, A 0
Gl [F=2mi=-n] o 0 0o o0 o A
[F=2,m=-2) [0 0 0 0 0 0
\F_l,mf _1> 0 A, A, 0 0 0
‘F_l,mf =0 0 0 0 A, As 0
[F=1,m, =-1) 00 0 0 0 Ay

Here we note that

8
S O O O

9
3]

oo oF oo o

3

(=N -]




\Fzz,mf =2
[F=2m =1
[F=2,m, =0

~ S~ ~——

[F=2,m =-1)
[F=2,m =-2)
[F=1m =1)
[F=1m, =0)
[F=1m =-1)

or

|—§ m —3 J
272
|—§ m —é ]
27 2
3 1>
l=—m =—
2 2
|—§ m —l J
27 2
3 1
l=—.m, =—=
2 2
3 1>
I:—’mlz——

2

3 3
l=—'m =—=
2 2

3 3
l=—m =—=
2

0
0
1
V2
0
0
0
_1
V2
0
0 0
Ly
2
By
2
07
V2
1
0 —
V2
0 0
0 0
0 0

om\—‘w‘§ )

(=]

The final form of the eigenvalue problem is as follows.
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‘ 2 2/|' 2
3 3\ . 1
Iz_aml__ J:_’
2 2 2
3 I\[. 1
l=—m ==)]=—
2 2 2
3 V. 1
_7m|:_ J:_a
2 2 2
é m —_l j—
270 2
3 1\[. 1
_7m|:__ J:_
2 2 2

| —

‘F=2,mf = >
‘F=2,mf =

‘Fzz,mf = >
[F=2,m, =-1)
[F=2,m =-2)
[F=1,m, =1)
[F=1,m =0)
[F=1m, =-1)




with

1 O 0 0 O 0 0 0
0 l 0 0 O —ﬁ 0 0
A, O 0 0 0 0 0 0 2 2
J3 1
0 A, A; O 0 0 0 010 7 0 0 O E 0 0
0 0 0 A, A, O 0 0 0 0 1 0 o 0 1 0
L0 0 0 0 0 A A0 3 2
=
0 0 0 0 0 0 0 Aylo o - 0 0o o -L o
0 A, A; O 0 0 0 0 \E \/_ \E
0 0 0 A, A, O 0 010 O 0 73 0 0 0 —%
0 0 0 0 0 A A 0
©Y 00 o Lo o o B
2 2
0 O 0 1 0 0
or
A, 0 0 0 0 0 0 0
0 A22 +2\/§A23 0 — \/gAEZ + A23 0 0
0 0 A+ A 0 0 0 M 0
2 7
0 0 0 \/§A46 + A47 0 0 0 — A46 + \/§A47
M. = 2 2
! 0 0 0 0 A, 0 0 0
A62 +2\/§A63 0 0 0 - \/gASZ + A63 0 0
0 0 A74 + A75 0 0 0 A74 + A75 0
2 5
0 0 \/EARG + A87 0 0 0 — ARG + \EAW
2 2

20. Eigenvalue problem
E=A11 is the eigenvalue of Hamiltonian with the eigenvalue; eigenstate:

[F=2.m =2).

3 1 3
A, ZZA+(ﬂBgJ E_luNgIE)B'

E=Asg is the eigenvalue of Hamiltonian with the eigenvalue; eigenstate: |F =2,m, = —2> .




3 1 3
Ay :ZA+(_:uBg.] §B+ﬂNg|EB)-

The basisof {F =2,m. =1>and F =1,m; =1>};

Azz + \/§A23 _‘/gAzz + A23

H subset] — 2 2
A62 + \/§A53 — \/gp\sz + A\ss
2 2

1
ﬂ’ll:Z(_4g|:uNB_A_2\/(gJ;uB+g|:uN)ZBZ+2A(gJ:uB+g|:uN)B+4A2)
)B+i(gJﬂB+g|ﬂN)sz+ 3 ((.-.JJ;U|3+gz|luN)BB3

32 A 128 A

5 1
z__A_Z(gJ:uB+59|:UN +O(B)4

4

1
Ay = Z(_4gI/uNB_A+2\/(gJ/uB +0, Uy )2 B? +2A(0, 15 + gl/uN)B+4A2)

3,1 3 (95 +9,14y)°B* 3 (9,45 +0,44y)° B’
~—A+— -3 B+— JB 1N _ JMB 1 HN
4 4(g.]/uB 9 Hy) 3 A 8 e

+0(B)*

The basisof {F =2,m; =0> and F =1L m, =0>};

