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We present a simple method to determine the mutual inductance M between two coils in a coupled
AC circuit by using a digital dual-phase lock-in amplifier. The frequency dependence of the real
and imaginary parts is measured as the coupling constant is changed. The mutual inductance M
decreases as the distance d between the centers of coils is increased. We show that the coupling
constant is proportional to d−n with an exponent n (≈ 3). This coupling is similar to that of two
magnetic moments coupled through a dipole-dipole interaction.
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I. INTRODUCTION

Faraday’s law of magnetic induction states that a
changing magnetic flux through a coil of wire with re-
spect to time will induce an EMF in the wire. In a
coupled circuit, there are two coils of wire; a primary
coil that is connected in series with the voltage source,
and a secondary coil that is not connected to any voltage
source. The secondary coil receives energy only by induc-
tion. The EMF in the secondary coil affects the voltage
across the primary coil due to reflected impedance.1,2

Here we present a simple method to measure the fre-
quency dependence of the real and imaginary parts of the
output voltage across a series resistance in the primary
circuit of the coupled coils. Changing the separation dis-
tance between the two coils facing each other leads to the
change in the mutual inductance. The present method
allows one to obtain a great deal of data in a reasonably
short period of time. A background for the AC analy-
sis of the AC coupled circuit in the frequency domain is
presented in Sec. II. The frequency dependence of the
real and imaginary parts of output voltage is formulated
and is simulated using Mathematica. Our experimental
results are reported in Sec. IV. The mutual inductance
is determined as a function of the distance between the
centers of two coils from the frequency dependence of the
real and imaginary parts. We show that the mutual in-
ductance changes with the distance d as d−n where n ≈ 3.
This coupling is the same as that of magnetic moments
which are coupled by a dipole-dipole interaction.

The detection technique of the signal in the present
method is similar to that used in the nuclear magnetic
resonance,3,4 where the behavior of the real part (the
dispersion) and imaginary part (absorption) of the Bloch
magnetic susceptibility can be measured as a function of
frequency near the resonance frequency.

II. BACKGROUND

A. Self inductance and mutual inductance of coils

used in the present work

Figure 1(a) shows a photograph of coils which are used
in the present work. For simplicity, we assume that each
coil has a cylindrical form with a radius Rav and a length
l. The separation between the centers of two coils (see
Fig. 1(a)) is the distance d. The number of turns of
the coils 1 and 2 is the same (N). The magnetic field
produced by coil 1 (current I1) at the center of coil 2 is
given by

B =
µ0

2π

NA

d3
I1, (1)

for d � Rav using the Bio-Savart law.1,2 The voltage
induced in the coil 2 is

V2 = −N
dΦ

dt
= −NA

dB

dt
= −

µ0N
2A2

2πd3

dI1

dt
, (2)

where the magnetic flux is Φ = BA and A is the cross-
sectional area of the solenoid: A = πR2

av. Thus the
mutual inductance M defined by V2 = −MdI1/dt is given
by

M =
µ0N

2A2

2πd3
. (3)

The ideal self-inductance L0 is given by

L0 =
µ0N

2A

l
, (4)

for sufficiently long l, where l is the length of solenoid,
µ0 (= 4π × 10−7 Tm/A) is a permeability, and N is the
total number of turn. Thus we have

k =
Al

2πd3
=

R2
avl

2d3
, (5)

since M = kL0 (see Eq.(14) for general definition of M).
The constant k is dependent only on the geometry of the
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FIG. 1: (Color online) (a) A picture of two coils used in
the measurement. Each coil (Heath Company Part No. 40-
694) has a cylindrical form with the inner diameter (9.30
cm), the outer diameter (12.5 cm), and the length (9.0 cm).
The number of turns of the coil is N = 3400. The value of
L1 = L2 are determined from the resonance frequency with
C1 = C2 = 0.0038 µF. The resonance frequency f0 is equal
to f0 = 1/(2π

