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Abstract 

In the Senior Laboratory (Phys 427) in our Physics Department, we introduced an 
equipment of Mr. SQUID (superconducting quantum interference device) (Star 
Cryoelectronics, LLC, 25 Bisbee Court, Suite A, Santa Fe, NM 87508) in the Spring 
Semester, 2006. It is a DC SQUID magnetometer system incorporating a high-
temperature superconductor thin film SQUID sensor chip. This equipment allows one to 
observe unique features of superconductivity (using liquid nitrogen cooling) such as I-V 
curve and V-Φ curves. This also allows one to learn about the operation of SQUID by 
following a series of experiments. This lecture note is intended as a substitute for 
textbook on Josephson junction, superconductivity, electronics, and related topics. We 
think that with this lecture note a great deal of background could be provided for 
undergraduate and graduate students who do not have enough knowledge on the 
Josephson junction. We use the Mathematica 5.2 for the simulation. All the programs we 
made are presented here. The Mathematica program is useful to both graduate students 
and undergraduate students who want to understand the principle of the RSI model in the 
Josephson junctions and the DC SQUID model. 
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1 Introduction 

For superconducting tunnel junctions with extremely thin insulating layers (10 – 15 Å) 
(weak link between the superconductors), the electron pair correlations extend through 
the insulating barrier. In this situation, it has been predicted by Josephson that paired 
electrons (Cooper pairs) can tunnel without dissipation from one superconductor to the 
other superconductor on the opposite side of the insulating layer [B.D. Josephson, Phys. 
Lett. 1, 251 (1962). The direct supercurrent of pairs, for currents less that Ic, flows with 
zero-voltage drop across the junction (DC Josephson effect). The width of the insulating 
barrier of the junction limits the maximum that can flow across the junction, but 
introduce no resistance in the flow. Josephson also predicted that in the case a constant 
finite voltage V is established across the junction, an alternating supercurrent Ic 
sin(ωJt+φ0) flows with frequency ωJ = 2eV/ħ (AC Josephson effect). We solve a nonlinear 
differential equation for the phase φ using the Mathematica 5.2. The calculations are 
made using ND (solving the differential equations numerically under appropriate initial 
conditions). The use of Mathematica 5.2 is essential to our understanding the nonlinear 
behavior of the Josephson junction. 
 
2 Josephson junction1-10 

Tunneling if Cooper pairs form a superconductor through a layer of insulator into 
another superconductor. Such a junction is called a weak link. 
(i) DC Josephson effect 

A DC current flows across the junction in the absence of any electric or magnetic 
field. 

(ii) AC Josephson effect 
A DC voltage applied across the junction causes rf (radio frequency) current 
oscillation across the junction. 

(iii) Macroscopic long range quantum interference 
A DC magnetic field applied through a superconducting circuit containing two 
junctions causes the maximum supercurrent to show interference effects as a 
function of magnetic field intensity. 
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((Brian D. Josephson)) 
Josephson, Pippard’s graduate student at Cambridge, attending Philip Anderson’s 
lectures there in 1961 to 1962, became fascinated by the concept of the phase of the BCS-
GL order parameter as a manifestation of the quantum theory on a macroscopic scale. 
Playing with the theory of Giaver tunneling, Josephson found a phase-dependent term in 
the current; he then worked out all the consequences in a series of papers, private letters, 
and a privately circulated fellowship thesis. In particular, Josephson predicted that a 
direct current should flow, without any applied voltage, between two superconductors 
separated by a thin insulating layer. This current would come as a consequence of the 
tunneling of electron pairs between the superconductors, and the current would be 
proportional to the sine of the phase difference between the superconductors. At a finite 
applied voltage V, an alternating supercurrent of frequency 2eV/h should flow between 
the superconductors. Josephson’s work established the phase as a fundamental variable 
in superconductivity.(Book edited by Hoddeson et al.12). 
 
2.1 DC Josephson effect3 
 

 
Fig.1 Schematic diagram for experiment of DC Josephson effect. Two superconductors 

SI and SII (the same metals) are separated by a very thin insulating layer (denoted 
by green). A DC Josphson supercurrent (up to a maximum value Ic) flows without 
dissipation through the insulating layer. 

 
Let 1ψ  be the probability amplitude of electron pairs on one side of a junction. Let 2ψ  

be the probability amplitude of electron pairs on the other side. For simplicity, let both 
superconductors be identical. 
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where Th  is the effect of the electron-pair coupling or (transfer interaction across the 
insulator). T(1/s) is the measure of the leakage of 1ψ  into the region 2, and of 2ψ  into the 
region 1. 
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______________________________________________________________________ 
((Mathematica5.2)) Program-1 
eq1=  — D[ψ1[t],t] — T ψ2[t] 

 — ψ1 @tD T — ψ2@tD  
 eq2=  — D[ψ2[t],t] — T ψ1[t] 

 — ψ2 @tD T — ψ1@tD  
 

rule1 = 9ψ1 → Jè!!!!!!!!!!!!!!n1@#D Exp@ θ1@#DD &N=
 

 9ψ1 → Iè!!!!!!!!!!!!!!!!n1@#1D θ1@#1D &M=  
 

rule2 = 9ψ2 → Jè!!!!!!!!!!!!!!n2@#D Exp@ θ2@#DD &N=
 

 9ψ2 → Iè!!!!!!!!!!!!!!!!n2@#1D θ2@#1D &M=  
 eq3=eq1/.rule1/.rule2//Simplify 

 

θ1@tD — Hn1 @tD + 2 n1@tD θ1 @tDL
2 è!!!!!!!!!!!!!!n1@tD

θ2@tD T —
è!!!!!!!!!!!!!!n2@tD

 
 eq4=eq2/.rule1/.rule2//Simplify 

 

θ2@tD — Hn2 @tD + 2 n2@tD θ2 @tDL
2 è!!!!!!!!!!!!!!n2@tD

θ1@tD T —
è!!!!!!!!!!!!!!n1@tD

 
______________________________________________________________________ 
 
Then we have 
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where 
12 θθδ −= . 

Now equate the real and imaginary parts of Eqs.(3) and (4), 
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If 21 nn ≈  as for identical superconductors 1 and 2, we have 
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The current flow from the superconductor S1 and to the superconductor S2 is proportional 

to 
t

n
∂

∂ 2 . J is the current of superconductor pairs across the junction 

)sin( 120 θθ −= JJ , 
where J0 is proportional to T (transfer interaction). 

φsin0II = . (5) 
 
2.2 AC Josephson effect3 
 

 
Fig.2 Schematic diagram for experiment of AC Josephson effect. A finite DC voltage is 

applied across both the ends. 
 
Let a dc voltage V be applied across the junction. An electron pair experiences a potential 
energy difference qV on passing across the junction (q = -2e). We can say that a pair on 
one side is at –eV and a pair on the other side is at eV. 
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This equation breaks up into the real part and imaginary part, 
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From these two equations with 21 nn = , 

h

eV
tt

2)( 12 −=
∂
∂

=
∂
−∂ δθθ . 

