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ABSTRACT 

The experiment is performed in order to determine the relationship between Fresnel and 
Fraunhofer diffraction, and then to see how they relate to the Fourier Transform. The set-
up consists of a 10m track with movable lenses, transparencies, filters, and screens to 
create different diffraction patterns. Many different images are examined within a close 
range and at an infinite distance. When Fraunhofer diffraction is observed, a Fourier 
Transform is produced optically. As the spatial frequency increases, the images become 
clearer and more intense. Image-processing is also observed to see “real world” 
applications. 

In this note, we discuss a theoretical background for this experiment. We show that 
the diffraction pattern of apertures (including a Young’s double-slits and a diffraction 
grating) is closely related to its power spectrum of Fourier transform. We also show 
typical power spectra which are calculated using Mathematica 5.2. 

 

1. Principle of Fraunhofer diffraction1 

 



 

Fig.1 Schematic diagram of the Fraunhofer diffraction 

 

We assume that the aperture acts as the source of a field E0(x0, y0). The field Ei(xi, yi) 
on the screen is given by1 
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where the integral is a sum of the spherical wave of the field E0 originating from the 
object points (x0, y0) within the aperture, and k is the wave number (2π/λ). So the surface 
integral runs over the aperture. Note that the spherical wave diverging from the object 
point (x0, y0) is described by ioio rikr /)exp( .  

This is known as the Fresnel approximation to the scalar diffraction theory. It is 
useful when z is very large compared to a wavelength. A further rearrangement of the 
Fresnel diffraction expression will be computationally convenient.  
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If z»k(x0
2+y0

2)max, this equation is approximated as 
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This infinite-distance limit is called the Fraunhofer regime and is the case usually 
considered in elementary treatments. This is simply the Fourier transform of the aperture 
illumination. We usually want to know the optical intensity, which is proportional to 2

iE , 
so the phase factor in front is irrelevant. 
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units of (length)-1. So the diffraction pattern is simply the absolute square of the 2D 

Fourier transform of the aperture. Note that ),(2),( yxii kk
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2. Definition of Fourier Transform 

The amplitude in the diffraction pattern is simply the 2D Fourier transform of the 
aperture, besides scaling. We will look at intensity, obtained by taking the absolute value 
of the amplitude. This would be called the power spectrum if the independent variable 
were time instead of the space. 

The conventional mathematical representation of an image is a function of two spatial 
variables, f(x,y). The function at a particular location, (x,y), is the intensity at that point. 
The term transform means an alternative mathematical representation of the image. 

A Fourier Transform uses a series of complex exponentials (sinusoids) with different 
frequencies to represent an image. The Fourier Transform has applications in image 
processing, feature recognition, signal processing etc. 

If f(x,y) are spatial variables in the continuous domain the 2D Fourier Transform is 
defined as: 
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where f(x,y) is the light intensity at point (x, y). (kx, ky) are the horizontal and vertical 
spatial frequencies respectively. Inversely, the Fourier Transform can be transformed 
back to the spatial domain by the inverse Fourier transform: 

 



∫ ∫
∞

∞−

∞

∞−
+= )](2exp[),(),( ykxkikkFdkdkyxf xxyxyx π . (6) 

............ 
 
3. Numerical calculation using Fast Fourier transform (FFT) 
 

In numerical calculation we use the program of the FFT (fast Fourier transform) of 
the Mathematica 5.2. 
 
3.1 Fourier and inverse Fourier transform 
There are two kinds of Fourier transforms in Mathematica 5.2. 
 
(a) Fourier transform 
 
Fourier[{x1, x2, …, xn}]  
produces the list { , , …, } that is the discrete Fourier transform of the list 
{ , , …, }, defined by . 
Multidimensional data can be transformed by  
Fourier[{{ , , …, },  
         { , , …, }, …,  
         { , , …, }}].  
If we input exact data, the data will be numericalized to machine precision. 
 
 
(b) Inverse Fourier Transform 
 
InverseFourier[{ y1, y2, …, yn}]  
produces the list { , , …, } that is the discrete inverse Fourier transform of { , 
, …, }, defined by . 

InverseFourier[{{ , , …, },  
                { , , …, }, …,  
                { , , …, }}] 
 
3.2 Power spectrum 
The following discussion is based on the note written by FFT program (Richard G. 
Palmer)2 and the Mathematica programs (Graphics) written by Micahel Trott.3 
 
(a) Shape of the Aperture: 

We represent apertures (or masks) by arrays of 0's (opaque) and 1's (transparent).  We 
can use ListDensityPlot[] to plot them, with the Mesh→False option to 
suppress the grid lines. 