√
LC) = 2850 Hz. An AC voltage was sup-

plied by the lock-in amplifier. (b) Frequency domain diagram
of AC coupled circuit used in the present experiment. The
primary circuit is on the left side, the secondary circuit on
the right side. The coils 1 and 2 are used in place of the in-
ductors L1 and L2. L1 = L2 = 0.821 H. C1 = C2 = 0.0038
µF. R10 = R20 = 31 Ω. R1L and R2L are resistances of coils
1 and 2. R1L = R2L = 66 Ω. R1 = R10 + R1L = 97 Ω.
R2 = R20 + R2L = 97 Ω.

coils. Note that our coils used in the present measure-
ment have N = 3400 turn and l =9.0 cm. When Rav

= 5.45 cm, we have R2
avl/2 = 133.7, where d is in the

units of cm (see Fig.1(a)). The self-inductance L0 can be
calculated as

L0 =
µ0N

2πR2
av

l
= 1.506 H.

This value of L0 is larger than the actual value of Lexp

(= 0.821 H, which will determined experimentally). The
difference between Lexp and L0 is due to the deviation
of the system from ideal one because of the finite length
of the coil: Lexp = KNL0. KN is called the Nagaoka
coefficient and is defined as5,6

KN =
4

3π
√

1 − α2
[
1 − α2

α2
K(α)+

2α2 − 1

α2
E(α)−α], (6)

where

α =
1

√

1 + (l/2R)2
, (7)

R and l are the radius and length of coil, respectively,
and K(α) and E(α) are the complete elliptic integral of
the first and second kind,

K(α) =

∫ π/2

0

(1 − α2 sin2 θ)−1/2dθ,

and

E(α) =

∫ π/2

0

(1 − α2 sin2 θ)1/2dθ.

The value of KN can be calculated as a function of 2R/l.
The ratio KN experimentally obtained in the present
work is Lexp/L0 = 0.821 H/1.506 H = 0.5458. This ra-
tio is close to the ratio KN (= 0.6456) calculated from
Eq.(6) for the ratio 2Rav/l = 2 × 5.45/9.0 ≈ 1.211.

B. AC coupled circuit

In Fig. 1(b) we show the AC coupled circuit in the fre-
quency domain.7 The currents and voltages are all com-
plex numbers. Using Kirchhoff’s law, we can write down
two equations,

Ẽ = Ĩ1Z1 + jωMĨ2, (8)

and

0 = Ĩ2Z2 + jωMĨ1, (9)

where j =
√
−1, ω (= 2πf) is the angular frequency,

Ĩ1 and Ĩ2 are the loop currents of the primary and sec-
ondary circuit, Ẽ is the source voltage, Z1 and Z2 are
the impedance of the primary and secondary circuits, re-
spectively,

Z1 = R1 + jX1, X1 = ωL1 −
1

ωC1

,

Z2 = R2 + jX2, X2 = ωL2 −
1

ωC2

,

and M is dependent on the distance between L1 and L2

coils. From Eqs.(8) and (9) we have

Ẽ = Z ′
1Ĩ1, Z

′
1 = Z1 +

ω2M2

Z2

, (10)
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where Z ′
1 is the effective impedance of the primary cir-

cuit. The effective impedance is rewritten as

Z ′
1 = R′

1 + jX ′
1 = (R1 +

ω2M2R2

R2
2 + X2

2

) + j(X1 −
ω2M2X2

R2
2 + X2

2

).

For simplicity, we assume the symmetric configuration
such that R1 = R2 = R, C1 = C2 = C, and L1 = L2 = L.
Then we have X = X1 = X2 = ωL−1/ωC. The effective
impedance Z ′

1 can be written as

Z ′
1 = R(1 +

ω2M2

R2 + X2
) + jX(1 −

ω2M2

R2 + X2
).