)](sin[0 tJJ δ= . 
with 

∫−= Vdtet
h

2)0()( δδ . 

When V = V0 = constant, we have 

tVet 0
2)0()(
h

−= δδ . 

]2)0(sin[ 00 tVeJJ
h

−= δ . (8) 

The current oscillates with frequency 

Ve
h

2
0 =ω . (9) 

A DC voltage of 1 μV produces a frequency of 483.5935 MHz. 

Ve
h

& 2
=φ . (10) 

 
((Note)) 
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Suppose that V = V0 = 1 μV. The corresponding frequency ν0 is estimated from the 
relation, 

0
0 22 πν=

h

eV , 

or 

MHzeV 5935.483
1005459.12

10)1060219.1(2
2
2

27

612
0

0 =
××

×××
== −

−−

ππ
ν

h
. 

 
3 I-V characteristic of Josephson junction5,7,8 

We now consider the I-V characteristic of the Josephson tunneling junction where a 
insulating layer is sandwiched between two superconducting layers (the same type). A 
capacitor is formed by these two superconductors. In this type of Josephson junctions, 
one can see the quasiparticle I-V curve which is different with increasing voltage and 
decreasing voltage (hysteresis). There are two voltage states, 0 V and 2Δ/e, where Δ is an 
energy gap of each superconductor. The I-V curve is characterized by (i) maximum 
Josephson tunneling current of Cooper pairs at V = 0 and (ii) Quasi-particle tunneling 
current (V>2Δ/e). 
 

 

 
Fig.3 Schematic diagram of quasiparticle I-V characteristic (usually observed in a S-I-S 

Josephson tunneling-type). Josephson current (up to a maximum value Ic) flowsat 
V = 0. Δ is an energy gap of the superconductor . The DC Josepson supercurrent 
flows under V = 0. For V>2Δ/e the quasiparticle tunneling current is seen. 

 
The strong nonlinearity in the quasiparticle I-V curve of a tunneling junction is not an 

appropriate to the application to the SQUID element. This nonlineraity can be removed 
by the use of thin normal film deposited across the electrodes. In this effective resistance 
is a parallel combination of the junction. The I-V characteristic has no hysteresis. Such 
behavior is often observed in the bridge-type Josephson junction where two 
superconducting thin films are bridged by a very narrow superconducting thin film. 
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Fig.4 Schematic diagram of I-V characteristic of a Josephson junction (usually observed 

in bridge-type junction), which is reversible on increasing and decreasing V. A 
Josephson supercurrent flows up to Ic at V = 0. A transition occurs from the V = 0 
state to a finite voltage state for I>Ic.. Above this voltage the I-V characteristic 
exhibits an Ohm’s law with a finite resistance of the Junction. The current has a 
oscillatory component of angular frequency ω (= 2eV/ħ) (the AC Josephson 
effect). 

 
4. RSJ (Resistively shunted junction) model: Josephson junction circuit 

application7 
Here we discuss the I-V characteristics of a Josephson tunneling junction using an 

equivalent circuit shown below. This circuit includes the effect of various dissipative 
processes and the distributed capacity with so-called lumped circuit parameters 
(connection of R and C in parallel). 
 
4.1 Fundamental equation 

 
Fig.5 Equivalent circuit of a real Josephson junction with a current noise source. (RSJ 

model). J.J. stands for the Josephson junction. 
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We now consider an equivalent circuit for the Josephson junction, which is described 
above. J.J. stands for the Josephson junction. 

ItIVC
R
VI Nc =+++ )(sin &φ , (11) 

where the first term is a Josephson current, the second term is an ohmic current, the third 
term is a displacement current, and IN(t) is the noise current source. Since 

Ve
h

& 2
=φ , 

we get a second-order differential equation for the phase φ 

)()(2)(sin
22

tIUetIII
eRe

C
NNc −

∂
∂

−=−−=+
φ
φφφφ

h
&h&&h , (12) 

where U(φ) is an equivalent potential and is defined by 

)cos()cos(
2

)cos(
2

)( 00 φκφφφ
π

φφ
π

φ +−=+
Φ

−=+
Φ

−= J
c

cc E
I
II

c
II

c
U , 

with κ = I/Ic, where Φ0 (=2πħc/2e = 2.06783372x10-7 Gauss cm2) is a magnetic quantum 
flux and )2/(0 cIE cJ πΦ=  is the Josephson coupling constant. If φ is regarded as the 
coordinate x, the above equation corresponds to the equation of motion of a mass with 

Ce 2)2/(h  in the presence of the potential U(φ). The second term of the left-hand side is a 
friction proportional to the velocity. When IN(t) = 0 and the second term is neglected, the 
above equation can be rewritten as 

constEUC
e

==+⎟
⎠
⎞

⎜
⎝
⎛ )(

22
1 2

2

φφ&h , (13) 

where E is the total energy and is constant. For κ>1 (or I>Ic), U(φ) monotonically 
decreases with increasing φ: dφ/dt≠0 (finite voltage-state). For κ<1 (or I<Ic), U(φ) has 
local minima. There are two solutions: dφ/dt = 0 (no voltage state) or dφ/dt≠0 (finite 
voltage-state) for large C. In this case, the I-V characteristic has a hysteresis. 
__________________________________________________________________ 
((Mathematica 5.2)) Program-2 
 
U1=-( κ φ + 
Cos[φ]);Plot[Evaluate[Table[U1,{κ,0,1,0.05}]],{φ,0,6 π}, 
PlotStyle→Table[Hue[0.1 
i],{i,0,10}],Prolog→AbsoluteThickness[2],Background→GrayLev
el[0.7], AxesLabel→{{φ},{U(φ)}},PlotRange→{{0,6 π},{-20,1}}]  
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   ( Graphics ) 
  Plot[Evaluate[Table[U1,{κ,1,3,0.2}]],{φ,0,6 π}, 
PlotStyle→Table[Hue[0.1 
i],{i,0,10}],Prolog→AbsoluteThickness[2],Background→GrayLevel[0.7], 
AxesLabel→{{φ},{U(φ)}},PlotRange→{{0,6 π},{-60,1}}]  
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   ( Graphics ) 
Fig.6 Equivalent potential energy U(φ) with a parameter κ = I/Ic. (a) 0<κ<1. U(φ) has 

local maxima and local minima. (b) 1<κ<3. U(φ) increases with increasing φ. 
 
Analogy: Simple rigid pendulum 
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Fig.7 Simple pendulum with an applied torque. 
 
We consider a simple rigid pendulum light stiff rod of length l with a bob of mass m. 
 