 
(b) Power spectrum of the FFT 

Fourier[] from which the FFT of the aperture can be calculated. 
Abs[]^2 from which the power spectrum is calculated.  



 
(c) The center position 

We need "frequencies" (here called spatial frequencies, or wave numbers, or just k's) 
running from -K to K, whereas the FFT gives 0 to 2K. That applies in both the kx and 
ky direction (kx = -K to K, ky = -K to K). We can do both rotations at once with a 
RotateLeft[array,{m,n}], where {m, n} is the center position. 

 
(d) Erasing of the large intensity 

There is a problem. The diffraction bands are far too bright. That is because 
ListDensityPlot[] has truncated some of the larger values, just like Plot[] 
and ListPlot[] do.  PlotRange->All tells it to behave, making pure white 
represent the largest value: 

 
 
4. Power spectrum of small square aperture 
 
Here we show the power spectrum of small square aperture which is calculated using 
Matrhematica 5.2. 
 
n = 600 
Fig.2a Shape of the aperture (small square) 
Fig.2b Power spectrum 
 
((Mathematica 5.2)) I 
 
n=600 
 600 
 square=Table[If[n/2-20≤x≤n/2+20&&n/2-
20≤y≤n/2+20,1.0,0.0],{y,0,n},{x,0,n}]; 
ListDensityPlot[square,Mesh→False,ColorFunction→(Hue[0.7#]&
)];fftsq=Fourier[square]; 
pssq=Abs[fftsq]^2;ldp=ListDensityPlot[RotateLeft[pssq,{n/2,n
/2}],Mesh→False,ColorFunction→(Hue[0.7#]&),PlotRange→{0.000
1,0.01}] 
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5. Power spectrum of small circular hole aperture 
 
n = 600 
Fig.3a Shape of the aperture (small circular hole) 
Fig.3b Its power spectrum 
 
((Mathematica 5.2)) II 
 
n = 600; H∗ n x n ∗L
r = 0.07; H∗ Radius ∗L
rr = Hr ∗ n ∗ 0.5L^2;
circ =

Table@If@Hx − n ê2 + 1L2 + Hy − nê 2 + 1L2 < rr, 1.0, 0.0D,
8y, 0, n − 1<, 8x, 0, n − 1<D;

ListDensityPlot@circ, Mesh → False,
ColorFunction → HHue@0.7 #D &LD

pscirc = Abs@Fourier@circDD^2;
ListDensityPlot@RotateLeft@pscirc, 8nê 2, n ê2<D,

Mesh → False, PlotRange → 80, 0.02<,
ColorFunction → HHue@0.7 #D &LD  
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6. Power spectrum of circular hole 
 
n = 300 
Fig.4a Shape of the aperture (large circular hole) 
Fig.4b Its power spectrum 
 
((Mathyematica 5.2)) III 



n = 300; H∗ n x n ∗L
r = 0.35; H∗ Radius ∗L
rr = Hr ∗ n ∗ 0.5L^2;
circ =

Table@If@Hx − n ê2 + 1L2 + Hy − nê 2 + 1L2 < rr, 1.0, 0.0D,
8y, 0, n − 1<, 8x, 0, n − 1<D;

ListDensityPlot@circ, Mesh → False,
ColorFunction → HHue@0.7 #D &LD

pscirc = Abs@Fourier@circDD^2;
ListDensityPlot@RotateLeft@pscirc, 8nê 2, n ê2<D,

Mesh → False, PlotRange → 80, 0.02<,
ColorFunction → HHue@0.7 #D &LD  
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7. Power spectrum of a circular ring 
 
n = 300 
Fig.5a Shape of the aperture (circular ring) 
Fig.5b Its power spectrum 
 
((Mathematica 5.2)) IV 



n = 300; H∗ n x n ∗L
r = 0.35; H∗ Radius ∗L
rr = Hr ∗ n ∗ 0.5L^2; rrm = Hr ∗Hn − 10L∗ 0.5L^2
circ =

Table@If@rrm < Hx − n ê2 + 1L2 + Hy − nê 2 + 1L2 < rr,
1.0, 0.0D, 8y, 0, n − 1<, 8x, 0, n − 1<D;

ListDensityPlot@circ, Mesh → False,
ColorFunction → HHue@0.7 #D &LD

pscirc = Abs@Fourier@circDD^2;
ListDensityPlot@RotateLeft@pscirc, 8nê 2, n ê2<D,

Mesh → False, PlotRange → 80, 0.03<,
ColorFunction → HHue@0.7 #D &LD  
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8. Double-slit diffraction 
 

 
Fig.6 Schematic diagram of the Young’s double slits experiment. 
 
n = 600 
Fig.7a Shape of the aperture (double slits). 
Fig.7b Its power spectrum. 