A34+A35 _A34+A35

W N
subset A74 + A75 - A74 + A75 '
RG] N

The eigenvalues are

1
oy =Z(—A—2J(9Jus +0,4y) B? +4A%)

2p2
z_éA_(ngl’lB—i_gl#N) B +O(B)4
4 8A

and

1
oy =Z(—A+2J(9Ju5 +0,4y) B? +4A%)

4 8A

2p2
z3A+(gJ:uB+g|/uN) B +O(B)4



The basisof {F =2,m; =—1> and F =1L m; =-1>}

\/§A46 + A47 _ A46 + \/§A47

Hsubset3 = 2 2
A+ A, —A+BA,
2 2

The eigenvalues are obtained as

1 1
Ay == A g.mB—ﬂ(gJuB +0,400) B —2A(0, g + G 11y )B + 4A?

5 1 3 (9,4 + 9,1y ) B’
~——A+— +5 B-—~28B LN
4 4(gJ:uB 9, 4y) 0 A

3p3
. 3 (gJﬂB+gzll’lN) B +O(B)4
128 A

1 1
A3 Z_ZA"‘ glfuNB+E\/(gJ,uB + glluN)sz —2A(9, 15 + g|/uN)B+4A2

3 1 3 + ZBZ
z_A‘"Z(_QJ#B +3g|ﬂN)B+_(gJ'uB 9,44)

4 32 A
3Ip3
+ 3 (gJ:UB"'gthN) B +O(B)’
128 A
Al [F=2,m¢=2>
A [F=2,m¢=1>
Az [F=2,m¢=0>
Az [F=2,mf=—1>
Asg + IF=2,mf=—2>
Az) [F=1,m¢=—1>
L [F=1,m¢=0>
Ay [F=1,m¢=1>
Fig.29 In the presence of a strong magnetic field, there occur mixed states. (i)

Mixed states of |F =2,m; :1> and ‘F =1,m; :l>. (i1) Mixed states of



|F=2,m; =0)and |[F =1,m, =0). (iii) Mixed state of |F =2,m,

and |[F =1,m, =-1).

21. Simulation for the quadratic Zeeman effect
The nuclear magneton zu is

1y =5.05078324x107* emu (erg/Oe).

The Bohr magneton z is

Uy =9.27400915x 107" emu.
The mass of proton is

m, = 1.6726231 x 107>’ kg
The mass of electron is

m. =9.1093897 x 10! kg

The nucleus has a magnetic moment g that is related to the nuclear spin | by

no=0ul

We assume that g; = 1.
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Fig.30

The magnetic field dependence of the separation of the Zeeman levels, f
[MHz]. (i) |[F=2,m,=2) and |[F=2,m, =1). (ii) [F=2,m, =1) and

[F=2.m,=0) . (i) |[F=2m =0) and |[F=2m =-1) . (iv)
[F=2,m =-1) and |[F=2m =-2) . (v) |[F=Lm =-1) and

|F=1,m =0) (blue dashed line). (vi) |F =1,m =0) and |F =1,m, =1)
(red dashed line). g; = 1 (assumed).
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The separation of the Zeeman levels, f [MHz] as a function of B around B
=5.0 Oe. g; =1 (assumed).
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Fig.32 The separation of the Zeeman levels, f [MHz] as a function of B around B
=6.0 Oe. g; =1 (assumed).
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Fig.33 The separation of the Zeeman levels [MHz] as a function of B around B =
7.5 Oe. g1 = 1 (assumed).
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Fig.34 The separation of the Zeeman levels, f [MHz] as a function of B around B
=10.0 Oe. g; =1 (assumed).

22.  Energy levels of *’Rb (simulation)
We calculate the Zeeman splitting in *’Rb from the theory.



E/Eps

T | . . . | . . . | . . . | . . . | B (T)
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Fig.35 Energy levels of Rb. gr=1 (assumed). B=0-1.0T.
E/Epe
200 -
100 -
- B(T)
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—100}
—200|
Fig.36 Energy levels of *Rb. g; = 1 (assumed). B = 0 - 100 T. Paschen-Back

effect.
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Fig.38

0.375 &
)

B(Oe)

Energy levels of 8"Rb around 5 2P1/2. gr=1 (assumed). B=0 - 10 Oe.

'E/Eps

Energy levels of 8"Rb around 5 281/2. 0= 1 (assumed). B=0 - 10 Oe.

23.  Frequency vs Earth magnetic field (at Binghamton): B = 0.3 Oe.
The frequencies (MHz) of the six separations between adjacent Zeeman levels for B =
0.3 Oe at Binghamton, NY.