 
Fig.8 Free body diagram of the simple pendulum 
 

The oendulum can rotate freely about the pivot P. The equation of motion is given by 
θηθθ &&& −−= sinmglTI , 

where T is an external torque, I is a moment of inertia around the pivot P and the third 
term of the right-hand side is a viscosity of air. There is an analogy between this 
pendulum and the Josephson junction, 
 

θθηθ sinmglIT +++= &&&  (pendulum). (14) 

φφφ sin
22 cI
eRe

CI ++= &h&&h  (Josepson). (15) 
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Table 1 
________________________________________________________________________ 
Josephson junction pendulum 
 
phase difference φ deflection θ 
total current across junction I applied torque T 
Capacitance C Moment of inertia 
normal tunneling conductance 1/R viscous damping η 
Josephson current Icsinφ horizontal displacement of bob θsinlx =  
voltage across junction V angular velocity θω &=  
________________________________________________________________________ 
 

(1) θsinmglT = , 0==
dt
dθω . 

When a small torque is applied, the pendulum finally settles down at a constant angle 
of deflection θ. No angular velocity (ω = 0) corresponds to no voltage across a 
junction (V = 0). The junction is superconducting. x = l sinθ. 

(2) 
If the torque is gradually increased, the pendulum deflects to a greater but steady 
angle. We can pass more current through a junction without any voltage appearing. 

(3) 
Critical torque (Tc = mgl). This is the torque which deflects the pendulum through a 
right angle so that it is horizontal. 

(4) 
For T>Tc the pendulum cannot remain at rest but rotates continuously. As the 
pendulum rotates, the horizontal deflection x oscillates. The angular velocity is 
always in the same direction. This corresponds to the case of I>Ic and V≠0. A DC 
voltage will appear across the junction if the current passed through it exceeds a 
critical value.  

On the half-cycle during which the bob is rising the rotation decelerates because 
gravity opposes the applied torque, but on the following half-cycle the bob is 
accelerated by gravity as it falls. 

dcVe
dt
d

hπ
θ

π
ν

2
2

2
1

== . 

The phase is in one-to one correspondence with an angle of rotation of a damped 
pendulum, driven by a constant torque, in a constant gravitational field. The regime I<Ic 
corresponds to a situation in which the applied torque is less than a critical torque 
necessary to raise the pendulum to an angle π/2. For I>Ic the pendulum rotates in a 
manner such that the average energy dissipated per rotation is equal to the average work 
per rotation. 
________________________________________________________________________ 
 
4.2 Differential equation for φ 

For the sake of simplicity, we use the dimensionless quantities. Here we assume that 
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=κ , tJωτ = , 

where Jω is the Josephson plasma frequency and is defined by 
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⎠
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Then we get 
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d

d
d

−=++ , (16) 

where 
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eI

eRIeRIeRI J

c

JcJc

J

c

J
J ωωω

ωωβ 12
222

2

====
h

hhh . 

The normalized voltage is described by 

τ
φβ

τ
φωφτη

d
d

d
d

eRIdt
d

RIeRI
V

J
c

J

cc

====
2

1
2

)( hh , 

since 

Ve
h

& 2
=φ . 

We are interested in the DC current-voltage characteristic so we need to determine the 
time averaged voltage 

τ
φβ

τ
φβφ

d
dRI

d
dRI

dt
d

e
V JcJc ===

2
h , 

or 

τ
φβη

d
d

RI
V

J
c

=>=< . (17) 

Note that the McCumber parametrer βc is sometimes used in stead of βJ, where βc = 1/βJ
2. 

 
4.3 I-V characteristic for βJ » 1 

For the special case βJ»1 (small capacitance limit), the above equation is reduced to 

κφ
τ
φβ =+ sin

d
d

J , 

T
RId

d
d

T
RI

d
dRIV J

T

JJc
βπτ

τ
φβ

τ
φβ 0

0
0 21

=== ∫ , 
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where T is a period; 

JT β
κ

π
1

2
2 −

= . 

Here 

∫∫∫ −
===
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φ
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sinsinsin 000
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= ∫∫∫∫ , 
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1
2

2 −
=

κ
π

β J

T  for κ>1, 

0=
J

T
β

 for κ <1, 

So we get 

12 2 −== κβπ RI
T

RIV c
J

c , 

or 

12 −= κ
RI

V

c

, (18) 

or 
2

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

RI
V

c

κ . (19) 

________________________________________________________________________ 
((Mathematica 5.2)) Program-3 
K1@x_D:= ‡

0

πi
k
jj 1

x− Sin@φD +
1

x+ Sin@φD
y
{
zz φ; Y1 = K1@xD; Y2= Simplify@Y1, x> 1D

 

 

2 π

è!!!!!!!! !! !!!
−1 + x2  

 
eq1= V1==

2 π Ic R
Y2

; eq2 = Solve@eq1, xD
 

 
::x → −$%%%%%%%% %% %% %% %% %% %1 +

V12

Ic2 R2
>, :x → $%%%%%%%%% %% %% %% %% %%1 +

V12

Ic2 R2
>>

 

 
I1= $%%%%%%%%%%%%%%%%%%%%1+

V12

Ic2 R2
ê.8R → 1, Ic→ 1<

 

 
"####### ## ## ##1+ V12

 
   
Plot[{I1,V1},{V1,0,4},PlotStyle→{Hue[0],Hue[0.4]},Prolog→Ab
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soluteThickness[2],Background→GrayLevel[0.7], 
AxesLabel→{"V/IcR","I/Ic"},PlotRange→{{0,4},{0,4}}] 
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Fig.9 I/Ic vs V/(IcR) curve for βJ>>1 (red curve). The green curve shows the Ohm’s law: 

I/Ic = V/(IcR) 
 
5 Phase plane analysis4 

We now consider a equation 

κφ
τ
φβ

τ
φ

=++ sin2

2

d
d

d
d

J , (20) 

or 

φβκ
τ

sin−Ω−=
Ω

Jd
d , (21) 

where 

τ
φτ

d
d

=Ω )( , (22) 

is proportional to voltage [
τ
φβη

d
d

J= ]. Then we have 

2
)( 2

2

2 Ω
=Ω

Ω
=

Ω
=

Ω
=

φφτ
φ

φτ
τ

τ
φ

d
d

d
d

d
d

d
d

d
d

d
d . 

The above equation can be rewritten as 

κφβ
φ

=+Ω+
Ω sin
2

2

Jd
d . (23) 

The state of the system is represented at any time by a particular point in the ),( φΩ  plane. 
As the time τ varies, this point describes a trajectory. Each particular trajectory depends 
on the initial conditions. Thus for a fixed value of ),( φΩ  plane, the system is represented 
by a set of possible paths in the ),( φΩ  plane. Such a plot is often called a phase space 
diagram. 

We begin by discussing the orbits when κ = 0 and βJ = 0. 
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0sin
2

2

=+
Ω φ

φd
d . 