Fig.7c Intensity distribution of the power spectrum along the ky axis with kx = n/2. 
Fig.7d Intensity distribution of the power spectrum along the kx axis with ky = n/2. 
 
((Mathematica 5.2)) V 
n=600;  (* n x n , n is even*); 
doubleslit1=Table[If[(n/2-15)≤y<(n/2-9)&&(n/2-
20)≤x<(n/2+20)||(n/2+9)≤y<(n/2+15)&&(n/2-
20)≤x<(n/2+20),1.0,0.0],{y,0,n-1},{x,0,n-1}]; 
ListDensityPlot[doubleslit1,Mesh→False,ColorFunction→(Hue[0
.7#]&)] 
ps1=Abs[Fourier[doubleslit1]]^2;dh1=RotateLeft[ps1,{n/2,n/2}
]; 
ListDensityPlot[dh1,Mesh→False,PlotRange→{0,0.01},ColorFunc
tion→(Hue[0.7#]&)]; 
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 (*dh1[[m,n/2]] means that the scan is made along the y axis 
at x = n/2*) 
 ListPlot[Evaluate[Table[dh1[[m,n/2]],{m,1,n}]], 
PlotRange→{0,0.7}, Prolog→AbsolutePointSize[4], 
PlotStyle→Hue[0],Background→GrayLevel[0.8],Frame→True] 

0 100 200 300 400 500 600

0.1

0.2

0.3

0.4

0.5

0.6

 
 hGraphicsh 
 (*dh1[[n/2,m]] means that the scan is made along the x axis 
at y = n/2*) 



 ListPlot[Evaluate[Table[dh1[[n/2,m]],{m,1,n}]], 
PlotRange→{0,0.6}, Prolog→AbsolutePointSize[4], 
PlotStyle→Hue[0],Background→GrayLevel[0.8],Frame→True] 
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8. Power spectrum of the diffraction grating 
 
n = 600 
Fig.8a Shape of the aperture (diffraction grating) 
Fig.8b Power spectrum 
Fig.8c Intensity distribution of the power spectrum along the ky axis with kx = n/2, 
Fig.8d Intensity distribution of the power spectrum along the kx axis with ky = n/2, 
 
((Mathematica 5.2)) VI 
n=600;  (* n x n *); 
slit1=Table[If[(n/2-21)≤y<(n/2-18)&&(n/2-
20)≤x<(n/2+20)||(n/2-15)≤y<(n/2-12)&&(n/2-
20)≤x<(n/2+20)||(n/2-9)≤y<(n/2-6)&&(n/2-
20)≤x<(n/2+20)||(n/2-3)≤y<(n/2)&&(n/2-
20)≤x<(n/2+20)||(n/2+3)≤y<(n/2+6)&&(n/2-
20)≤x<(n/2+20)||(n/2+9)≤y<(n/2+12)&&(n/2-
20)≤x<(n/2+20)||(n/2+15)≤y<(n/2+18)&&(n/2-
20)≤x<(n/2+20)||(n/2+21)≤y<(n/2+24)&&(n/2-
20)≤x<(n/2+20),1.0,0.0],{y,0,n-1},{x,0,n-1}]; 
ListDensityPlot[slit1,Mesh→False,ColorFunction→(Hue[0.7#]&)] 
ps1=Abs[Fourier[slit1]]^2;dh1=RotateLeft[ps1,{n/2,n/2}]; 
ListDensityPlot[dh1,Mesh→False,PlotRange→{0,0.01},ColorFunc
tion→(Hue[0.7#]&)]; 
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 (*dh1[[m,n/2]] means that the scan is made along the y axis 
at x = n/2*) 
 ListPlot[Evaluate[Table[ dh1[[m,n/2]],{m,1,n}]], 
PlotRange→{0,1}, Prolog→AbsolutePointSize[4], 
PlotStyle→Hue[0],Background→GrayLevel[0.8],Frame→True] 
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 (*dh1[[n/2,m]] means that the scan is made along the x axis 
at y = n/2*) 
 ListPlot[Evaluate[Table[ dh1[[n/2,m]],{m,1,n}]], 
PlotRange→{0,0.5}, Prolog→AbsolutePointSize[4], 
PlotStyle→Hue[0],Background→GrayLevel[0.8],Frame→True] 
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9. Conclusion 

We show that the power spectrum of the aperture in the Fraunhofer regime is well 
described by the Fourier spectrum of the aperture. One of the Mathematica 5.2 programs 
is attached to the Appendix, for convenience. 
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Appendix 
Mathematica 5.2 program (V) power spectrum of Young’s double-slits. 
 