Table 1

B (Oe)



0.3 0.209753 0.209766 0.209779 0.209792 0.210236 0.210223
0.31 0.216744 0.216758 0.216771 0.216785 0.217244 0.21723

0.32 0.223735 0.22375 0.223764 0.223779 0.224252 0.224237
0.33 0.230726 0.230742 0.230757 0.230773 0.23126 0.231245
0.34 0.237717 0.237734 0.23775 0.237767 0.238268 0.238252
0.35 0.244708 0.244725 0.244743 0.244761 0.245277 0.245259
0.36 0.251699 0.251717 0.251736 0.251754 0.252285 0.252266
0.37 0.25869 0.258709 0.258729 0.258748 0.259293 0.259273
0.38 0.26568 0.265701 0.265722 0.265742 0.266301 0.26628

0.39 0.272671 0.272693 0.272715 0.272737 0.273309 0.273287
0.4 0.279662 0.279685 0.279708 0.279731 0.280318 0.280295
0.41 0.286652 0.286677 0.286701 0.286725 0.287326 0.287302
0.42 0.293643 0.293668 0.293694 0.293719 0.294334 0.294309
0.43 0.300634 0.30066 0.300687 0.300713 0.301342 0.301316
0.44 0.307624 0.307652 0.30768 0.307708 0.308351 0.308323
0.45 0.314615 0.314644 0.314673 0.314702 0.315359 0.31533

0.46 0.321605 0.321636 0.321666 0.321696 0.322367 0.322337
0.47 0.328596 0.328627 0.328659 0.328691 0.329375 0.329344
0.48 0.335586 0.335619 0.335652 0.335685 0.336384 0.336351
0.49 0.342576 0.342611 0.342645 0.34268 0.343392 0.343358
0.5 0.349567 0.349602 0.349638 0.349674 0.3504 0.350365
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APPENDIX
Al. Experimental Results obtained by David Boyle (Senior Lab,
Binghamton University, 2006)

(a) Low field Zeeman effect

To determine the gg-factors of each Rubidium isotope, it was necessary to acquire
resonance transition data. Using the geometry of the coils, the value of the Bohr
magneton and the measured frequency, a plot of magnetic field as a function of current
could be used to determine the gg-factors. The RF coils were activated at 10 kHz
intervals between 100 kHz and 200 kHz. At each of these frequencies, the sweep field
was manually adjusted to center on one resonance peak for each isotope and the current
generating the field was recorded. Figure 9 depicts the zero field peak along with the
resonance peaks for the two Rubidium isotopes.

N

—

fu]
==l
L 1]

bBS

Increasing
Transmitted
Light Intensity
A
[

Zero Field

Increasing Magnetic Field —-

Fig. A-1 — Zero field and resonance transitions for Rb®’ and Rb™ at 120 + 5 kHz

(©) Quadratic Zeeman effect

The perturbation applied was larger than the linear Zeeman effect, and the splitting of
the 2F + 1 magnetic levels was no longer linear in the magnetic field (hence the spacing
between the levels was no longer equal). 2F resonances (with AF = 0, Amg = +1) could
now be observed for each atom, which translated to six for *’Rb and ten for *Rb. To
observe the resonances, the intensity of transmitted light and magnetic field current were
again monitored on an oscilloscope. ®’Rb resonances were investigated in the frequency
range of 4.70 £ 0.01 MHz to 5.30 £ 0.02 MHz in 0.1 MHz increments. To find the
grouping of resonances at each frequency, the sweep field was first used to center the
magnetic field intensity at the zero field peak (which is independent of RF frequency).
The main field was then increased until the first resonance peak was observed, then the
sweep field would be slowly increased to trace out the changing transmittance on the
oscilloscope. A resonance plot for *’Rb is shown in Fig. A-2. The transitions can be
represented in Dirac notation as



|F.m)—|F.m, —1)

&
2§
SEF
Increasing Magnetic Field —=
(a) [1,0) > [1,-1) (d) [2,0) —>[2,-1)
(b) [1,1) —>[1,0) (e) [2.1) > [2,0)
(©|2-1)>]2-2) (B ][2.2)>]|2.])
Fig.A-2 Resonance transitions for *'Rb under the quadratic Zeeman effect.

%*Rb resonances were investigated in the frequency range of 3.30 + 0.02 MHz to 3.70 +
0.02 MHz in 0.1 MHz increments (Fig. A-3). The same procedure was followed as for
*’Rb and the resulting trace can be seen in Fig. The small peaks between the resonance
peaks for both isotopes correspond to double quantum transitions.