This equation can be integrated as 

consta ==−
Ω φcos
2

2

. (24) 

Open orbits require that a always be larger than 2. 
______________________________________________________________________ 
((Mathematica 5.2)) Program-4 
<< Graphics̀ ImplicitPlot̀ ; eq1=

1
2

Ω2 − Cos@φD;

pt1=

ImplicitPlot@eq1 #, 8φ, −2 π, 2 π<, 8Ω, − 2 π, 2 π<, PlotPoints → 100,
Contours→ 50, PlotStyle→ 8Hue@0.7D, Thickness@0.006D<,
DisplayFunction→ Identity, PlotRange→ AllD&ê@ Range@0.1, 1.2, 0.1D;

Show@pt1, DisplayFunction→ $DisplayFunctionD  

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

 
 Graphics  
Fig.10 The Ω vs φ plane trajectories. a=−Ω φcos2/2  where a is changed as a 

parameter. The closed orbits for a<1 ( 22/)0(2 <=Ω φ ) and the open orbits for 
a>1 ( 22/)0(2 >=Ω φ ). 

 
6 Numerical calculation 

In the plane of the parameters βJ and κ the situation can be summarized as follows.6.7 
(a) For κ>1 and arbitrary βJ value no equilibrium point exists; there is only a periodic 

solution of the second kind. Therefore the junction will be in the finite voltage 
state. 

(b) For κ<1, the situation is more complicated. The behavior depends on the 
particular value of βJ. 
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Fig.11 Critical line for kc(βJ) (denoted by red line) in the βJ vs κ  plane. The blue line 

denotes the expression given by JJc β
π

βκ 4)( = . The system undergoes stable 

oscillations when κ>κc(βJ) for fixed βJ, in addition to the zero-voltage state. 
 

For βJ<0.2, the simple relation holds: JJc β
π

βκ 4)( = . 

A curve can be identified, denoted by κc(βJ), which divides the plane into two regions 
corresponding to one or two stable state solutions, respectively. 

We now solve the differential equation by using Mathematica 5.2 

τ
φτ

d
d

=Ω )( , 

and 

κτφτβ
τ
τ

=+Ω+
Ω )(sin)()(

Jd
d . 

Initial condition at τ = 0 (or t = 0): 
0)0( v==Ω τ  and 0)0( φτφ == . 

We calculate the τ dependence of )(τΩ  and )(τφ  for max0 ττ ≤≤  by using Mathematica 
5.2 [NDSolve], where βJ and κ are changed as parameters. 
(i) Curve of )(τΩ vs )(τφ  
(ii) The direction of the curves of )(τΩ vs )(τφ , when τ increases [field vector] 
(iii) The τ dependence of )(τΩ and )(τφ . 
(iv) The determination of the maximum and minimum values of )(τΩ  in the long τ-

region where )(τΩ is a well-defined oscillatory function of τ.  
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6.1 Simulation-1 
((Mathematica 5.2)) Program-5 
Phase space Ω vs φ with vector field 
βJ = 0.6 is fixed. The current ratio κ is changed around the critical value κc = 0.6965. We 
show the phase diagram of the voltage φ(τ) vs )(τΩ  for various initial conditions. φ(0) = 
0. Ω(0) = -10 – 10. We also show the vector field. 
 
Clear["Global`*"] 
 <<Graphics`Graphics` 
 <<Graphics`PlotField` 
 (*Subroutine, ParametricPlot in the phase space*)  
 
phase[{φ0_,v0_},{βJ_,κ_},τmax_,opts__]:=Module[{numso1,numg
raph},numso1=NDSolve[{ Ω'[τ]+ βJ 
Ω[τ]+Sin[φ[τ]] κ,φ'[τ] Ω[τ],φ[0] φ0,Ω[0] v0},{Ω[τ],φ[τ]},{
τ,0,τmax}]//Flatten;numgraph=ParametricPlot[{φ[τ],Ω[τ]}/.nu
mso1,{τ,0,τmax},opts, 
DisplayFunction→Identity]];field[{βJ_,κ_},{xmin_,xmax_},{ym
in_,ymax_},opts__]:=PlotVectorField[{y,-βJ y-
Sin[x]+κ},{x,xmin,xmax},{y,ymin,ymax},opts]; 
 
 phlist=phase[{0,#},{0.6,0.5},100,  PlotStyle→Hue[0.1 
(#+6)], AxesLabel→{"φ","Ω"},Prolog→AbsoluteThickness[2], 
Background→GrayLevel[0.5],PlotRange→All,Ticks→{  π Range[-
10,10], Range[-6,6]}, DisplayFunction→Identity]&/@Range[-
10,10,1];f1=field[{0.6,0.5},{-8 π,12 π},{-
6,6},PlotPoints→20,ScaleFunction→(0.4#&),ScaleFactor→None,D
isplayFunction→Identity];Show[phlist,f1,DisplayFunction→$Di
splayFunction] 
 
Fig.12 The phase-plane trajectories in the Ω vs φ. βJ = 0.6. κ is changes as a parameter, κ 

=0.5 – 0.7. 
 
(1) βJ = 0.6 and κ = 0.5 
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(2) βJ = 0.6 and κ = 0.6 

−2 π−π π 2 π3 π4 π5 π6 π7 π8 π9 π10 π
φ

-6
-5
-4
-3
-2
-1

1
2
3
4
5
6

Ω

 
 
(3) βJ = 0.6 and κ = 0.65 
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(4) βJ = 0.6 and κ = 0.67 
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(5) βJ = 0.6 and κ = 0.69 
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(6) βJ = 0.6 and κ = 0.696 
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(7) βJ = 0.6 and κ = 0.6962 
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(8) βJ = 0.6 and κ = 0.6963 
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(9) βJ = 0.6 and κ = 0.6965 

A stable periodic solution appears. The states of zero and finite voltage are both 
possible. 
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(10) βJ = 0.6 and κ = 0.697 
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(11) βJ = 0.6 and κ = 0.699 
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(12) βJ = 0.6 and κ = 0.7 
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6.2 Simulation-2 
((Mathematica 5.2)) Program-6 

βJ = 0.6 is fixed. The current ratio κ is changed around the critical value κc = 0.6965. 
We show the τ dependence of the voltage )(τΩ  for various initial conditions. Note that 
the normalized DC voltage RIV c/  is defined by Ω>=< Jβη . For κ>κc(βJ), )(τΩ is a 

sum of time-independent term )Ω  and a periodically oscillating function of τ. The 

average voltage corresponds to Ω>=< Jβη , where Ω  is the average of the maximum 
and minimum values of )(τΩ  in the long τ- region, where )(τΩ  is a well-defined 
periodically oscillating function of τ. The method to find the maximum and minimum 
values of )(τΩ  will be shown in Sec.5.5 for convenience. 
 
phlist=phase[{0,#},{0.6,0.693},100,  PlotStyle→Hue[0.1 
(#+6)], AxesLabel→{"τ","Ω"},Prolog→AbsoluteThickness[2], 
Background→GrayLevel[0.5],PlotRange→{{0,30 π},{-
1,3}},Ticks→{  π Range[0,50,10], Range[-6,6]}, 
DisplayFunction→Identity]&/@Range[-
10,10,1];Show[phlist,DisplayFunction→$DisplayFunction] 
 
Fig.13 Ω vs τ for βJ = 0.6. The parameter κ is varied as a parameter, κ = 0.693 - .1.20. 
 