The voltage across R10 between AG in Fig. 1(a), ṼR, is

ṼR = Ĩ1R10 = Ẽ
R10

R
G̃, (11)

where

G̃ =
R

Z ′
1

=
R

R(1 + ω2M2

R2+X2 ) + jX(1 − ω2M2

R2+X2 )
. (12)

We define the ratio x = ω/ω0, where ω0 = 1/
√

LC and
x is always positive. The quality factor of the circuit is
given by

Q =
ω0L

R
=

1

R

√

L

C
. (13)

The mutual inductance M is related to the self induc-
tance L by

M = k
√

L1L2 = kL, (14)

where k is a constant and is smaller than 1. By us-
ing these relation, C and L can be expressed by C =
1/(ω0QR) and L = QR/ω0. Then G̃ can be rewritten as

G̃ = µ + jν, (15)

µ =
x2[Q2(1 + k2)x4 + (1 − 2Q2)x2 + Q2]

x4 + Q4[(k2 − 1)x4 + 2x2 − 1]2 + 2Q2[(1 + k2)x6 − 2x4 + x2]
, (16)

ν =
−Qx(x + 1)(x − 1)[Q2(1 − k2)x4 + (1 − 2Q2)x2 + Q2]

x4 + Q4[(k2 − 1)x4 + 2x2 − 1]2 + 2Q2[(1 + k2)x6 − 2x4 + x2]
, (17)

which depends only on x, Q, and k. According to
Eq.(17), ν becomes zero when x = 0 and 1. The other
possible x’s for giving ν = 0 ca be examined by the fol-
lowing quadratic equation:

Q2(1 − k2)x4 + (1 − 2Q2)x2 + Q2 = 0. (18)

The solution of this equation is formally given by

x1 =

√

2Q2 − 1 +
√

1 − 4Q2 + 4k2Q4

2(1 − k2)Q2
, (19)

and

x2 =

√

2Q2 − 1 −
√

1 − 4Q2 + 4k2Q4

2(1 − k2)Q2
, (20)

where

x1x2 =
1√

1 − k2
, (21)

and

x2
1 − x2

2 =

√

1 − 4Q2 + 4k2Q2

Q2(1 − k2)
.

The values of µ and ν depend on x and are described as
coordinates in the (µ, ν) plane for convenience; (µ, ν) =
(0, 0) at x = 0 and ∞, (1/2, 0) at x = x1, and (1/(1 +
k2Q2), 0) at x = 1.

We now consider only the case of k < 1 and Q � 1,
which corresponds to the present experiment.

(1) State-I: 4Q2(k2Q2 − 1) + 1 > 0 . This condition
is nearly equivalent to kQ > 1 since Q � 1. There are
two solutions x1 and x2 (0< x2 < 1 < x1) besides x = 0
and 1. In Fig. 2(a) we show the simulation plot of the
trajectory of the point (µ,ν) for kQ > 1 and L1 = L2

(the symmetric configuration), when x varies from x = 0
to ∞. This figure corresponds to the case of kQ = 1.515
where Q = 151. 5 and k = 0.01.

(2) State-II: 4Q2(k2Q2 − 1)+1 < 0 . This condition is
nearly equivalent to kQ <1. There is no solution, besides
x = 0 and 1. In Fig. 2(b) we show the simulation plot of
the trajectory of the point (µ, ν) for kQ < 1 and L1 = L2,
when x varies from x = 0 to ∞. This figure corresponds
to the case of kQ = 0.758, where Q = 151.5 and k =
0.005.