—
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Light Intensity

Increasing Magnetic Field —-

3-2)>[3-3)  ®

(a) 2,1) >

2,0)



o) [2,-1) >[2,-2) @ [3.1) > [3,0)

©[3-1)>|3-2)  ®][2.2)>|2.])

@ [2,0) > [2,-1) @ [3,2) >|3.1)

(@ |3,0) >|3,-1) 0 [3.3) = 3.2)
Fig.A-3 Resonance transitions for *’Rb under the quadratic Zeeman effect.
A2 Interaction with radiation field

A2.1. Hamiltonian
The classical radiation field (P : operator of the system, quantum mechanical

operator)

N 1 e ?
SEREPEN

where e is the charge of electron e = —|e|. We note that

(Ap+p- AW =A-ZVp )+ 2V (Ap @)
— ALV )+ V- (Ap )
=A -?V w(r) +?(V w(r)-A+y(r)V- A)

:2i—hA-Vt//(r)+?l//(l‘)(V'A)

Thus

2
H :L{pz FLACHE NS SN
2m c c ic

Here we use the Coulomb gauge V- A = 0. Then



lef

~ e A A
H=-—Ap="—"A
ch P C P
A €
H =—=A’
2mce

A2.2. Classical radiation field
Maxwell's equation

V-E=47np
VxE:—la—B
c ot
V-B=0
vupo ¥ LOE
c c ot

P _y

V-j+
LA

1 0A

E=——22_V¢

{B:VXA
c ot

where A is a vector potential and ¢ is a scalar potential.

10
Vig+——(V-A)=—4
p+— o (V-A)=—4mp

2 o
va—iza ?—V[V-A+la—¢j:—4—ﬂ]
c” ot c ot o

Coulomb gauge
We start any pair of A and ¢. Using the Gauge transformation

Ay=A-Vy
1oy

= + ——
»=9 pap

we have a pair of A'and ¢, where
V-A'=0
or

V- (A-Vy)=0



or
Viy=V-A

This is a Poisson equation with known value of V-A. The solution of y is uniquely

determined. Therefore we can always choose the Coulomb gauge with V- A'= 0. Here

we assume that

V- A =0 (Coulomb gauge)

In the vacuum, we have

p:o, j:O
Vig=0
2
VZA—iza f‘—v(l%j:o
c” ot c ot

From the first equation, we have ¢ =0

or
(V-A=0, $=0)

Then we have

2
va—l‘;A =0,with V-A=0

C 2
The solution is

A =2A,cos(k-r— at)'

where

o’ =k’c’ or @ =ck (Dispersion relation)
Since

V-A=-2(k-A,)sin(k -r—at)=0
we have

k-A,=0



Fig.A3 N: unit vector of the propagating wavevector and & is the polarization
vector.

A must lie in a plane perpendicular to the direction of the propagation vector.

A=2Ae cos(k -r — ot)= |A0|s[ei("'r’“") + e‘i("'r“"t)]

1 0A Iy . o .
E= <A 2|A0|8(— Eja)sm(k r— a)t) = —2|A0|€£sm(k r— a)t)

and
B=VxA-= —2|A0|%(nxs)sin(k-r —ot).

where 1 is the unit vector defined by n =k / |k| . The electromagnetic energy is

1 1 1 1 .
g=g(E2+B2)=g(4|AO|ZC—2a)Z+4|Ao|zc—za)2]sm2(k~r—a)t)
oA,
- 2ch| [1-cos(2k -r —2at)]

The time average of ¢ over a period T (=27 w) is

1l e oy @A
T'([87Z'(E +Bt = 27¢

2

2 =u (erg/em’).

The Poynting vector S is defined by



C
S=—"(ExB
47r( - )
:2|Ao|géx{2|Ao|g(ﬁxé)}sinz(k-r—a)t)
C C
2
:4|A0|2i)—zﬁ%[l—cos(Zk-r—%ot)]

The time average of S over a period T (= 27 w) is

2 2
17 Ao
s=—ISdt=| J A =cu (erg/s-cm?’).
T+ 2nC
SR —
photons
ha
area |
Fig.A4 Poynting vector.

In summary we have

Energy density u;

o’|A,[
u= erg/cm’).
2 C (erg )

The intensity S; the energy flow per unit area per unit time.

2
* |A0|

S=cu= (erg /s cm?).

The flux of photons (the number of photons per unit area per unit time)

:i:w|A0|2

ho  27hc
A2.3 Application — interaction with the classical radiation field

Classical radiation field



= electric or magnetic field derivable from a classical radiation field as opposed to

quantized field
H :Lff —e¢(f~)+ﬂA-f)
2m mc

(e > 0) < We use g=-le| (Je| > 0), which is justified if
V-A=0.