(1) βJ = 0.6 and κ = 0.693 
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(2) βJ = 0.6 and κ = 0.694 
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(3) βJ = 0.6 and κ = 0.695 
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(4) βJ = 0.6 and κ = 0.6960 
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(5) βJ = 0.6 and κ = 0.6962 

The average voltage η (= )(τβ ΩJ =V/RIc) is equal to 0, where βJ = 0.6 and κ  (= 
I/Ic) = 0.6962, independent of the initial condition Ω(τ = 0). 
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(6) βJ = 0.6 and κ = 0.6965 

The average voltage η (= )(τβ ΩJ =V/RIc) is nearly equal to 0.6x0.95 = 0.57 
where βJ = 0.6 and κ  (= I/Ic) = 0.6965). 
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(7) βJ = 0.6 and κ = 0.6970 
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(8) βJ = 0.6 and κ = 0.698 
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(9) βJ = 0.6 and κ = 0.70 
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(10) βJ = 0.6 and κ = 0.80 

The average voltage η (= )(τβ ΩJ ) is equal to 0.6x1.22656 = 0.7359 and 0.6x0 
=0 where βJ = 0.6 and κ  (= I/Ic) = 0.8, depending on the initial condition Ω(τ = 0). 
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(11) βJ = 0.6 and κ = 0.90 

The average voltage η (= )(τβ ΩJ ) is nearly equal to 0.6x1.429 = 0.8574 and 
0.6x0 =0 where βJ = 0.6 and κ  (= I/Ic) = 0.9, depending on the initial condition 
Ω(τ = 0). This implies the existence of the hysteresis behavior. The I-V curve with 
increasing V is different from that with decreasing V. 
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(12) βJ = 0.6 and κ = 1.0 

The average voltage η (= )(τβ ΩJ ) is equal to 0.6x1.61579 = 0.9695, where βJ = 
0.6 and κ  (= I/Ic) = 1.0, independent of the initial condition Ω(τ = 0). This implies 
no hysteresis behavior.  
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(13) βJ = 0.6 and κ = 1.2 

The average voltage η (= )(τβ ΩJ ) is equal to 0.6x1.97065 = 1.1824, where βJ = 
0.6 and κ  (= I/Ic) = 1.2, independent of the initial condition Ω(τ = 0). This implies 
no hysteresis behavior.  
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6.3 Simulation-3 
((Mathematica 5.2)) Preogram-7 

βJ = 0.2 is fixed. The current ratio κ is changed around the critical value κc = 0.253. 
We show the τ dependence of the voltage )(τΩ  for various initial conditions. 

 
Clear["Global`*"] 
 <<Graphics`Graphics` 
 <<Graphics`PlotField` 
 (*Subroutine, ParametricPlot in the phase space*)  
 
phase[{φ0_,v0_},{βJ_,κ_},τmax_,opts__]:=Module[{numso1,numg
raph},numso1=NDSolve[{ Ω'[τ]+ βJ 
Ω[τ]+Sin[φ[τ]] κ,φ'[τ] Ω[τ],φ[0] φ0,Ω[0] v0},{Ω[τ],φ[τ]},{
τ,0,τmax}]//Flatten;numgraph=Plot[Ω[τ]/.numso1,{τ,0,τmax},o
pts, DisplayFunction→Identity]] 
 
 phlist=phase[{0,#},{0.2,0.24},100,  PlotStyle→Hue[0.1 
(#+6)], AxesLabel→{"τ","Ω"},Prolog→AbsoluteThickness[2], 
Background→GrayLevel[0.5],PlotRange→{{0,30 π},{-
1,3}},Ticks→{  π Range[0,50,10], Range[-6,6]}, 
DisplayFunction→Identity]&/@Range[-
10,10,1];Show[phlist,DisplayFunction→$DisplayFunction] 
 
Fig.14 Ω vs τ for βJ = 0.2. The parameter κ is varied as a parameter, κ = 0.24 - .0.50. 
 
(1) βJ = 0.2 and κ = 0.24 
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(2) βJ = 0.2 and κ = 0.245 
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(3) βJ = 0.2 and κ = 0.250 
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(4) βJ = 0.2 and κ = 0.251 
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(5) βJ = 0.2 and κ = 0.252 
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(6) βJ = 0.2 and κ = 0.253 

The average voltage η (= )(τβ ΩJ =V/RIc) is equal to 0.2x1.0269 = 0.20538 and 
0.2x0 = 0, where βJ = 0.2 and κ  (= I/Ic) = 0.253, depending on the initial 
condition Ω(τ = 0). 
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(7) βJ = 0.2 and κ = 0.254 
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(8) βJ = 0.2 and κ = 0.255 
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(9) βJ = 0.2 and κ = 0.256 
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(10) βJ = 0.2 and κ = 0.30 
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(11) βJ = 0.2 and κ = 0.4 
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(12) βJ = 0.2 and κ = 0.5 

The average voltage η (= )(τβ ΩJ =V/RIc) is nearly equal to 0.2x2.48381 = 
0.49676 and 0.2x0 = 0, where βJ = 0.2 and κ  (= I/Ic) = 0.5, depending on the 
initial condition Ω(τ = 0). This implies the existence of the hysteresis behavior. 
The I-V curve with increasing V is different from that with decreasing V. 
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6.4 Simulation-4 
((Mathematica 5.2)) Program-8 

βJ = 0.9 is fixed. The current ratio κ is changed around the critical value κc = 0.9197. 
We show the τ dependence of the voltage )(τΩ  for various initial conditions: φ(0) = 0. 
Ω(0) = -10 – 10. 
 