Figures 3(a) and (b) show simulated plots of the real
part (µ) and the imaginary part (ν) as a function of x,
where Q = 151.5 and L1 = L2. The coupling constant
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FIG. 2: (Color online) (a) State-I. Simulation plot of the tra-
jectory denoted by the point (µ, ν) for kQ > 1 and L1 = L2

(the symmetric configuration), when x (= f/f0) varies from
x = 0 to ∞. The figure corresponds to the case of kQ = 1.515
where Q = 151.5 and k = 0.01. The point on the trajectory is
located at (µ, ν) = (0, 0) for x = 0, at (1/2, 0) for x = x2, at
(1/[1 + (kQ)2], 0) for x = 1, at (1/2, 0) for x = x1, and at (0,
0) for x = ∞. (b) State-II. Simulation plot of the trajectory
denoted by the point (µ, ν) for kQ < 1, when x varies from x
= 0 to ∞. The figure corresponds to the case of kQ = 0.7575
where Q = 151.5 and k = 0.005. The point is located at (µ, ν)
= (0, 0) for x = 0, at (1/[1 + (kQ)2], 0) for x = 1, and at (0,
0) for x = ∞.

k is changed as a parameter: k = 0 - 0.08. In Fig. 3(a),
the double peaks in the µ vs x curve are symmetric with
respect to x = 1 and become closer and closer together as
k is decreased and become a single peak at kQ ≈ 0.5757.
The imaginary part ν (see Fig. 3(b)) has a positive local
minimum at x = 0.9967 and a negative local maximum
at x = 1.0033 in the limit of k → 0. Figure 3(c) shows the
trajectory denoted by the point (µ,ν) for Q = 151.5 and
L1 = L2 (the symmetric configuration), when x is varied
from x = 0 to ∞. The coupling constant k is changed as
a parameter: k = 0 - 0.1. There is a drastic change of the
trajectory from the state-I and state-II at kQ = 1, when
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FIG. 3: (Color online) Simulation plot of (a) the real part (µ)
and (b) the imaginary part (ν) as a function of x (calcula-
tions), where Q = 151.5 and L1 = L2 (symmetrical case). k
is changed as a parameter: k = 0 - 0.08. (c) Typical trajectory
denoted by the point (µ, ν) for Q = 151.5 and L1 = L2, when
x is varied from x = 0 to ∞. k is changed as a parameter: k
= 0 - 0.08.
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kQ is decreased. For k = 0, the trajectory is a circle of
radius 1/2 centered at µ = 1/2 and ν = 0.

III. EXPERIMENTAL PROCEDURE

The AC coupled circuit in the frequency domain was
configured in Fig. 1(b). An AC voltage was placed across

the primary circuit, vs(t) = Re[Ẽejωt], where Ẽ is the
complex voltage source. Two LCR circuits are placed
together with inductors, resistors and capacitors. In
Fig. 1(a) we show the overview of two coils used in the
present measurement. The minimum distance between
the centers of the coils is 10.2 cm. The two inductors are
placed on a meter long track.

We used a digital dual-phase lock-in amplifier (Stan-
ford, SR850),8 which is set at both a dual-phase mode
and a frequency-scan mode. The real part µ (the in-phase
signal), and imaginary part ν (the out-of-phase signal)
were measured simultaneously, when the frequency was
continuously changed across the desired frequency range.
The frequency range initially chosen was 2500 Hz to 3500
Hz. At the 25.2 cm separation the frequency scan was
only needed to be between 2700 Hz and 3000 Hz. The
measurements are repeated for numerous distances rang-
ing from d = 10.2 to 70.2 cm. The output voltage across
the resistance (AG) in Fig. 1(b) is given by

Vout(t) = Re[ṼRejωt]

= Re[(µ + jν)E′
0 exp[j(ωt + φ0)]

= E′
0µ cos(ωt + φ0) + E′

0ν cos(ωt + φ0 + π/2),

(22)

where Ẽ = E0e
jφ0 , φ0 is the phase, and E′

0 = E0R10/R.
The in-phase component of the lock-in amplifier is equal
to E′

0µ and the out-of phase component is equal to E′
0ν,

where E′
0 = 4.97 mV. Consequently, one can determine

the values of the real part µ and the imaginary part ν
defined by Eqs.(16) and (17), independently.