We work with a monochromatic field of the plane wave
A= 2|A0|£ cos(k ‘r— a)t)

with

Fig.AS The direction of the vector potential AO which is the same as that of the
polarization vector €.

Then A can be rewritten as

A= |Ao|8[ei(k‘r7”‘) g ileren)]

~ H=H,+H,

A

H,: time dependent perturbation



H, = %|Ao|8'f)[ei(k'r’“") + e"(k"*“")]

— l_AI;re—iwt + |:|1 eia)t

T T
responsible responsible
for for
stimulated  absorption
emission

A2.4 Stimulated emission and absorption
Using the matrix element given by

we have the Fermi's golden rule,

27re
hmc

i—>f

(o e Blo) 5(E; ~E 7o)
? — 1
u= 2&)?|AO|2 (erg/cm’) aW(w)dw(ergc—;gJ

s=cu[ S3j—>l(a))da) (1(@) =W () |={erggs-ﬂ}=[erg 1}
m

cm® s 2
@* 2 = 1
—A[ > W(@)dw == 1(w)de
27C C

cm

2
zzh;r meC {27& W(a))}dw‘ 0, ‘e"”g p|(p,>‘ (E -E, iha))

i—>f

Since &(E, —E, iha))z%&(a)o + o),

Ar’e?
(a) _
iof _hz 2 2W(a)0

ikr

<¢f ‘e e f)|¢i >‘22 (absorption)



ha,
Ei
(absorption)
Fig.A6 Absorption from the ground state (E;) to the excited state (Ef) in a system
with two-levels.
Similarly
22 . 2
W, = ;ﬁ 2e W (a@,) <g0f ‘e'“s Plo >‘ (stimulated emission)
m’w;
E
ha,
Ef
(stimulated emission)
Fig.A7 Stimulated emission from the excited state to the ground state in a system

with two-levels.

A.3  Clebsch-Gordan coefficients using Mathematica

The Clebsch-Gordan coefficients can be easily evaluated using the Mathematica
program. We show the example for the case of j;=1 and j, = 1. Since D; x D; =D, + D; +
Do, we have the three cases; j=2 (m=-2,-1,0,1,and 2),j=1(m=-1,0,and 1), and j =
0 (m=0).



j1=1 and j2=1

Clear["Global " %"];

CGLi_, m_, J1_, §2 ] :=

Sum[ClebschGordan[{j1, ml}, {j2, m-ml}, {j, m}]a[jl, ml]
bli2, m-mi], {ml, -j1, j1}]

cG[2, 2, 1, 1]

ClebschGordan::phy: ThreeJSymbol[{1, -1}, {1, 3}, {2, —2}] is not physical. >

ClebschGordan:phy: ThreeJSymbol[{1, 0}, {1, 2}, {2, —2}] is not physical. >

a[l, 11 b1, 1]

cG[2, 1, 1, 1]

ClebschGordan::phy: ThreeJSymbol[{1, -1}, {1, 2}, {2, —1}] is not physical. >
a[1,1]b[1, 0] a[1, 0] b[1, 1]

z z

CG[2, 0, 1, 1]

a[l, 1] b[1, -1 |2 a[l, -1] b[1, 1]
£ a[1,0]b[1,0
N 3 [ 1b[ ]+ NG

cer2, -1, 1, 1]

ClebschGordan::phy: ThreeJSymbol[{1, 1}, {1, =2}, {2, 1}] is not physical. >
a[1, 0] b[1, -1] a[1, -1] b[1, 0]

NEY : A

CG[2, -2, 1, 1]

ClebschGordan::phy: ThreeJSymbol[{1, 0}, {1, =2}, {2, 2}] is not physical. >
ClebschGordan::phy: ThreeJSymbol[{1, 1}, {1, —3}, {2, 2}] is not physical. >
a[l, -1]1 b1, -1]

cGr1, 1, 1, 1]

ClebschGordan::phy: ThreeJSymbol[{1, -1}, {1, 2}, {1, —1}] is not physical. >
a[l, 11 b[1, 0] B a[l, 0] b[1, 1]
vz vz

cer1, -1, 1, 1]

ClebschGordan::phy: ThreeJSymbol[{1, 1}, {1, =2}, {1, 1}] is not physical. >
a[l, 0] b[1, -1] a1, -1] b[1, 0]

Vz V2

cG[Oo, 0, 1, 1]
a[l, 1] b[1, -1] a1, 0] b[1, 0] a[l, -1] b[1, 1]

V3 V3 ) V3