Clear["Global`*"] 
 <<Graphics`Graphics` 
 <<Graphics`PlotField` 
 (*Subroutine, ParametricPlot in the phase space*)  
 
phase[{φ0_,v0_},{βJ_,κ_},τmax_,opts__]:=Module[{numso1,numg
raph},numso1=NDSolve[{ Ω'[τ]+ βJ 
Ω[τ]+Sin[φ[τ]] κ,φ'[τ] Ω[τ],φ[0] φ0,Ω[0] v0},{Ω[τ],φ[τ]},{
τ,0,τmax}]//Flatten;numgraph=Plot[Ω[τ]/.numso1,{τ,0,τmax},o
pts, DisplayFunction→Identity]] 
 
 phlist=phase[{0,#},{0.9,0.90},100,  PlotStyle→Hue[0.1 
(#+6)], AxesLabel→{"τ","Ω"},Prolog→AbsoluteThickness[2], 
Background→GrayLevel[0.5],PlotRange→{{0,30 π},{-
1,3}},Ticks→{  π Range[0,50,10], Range[-6,6]}, 
DisplayFunction→Identity]&/@Range[-
10,10,1];Show[phlist,DisplayFunction→$DisplayFunction] 
 
Fig.15 Ω vs τ for βJ = 0.9. The parameter κ is varied as a parameter, κ = 0.90 - .2.0. 
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(1) βJ = 0.90 and κ = 0.90 
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(2) βJ = 0.90 and κ = 0.91 
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(3) βJ = 0.90 and κ = 0.915 
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(4) βJ = 0.90 and κ = 0.918 
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(5) βJ = 0.90 and κ = 0.919 
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(6) βJ = 0.90 and κ = 0.9195 
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(7) βJ = 0.90 and κ = 0.9197 
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(8) βJ = 0.90 and κ = 0.91975 
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(9) βJ = 0.90 and κ = 0.9198 
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(10) βJ = 0.90 and κ = 0.92 
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(11) βJ = 0.90 and κ = 0.94 
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(12) βJ = 0.90 and κ = 1 

The average voltage <η> (= )(τβ ΩJ ) is equal to 0.9x0.98318 = 0.8849 and 
0.9x0 =0 where βJ = 0.9 and κ  (= I/Ic) = 1.0, depending on the initial condition 
Ω(τ = 0). This implies the existence of hysteresis behavior.l 
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(13) βJ = 0.90 and κ = 1.1 

The average voltage <η> (= )(τβ ΩJ ) is equal to 0.9 x 1.12581 = 1.0132, where 
βJ = 0.9 and κ (= I/Ic) = 1.1, independent of the initial condition Ω(τ = 0). This 
implies no hysteresis behavior.  
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(14) βJ = 0.90 and κ = 2.0 

The average voltage <η> (= )(τβ ΩJ ) is equal to 0.9 x 2.2029 = 1.9826, where βJ 
= 0.9 and κ  (= I/Ic) = 2, which is independent of the initial condition Ω(τ = 0). 
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6.5 Simulation: the relation of >Ω<>=< Jβη  vs κ 

Here we show how to determine the average voltage ><η  as a function of the 
current κ, where βJ is changed as a parameter.  
(1) Using the following Mathematica 5.2 program, we find the maximum and 

minimum of Ω(τ) in the long- time region where Ω(τ) periodically oscillates with 
τ. 

(2) The average <Ω> is calculated as (maximum+minimum)/2. The average voltage 
>Ω<>=< Jβη  is plotted as a function of κ for each βJ (= 0.2 – 1.2). 

 
 ((Mathematica 5.2)) Program-9 
Clear["Global`*"] 
 <<Graphics`Graphics` 
 (*Subroutine, to find Maximum and minimum*)  
 
phase1[{φ0_,v0_},{βJ_,κ_},τmax_,opts__]:=Module[{numso1,num
graph},numso1=NDSolve[{ Ω'[τ]+ βJ 
Ω[τ]+Sin[φ[τ]] κ,φ'[τ] Ω[τ],φ[0] φ0,Ω[0] v0},{Ω[τ],φ[τ]},{
τ,0,τmax}]//Flatten;numgraph=Plot[ Ω[τ]/.numso1,{τ,0,τmax},
opts, 
DisplayFunction→Identity]];Max1[{φ0_,v0_},{βJ_,κ_},{τmin_,τ
max_}]:=Module[{numso1},numso1=NDSolve[{ Ω'[τ]+ βJ 
Ω[τ]+Sin[φ[τ]] κ,φ'[τ] Ω[τ],φ[0] φ0,Ω[0] v0},{Ω[τ],φ[τ]},{
τ,0,τmax}]//Flatten;maximum=FindMaximum[βJ  
Ω[τ]/.numso1,{τ,τmin,τmax}]];Min1[{φ0_,v0_},{βJ_,κ_},{τmin_
,τmax_}]:=Module[{numso1},numso1=NDSolve[{ Ω'[τ]+ βJ 
Ω[τ]+Sin[φ[τ]] κ,φ'[τ] Ω[τ],φ[0] φ0,Ω[0] v0},{Ω[τ],φ[τ]},{
τ,0,τmax}]//Flatten;minimum=FindMinimum[ βJ 
Ω[τ]/.numso1,{τ,τmin,τmax}]];Sei[βJ_,κ_]:=Module[{A1,B1, 
ave1,list1},A1=Max1[{0,#},{βJ,κ},{20 π,30π}]&/@Range[-
10,10,1];  B1=Min1[{0,#},{βJ,κ},{20 π,30π}]&/@Range[-
10,10,1];ave1=(A1+B1)/2;list1=Table[{κ,ave1[[k,1]]},{k,1,21}
]];Nat1[βJ_]:=Flatten[Table[Sei[βJ,κ],{κ,0,3,0.01}],1];Saw1
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[βJ_]:=ListPlot[Nat1[βJ],PlotStyle→{Hue[0.7],PointSize[0.01
5]},AxesLabel→{"κ","<η>"},PlotLabel→NumberForm[βJ], 
PlotRange→{{0,3},{0,3}}] 
 Table[Saw1[βJ],{βJ,0.2,1.2,0.2}] 
 
Fig.16 >Ω<>=< Jβη  vs κ for βJ = 0.2, 0.4, 0,6, 0.8, 1.0, and 1.2. The number denoted 

in each curve is the value of βJ. For βJ≤1, ><η  takes two values with ><η  = 0 
and finite value of ><η . Note that for βJ =1 and 1.2, ><η  takes three values 
(multi-valued function) near κ = 1. 
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(4) βJ = 0.8 
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(5) βJ = 1.0 
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(6) βJ = 1.2 
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6.6 Result on κ vs  <η> from simulations 

Figure 17 shows the <η> vs κ curve for βJ = 0.1 – 1.2. For βJ = 0.6, no voltage drop 
develops until the value of κ reaches 1. At the point (<η> = 0 and κ = 1) there occurs a 
transition from the zero-voltage state (<η> = 0) to the finite-voltage state (<η> ≠0). The 
<η> vs κ curve approaches the straight line denoted by <η> = κ  with further increasing 
<η>. With decreasing <η> from the high <η>-side, in turn, the <η> vs κ curve starts to 
deviate from the straight line <η> = κ. The transition occurs from the finite-voltage state 
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to the zero-voltage state at κ = 0.6965. Similar hysteresis behaviors are also seen for the 
cases of βJ = 0.12 - 0.9. 
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Fig.17 The I-V curve (κ vs <η>) for βJ = 0.1 – 1.2.  
 