IV. RESULTS

We have measured the frequency dependence of the
real part µ and the imaginary part ν when the distance
d between the centers of two coils is changed as a param-
eter: d = 10.2 - 70.2 cm. Our results are shown in Figs. 4
- 6. Figures 4 and 5 show the experimental plots of the
real part (µ) and the imaginary part (ν) as a function
of x (= f/f0), where f0 = 2850 Hz and Q = 151.5. In
Figs. 4(a) and (b) double peaks of µ become closer and
closer when d is increased and the double peaks become
a single peak around d = 36.2 cm. The double peaks are
not symmetric with respect to x = 1. The peak at the
lower-x side is higher than that at the higher-x side. The
real part has a local minimum at x which is a little larger
than 1. In Fig. 5(a) and (b) the imaginary part ν crosses
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FIG. 4: (Color online) Experimental plot of (a) the real part
(µ) and (b) the imaginary part (ν) as a function of x (= f/f0)
(in the frequency scan). The distance d between the centers
of two coils is changed as a parameter. d = 10.2 cm - 17.2
cm. f0 = 2850 Hz. Q = 151.5.

the ν = 0 line at x = x2, x ≈ 1, and x = x1 (> x2).
The positions x1 and x2 become closer and closer as d is
increased and combine into the position x ≈ 1, but not
at x = 1. Figure 6 shows the experimental trajectories
of the point (µ, ν), when x (= f/f0) is varied from x =
0.947 (f = 2700 Hz) to 1.053 (f = 3000 Hz). The dis-
tance d is changed: d = 13.2 − 36.2 cm. The transition
occurs between the state-I and state-II at d ≈ 27.2 cm.
The overview of our trajectory is similar to the simula-
tion plot as shown in Fig. 3(c). However our trajectory
rotates clockwise compared to the ideal simulation plot
(the symmetric configuration). The deviation of our tra-
jectories from the ideal case (Fig. 3(c)) is partly due to
the asymmetric configuration (L1 is slightly larger than
L2).

Figure 7(a) shows the zero-crossing frequencies nor-
malized by f0 for the imaginary part (ν) (at which ν be-
comes zero) as a function of the distance d (cm), where
x2 = f2/f0 (< 1), xc = fc/f0 (≈ 1), and x1 = f1/f0

(> 1). The value of xc is a little different from 1. In
Fig. 7(a) we also show the normalized frequency defined
by (x1x2)

1/2. This frequency decreases with increasing
d. This implies that the parameter k decreases with in-
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FIG. 5: (Color online) Experimental plot of (a) the real part
(µ) and (b) the imaginary part (ν) as a function of x (= f/f0)
(in the frequency scan). The distance d between the centers
of two coils is changed as a parameter. d = 19.2 cm - 36.2
cm. f0 = 2850 Hz. Q = 151.5.
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FIG. 6: (Color online) Experimental trajectories of the point
(µ,ν) for Q = 151.5, when x (= f/f0) is varied from x =
0.947 (f = 2700 Hz) to 1.053 (f = 3000 Hz). f0 = 2850 Hz.
The distance is changed as a parameter: d = 13.2 - 36.2 cm.
The deviation of the experimental trajectories from the ideal
one as shown in Fig. 3(c) is partly due to the asymmetric
configuration (L1 is slightly larger than L2).
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FIG. 7: (Color online) The normalized zero-crossing frequen-
cies of the imaginary part (ν) (at which ν becomes zero) as a
function of the distance d (cm). x2 = f2/f0 (< 1), xc = fc/f0

(≈ 1), x1 = f1/f0 (> 1), and f0 = 2850 Hz. The normalized

frequency defined by (x1x2)
1/2 is also shown for comparison.

(b) The normalized peak frequencies of the real part (µ) as
a function of the distance d (cm). xd = fd/f0 (< 1) and
xu = fu/f0 (> 1). f0 = 2850 Hz. The real part µ takes
two peaks at the lower and upper frequencies fd and fu for
d < 30 cm. The normalized frequency defined by (xuxd)

1/2

is also shown for comparison.

creasing d as predicted from Eq.(21).

Figure 7(b) shows the normalized peak frequencies of
the real part (µ) as a function of the distance d (cm),
where xd = fd/f0 (< 1) and xu = fu/f0 (> 1). The
real part µ takes double peaks at the lower and upper
frequencies fd and fu for d < 30 cm. The d dependence of
xu and xd is similar to that of x1 and x2, respectively. In
Fig. 7(b) we also show the normalized frequency defined
by (xuxd)1/2 as a function of d. This frequency decreases
with increasing d like (x1x2)

1/2 in Fig. 7(a).

V. DISCUSSION

First we show that, from a view point of physics, the
AC coupled circuit with the mutual inductance is equiv-
alent to the magnetic moments M̃1 (= µ0NI1A) for the

coil 1 and M̃2 (= µ0NI2A) for the coil 2. They are cou-
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FIG. 8: (Color online) (a) and (b) Plot of k as a function of
the distance d. Q = 151.5. (a) The value of k is derived from
the prediction that the real part (µ) is equal to 1/[1+(kQ)2] at
x = 1 for the symmetrical configuration (L1 = L2). The best
fitted curve to the expression given by Eq.(25) is denoted by a
solid line. (b) The values of k are derived from the prediction
that x1 and x2 are described by Eqs.(19) and (20). The values
of k are numerically solved for each d. The best fitted curves
are shown by the dotted and solid lines in the figure.

pled with a dipole-dipole interaction defined by

U12 =
1

4πµ0

[
M̃1 · M̃2

r3
−

3(M̃1 · r)(M̃2 · r)
r5

], (23)

where r is the position vector connecting the centers of
coils 1 and 2. When both M̃1 and M̃2 are parallel to
the direction of r, a parallel alignment of two magnetic
moments is energetically favorable,

Ũ12 = −
2

4πµ0

M̃1M̃2

d3
= −

µ2
0N

2A2

2πµ0d3
I1I2. (24)

From the definition of the mutual inductance M , the in-
teraction energy Ũ12 can be described by Ũ12 = −MI1I2,
leading to the mutual inductance which is the same as
Eq.(3) derived from Faraday’s law.

It is predicted that the parameter k changes with dis-
tance according to Eq.(5); k is proportional to d−3. The

first method to determine the parameter k as a function
of the distance d, is as follows. As shown in Sec. II,
it is predicted that in the symmetrical configuration
(L1 = L2 = L), the real part µ takes a µ = 1/[1+ (kQ)2]
at x = 1. Note that the imaginary part ν is equal to zero
at x = 1. Experimentally we determine the value of µ at
x = 1 as a function of d. The values of k are derived from
the above expression with Q = 151.5. Figure 8(a) show
the plot of k vs d thus obtained. The value of k drasti-
cally decreases with increasing d and almost reduces to
zero at d = 35 cm. The least-squares fit of the data of k
vs d to an expression

k =
ζ

dn
, (25)

yields a constant ζ = 38.5 ± 5.0 and the exponent n =
2.60 ± 0.05, where d is in the units of cm. The value
of ζ is rather different from the predicted value for the
present coils (ζ = 151.5), while the value of n is rather
close to the predicted value (n = 3). The large deviation
of the experimental value of ζ from our prediction may
be related to the asymmetric configuration of L1 and L2

in the present system, where L2 is slightly lower than L1

(which will be discussed later). As shown in Fig. 4(a),
the value of x where the real part µ has a local minimum
is not equal to x = 1, and shifts to the high-x side.