 
Fig.18 Schematic diagram of the I-V (κ vs <η>) trajectories as <η. changes. βJ = 0.6. At 

<η>  = 0, κ changes from 0 to 1. At κ =1, <η> changes from 0 to a value above 1. 
With further increasing <η>, the relation κ = <η> holds valid (reversible). With 
decreasing <η>, in turn, the relation κ = <η> still holds valid. There is a 
transition from this state to the zero-voltage state(<η> = 0) at κ = κc = 0.6965. 
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7 DC SQUID (superconducting quantum interference device)3 
7.1 Current density and flux quantization 

In quantum mechanics, the current density is defined as 

AJ
mc

q
mi

q
22

** ][
2

ψ
ψψψψ −∇−∇=

h , 

where q (=-2e, e>0) is a charge for electron pairs, m is a mass, A is a vector potential, and 
ψ is a wavefunction. When the wavefunction is given by the amplitude |ψ(r)|and the 
phase θ(r) as 

)()( rr θψψ ie= , 
then J can be rewritten as 
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h
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c
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m
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−∇= θψ . 

Note that this current density is invariant under the gauge transformation. χ∇+= AA'  
and hcq /' χθθ += , 
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where ]/)([/ )()()(' hh cqiciq ee χθχ ψψψ +== rrrr .  
If we consider now a cylinder which may become superconductor in an external magnetic 
field and if we take a path from a surface at a distance which is larger than the penetration 
depth λ, then J = 0. When q = -2e, we have 
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where Φ is the magnetic flux inside the ring and )2/(20 echπ=Φ  (=2.06783372 x 10-7 
Gauss cm2) is a quantum fluxoid. In the last equation we apply the Stoke’s theorem.  
 
((Note)) 

The current flows along the ring. However, this current flows only on the surface 
boundary (region from the surface to the penetration depth λ). Inside of the system 
(region far from the surface boundary), there is no current since c/4 JH π=×∇  and H = 
0 (Meissner effect). 
 
7.2 DC SQUID (double junctions): quantum mechanics 

DC SQUID consists of two points contacts in parallel, forming a ring. Each contact 
forms a Josephson junctions of superconductor 1, insulating layer, and superconductor 2 
(S1-I-S2). Suppose that a magnetic flux Φ passes through the interior of the loop. 
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Fig.19 Schematic diagram of superconducting quantum interference device. δ1 and δ2 

refer to two point-contact weak links. The rest of the circuit is strongly 
superconducting. 

 
Here we have 

bbaad 2112 θθθθθ −+−=⋅∇∫ l . 
or 

0
2112 2

Φ
Φ

=−+− πθθθθ bbaa  

or 

0
21 2

Φ
Φ

=− πδδ  

where )( 111 ab θθδ −=  is the phase difference between the superconductors a and b 
through the junction 1 and )( 222 ab θθδ −=  are is the phase difference between the 
superconductors a and b through the junction 2. 

When B = 0 (or Φ = 0), we have 021 =− δδ . In general, we put the form 

Φ+=
c
e
h

01 δδ ,  Φ−=
c
e
h

02 δδ . 

The total current is given by 
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or 

)cos()sin(2
0

0 Φ
Φ

= πδcII . (30) 

The current varies with Φ  and has a maximum of 2Ic when πs
c
e

=Φ
h

 (s: integers), 

or 
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ss
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hcs
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Φ===Φ

πh . (31) 

The simple two point contact device corresponds to a two-slit interference pattern, for 
which the physically interesting quantity is the modulus of the amplitude rather than the 
square modulus, as it is for optical interference patterns. 
 
7.3 Analogy of the diffraction with double slits and single slit 
 

 
Fig.20 Diffraction effect of Josephson junction. A magnetic field B along the z direction, 

which is penetrated into the junction (in the normal phase). 
 
We consider a junction (1) of rectangular cross section with magnetic field B applied in 
the plane of the junction, normal to an edge of width w. 
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1
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c
qJJ
h

δ , 

with q = -2e. We use the vector potential A given by 
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Here we introduce the total magnetic flux passing through the area Wt ( BWtW =Φ ), 
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The total current is given by 
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The short period variation is produced by interference from the two Josephson junctions, 
while the long period variation is a diffraction effect and arises from the finite dimensions 
of each junction. The interference pattern of |I|2 is very similar to the intensity of the 
Young’s double slits experiment. If the slits have finite width, the intensity must be 
multiplied by the diffraction pattern of a single slit, and for large angles the oscillations 
die out. 
 
((Young’s double slit experiment)) 

We consider the Young’s double slits (the slits are separated by d). Each slit has a 
finite width a. 



 48

 
Fig.21 Geometric construction for describing the Young’s double-slit experiment (not to 

scale). 
 
((double slits)) 

E is the electric field of a light with the wavelength λ. d is the separation distance 
between the centers of the slits. 
 

 
Fig.22 A reconstruction of the resultant phasor ER which is the combination of two 

phasors (E0). 
 

2
cos2 0

αEER = . 

The intensity )cos1(2
2

cos4 2
0

22
0

2 αα
+==∝ EEEI R .], 

where the phase difference α is given by  

θ
λ
πα sin2 d

= . 

 
((single slit)) 

We assume that each slit has a finite width a. 
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Fig.23 Phasor diagram for a large number of coherent sources. All the ends of phasors lie 

on the circular arc of radius R. The resultant electric field magnitude ER equals the 
length of the chord. 
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β EERER === . 

where  the phase difference β is given by θ
λ
πβ sin2 a

= . Then the resultant intensity I for 

the double slits (the distance d) (each slit has a finite width a) is given by 
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_______________________________________________________________________ 
((Mathematica 5.2)) Program-10 

f@α_, β_D := H1 + Cos@αDL
SinA β

2
E2

I β

2
M2

 
 Plot[Evaluate[Table[f[α,N α],{N,20,20}],{α,-15 π,15 π}], 
PlotPoints→200, PlotStyle→Table[Hue[0.3 
i],{i,0,10}],PlotRange→{{- 6 π,6 π},{0,0.002}}, 
Prolog→AbsoluteThickness[1.2],Background→GrayLevel[0.5]] 
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Fig.24 The combined effects of two-slit and single-slit interference. The pattern consists 

of a diffraction envelope and interference fringes. 
 
7.4 DC SQUID Juntion based on th RSJ model 
7.4.1 Formulation 

The DC SQUID consists of two Josephson junctions connected in parallel on a 
superconducting loop of inductance L. 
 
 

 
Fig.25 Simple notation for the DC SQUID consisting of two Josephson junctions (J.J.) in 

parallel. 
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Fig.26 Equivalent circuit of the DC SQUID. 
 
As shown in Fig.26, the total current is given by 

21 IIIB += . 
The total magnetic flux is given by sext LI+Φ=Φ , where L is the total self-inductance (L 
= L1 + L2 and L1 = L2 = L/2 in this case) 
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where Is is the loop (circulating) current. 