The second method to determine the value of k is as
follows. In Sec. II, it is predicted that the imaginary part
ν takes zero-crossing at x = x2, 1, and x1 in the case of
the symmetrical configuration (L1 = L2 = L). Note
that the imaginary part ν is not always equal to zero
at x = 1 partly because of the asymmetric configuration
in the present experiment. The value of k for each d
is derived by applying the Mathematica program called
”FindRoot” to Eq.(19) with the experimental value of
x2 and to Eq.(20) with the experimental value of x1 (see
Fig. 7(a)), since Eqs.(19) and (20) are complicated func-
tions of k. In Fig. 8(a) we show the value of k as a
function of d thus obtained. The value of k drastically de-
creases with increasing d. The value of k is a little larger
than those obtained from the first method at the same
d. The least-squares fit of the data of k vs d to Eq.(25)
yields the parameters ζ = 57.1± 6.9 and n = 2.48± 0.05
for x1 and ζ = 149± 33 and n = 2.92± 0.09 for x2. The
latter result is in excellent agreement with the prediction
(ζ = 151.5 and n = 3.0). Such different values of ζ are
partly due to the effect of the asymmetric configuration of
coils. Nevertheless, it may be concluded experimentally
that two magnetic moments made from coils are coupled
through the dipole-dipole interaction with the exponent
n being equal to 3.

Finally we discuss the effect of the asymmetric config-
uration on the trajectory in the (µ,ν) plane. As shown
in Fig. 6, the trajectory rotates clockwise compared to
the case of the trajectory in the symmetric configuration.
Figure 9(a) shows the simulation plot of the µ as a func-
tion of x for the asymmetric configuration (L1 = 0.8201
H and L2 = 0.8215 H) as k is changed as a parameter.
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FIG. 9: (Color online) (a) Simulation plot of the real part
(µ) as a function of x, where Q = 151.5 and L1 = 0.8207 H
and L2 = 0.8215 H (the asymmetric configuration). (b) The
trajectory of the point (µ,ν) for Q = 151.5, L1 = 0.8207 H
and L2 = 0.8215 H, when x is varied from x = 0 to ∞. The
coupling constant k is changes as a parameter: k = 0 - 0.08.

Double peaks of µ around x = 1 are not symmetric with
respect to x = 1. The peak at the high-x side is higher
than that at the low-x side. Double peaks become closer
and closer as k is decreased. Figure 9(b) shows the sim-
ulation plot of the trajectory in the (µ,ν) plane under
the same condition as Fig. 9(a). The trajectory rotates
counterclockwise compared to the case of the trajectory
in the symmetric configuration. Figures 10(a) and (b)
show the simulation plot of µ as a function of x and the
trajectory in the (µ,ν) plane for the asymmetric config-
uration (L1 = 0.8201 H and L2 = 0.8198 H) where k is
changed as a parameter. Double peaks of µ around x =
1 are not symmetric with respect to x = 1. The peak
at the high-x side is lower than that at the low-x side.
The trajectory rotates clockwise compared to the case of
the trajectory in the symmetric configuration. These fea-
tures are in good agreement with those observed in the
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FIG. 10: (Color online) (a) Simulation plot of the real part
(µ) as a function of x, where Q = 151.5 and L1 = 0.8207 H
and L2 = 0.8198 H. The coupling constant k is changed as
a parameter: k = 0 - 0.08.(b) Typical trajectory denoted by
the point (µ,ν) for Q = 151.5, when x is varied from x = 0
to ∞. The coupling constant k is changes as a parameter: k
= 0 - 0.08.

present measurement (see Fig. 5(a) for the µ vs x curve
and Fig. 6 for the trajectory). So we can conclude that
L1 is a little larger than L2, which means the asymmetric
configuration for the present measurement.

VI. CONCLUSION

We present a simple method for determining the mu-
tual inductance of the AC coupled circuit using a digital
dual-phase lock-in amplifier. This method allows one to
get a large amount of data on the frequency dependence
of the real and imaginary part of the AC output volt-
age in a reasonably short time. Our experimental results
show that the coupling constant of the two coils is pro-
portional to d−n with an exponent n (≈ 3), where d is
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the distance between the centers of coils. This coupling is
similar to that of two magnetic moments coupled through
a dipole-dipole interaction.
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