11
1

1sin IVC
R
VIc =++ &φ , 

22
2

2sin IVC
R
VIc =++ &φ , 

11
2 Ve
h

& =φ ,  22
2 Ve
h

& =φ . 
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and the total voltage V is given by the simple form, 
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since 0/ =dtdIB  (or IB is independent of t). 
For the sake of simplicity, we use the dimensionless quantities. Here we assume that 
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The phases are related to the external magnetic flux by 
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The normalized voltage η is given by 
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7.4.2 Two-dimensional (2D) SQUID potential 

Equations (33) and (34) describing the DC SQUID dynamics can be regarded as an 
equation of motion of a point mass in a field of force with a 2D SQUID potential 
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Thus the normalized 2D SQUID potential ),(~
21 φφU  [= )2/(),( 21 JEU φφ ] is obtained as 
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where )2/(0 cIE cJ πΦ=  is the Josephson coupling constant. It is convenient to introduce 
new variable 
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The loop current κs is related to y as 
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Here we make a contour plot of ),( 21 φφU  in the φ1-φ2 plane, as β, Φext/Φ0, and κB are 
changed as parameters. The parameters β (= 1) and Φext/Φ0 (= 0.25) are fixed. The 
current κB is changed as a parameter. As will be shown in Fig.32, the critical current (κB)c 
is equal to 1.628 for β = 1 and Φext/Φ0 = 0.25. In Fig.27 we show the contour plot of 

),( 21 φφU  in the φ1-φ2 plane, where β = 1 and Φext/Φ0 = 0.25. For κB = 0.4, ),( 21 φφU  has 
multiple metasatable state separated by saddle points on the φ2 = φ1 line. With increasing 
κB, these saddle points gradually disappear. At κ>(κB)c it seems that all the saddle points 
disappear, suggesting no stable state corresponding to local minima of the potential 
energy. 
 
((Mathematica 5.2)) Program 11 
(*2D SQUID potential,β = 1 - 2,κB = 1 - 3;n0 =Ξ/Φ0 ( 0 - 
0.5), pp= points*) 

 

F@φ1_, φ1_, β_, κB_, n0_D :=

π

β
J φ1− φ2

2 π
− n0N

2
−

κB
2

π J φ1+ φ2
2 π

N− CosAπ J φ1+φ2
2 π

NECosAπ J φ1− φ2
2 π

NE
 

 
mp[pp_,β_,κB_,n0_]:=Module[{ss1,ss2},ss1=ContourPlot[F[φ1,φ
1,β,κB,n0], {φ1,-4 π, 4 π},{φ2,-4 π, 4 π},PlotPoints -> pp, 
ContourLines ->True,PlotRange -> All, ColorFunction -> Hue, 
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AspectRatio -> Automatic, 
Compiled→False];ss2=ListContourPlot[ss1[[1]], 
  
Contours→(#[[pp/2]]&/@Partition[Sort[Flatten[ss1[[1]]]],pp]
), 
  ColorFunction→(Hue[2 #]&),ContourLines→False, 
MeshRange→{{-4 π,4 π},{-4 π,4 π}}, 
  DisplayFunction→Identity];Show[ss2, 
  DisplayFunction→$DisplayFunction,FrameTicks→True, 
  AspectRatio→Automatic]]   
 Table[mp[100,1.0,κB,0.25],{κB,0,2.0,0.2}] 
 
 
Fig. 27 The contour plot of ),( 21 φφU  in the in the φ1-φ2 plane: φ1 is x-axis and φ2 is the y 

axis. κB = 0.4, 0.8, 1.2, 1.6, and 1.8. β = 1. Φext/Φ0 = 0.25. (κB)c = 1.628. 
 
(1) κB =0.4, β = 1.0 and Φ/Φ0 = 0.25 
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(2) κB =0.8, β = 1.0 and Φ/Φ0 = 0.25 
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(3) κB =1.2, β = 1.0 and Φ/Φ0 = 0.25 
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(4) κB =1.6, β = 1.0 and Φ/Φ0 = 0.25 
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(5) κB =1.8, β = 1.0 and Φ/Φ0 = 0.25 
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7.5 Simple case: βJ »1 and β = 0 

For simplicity we assume that βJ »1. This assumption is appropriate for the operation 
of DC SQUID. 

First we consider the critical current at V = 0. We also assume that β = 0. 

)]2sin([sin)sin(sin
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Then we have 
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The maximum of IB is 

)cos(2
0

max Φ
Φ

= ext
cII π . (40) 

The critical current is a periodic function of the external magnetic flux. 
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Fig.28 Ideal case for the IB/Ic vs Φext/Φ0 curve in the DC SQUID, where IB is the 

maximum supercurrent. IB = 2 Ic when Φ ext/Φ0 = n (integer) and IB = 0 for Φext/Φ0 
= n +1/2. 

 
We consider the general case (but still L = 0 and βJ »1) 
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From the addition of Eqs.(41) and (42) with the help of the relation Eq.(43), we have 
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When we introduce a new parameter 
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we have the final form  
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We are interested in the DC current-voltage characteristic so we need to determine the 
time averaged voltage 
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When this equation for the voltage is compared with that for one Josephson junction with 
βJ»1 
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cIIRV −= . 
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We find that the critical current is )/cos(2 0ΦΦextcI π . This means that the critical 
current is 2Ic for next =ΦΦ 0/  (integer) and zero for next =ΦΦ 0/ +1/2. In other words, 
the critical current is a periodic function of Φ  with a period of 0Φ . However, the actual 
critical current does not oscillate between 0 and 2Ic because of the finite self-inductance L. 
In the above model, L (or β = 0) is assumed to be zero. The critical current varies 
between 2Ic and finite value depending on the value of β (see the detail in Sec.8). 

When the total current IB is constant, the voltage across the DC SQUID periodically 
changes with the external magnetic flux. This is the phenomenon one exploit to create the 
most sensitive magnetic field detection. 
 
((Note)) Figure 29 is obtained from the Instruction manual of Mr. SQUID.9 

 
 
Fig.29 Detected voltage vs the magnetic flux Φ/Φ0. The current IB is kept at fixed value 

which is a little larger than 2Ic. The detected voltage shows a maximum for Φ = 
(n+1/2)Φ0, and a minimum for Φ = nΦ0. The detected voltage is a periodic 
function of Φ with a period of Φ0. (This figure is copied from the User Guide of 
Mr SQUID9). 

 
7.6 More general case: βJ »1 and finite β 

In order to avoid hysteresis in the I-V curve one usually choose over-damped junction. 
Here we start with the differential equations given by 

s
B

J d
d κκφ

τ
φβ −=+

2
sin 1

1 , (46) 

s
B

J d
d κκφ

τ
φβ +=+

2
sin 2

2 , (47) 

)
2

(2
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21 Φ
Φ

+=− ext
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or 



 60

)
2

(2

0

21

Φ
Φ

−
−

= ext
s π

φφ
β

κ . 

Thus we have two differential equations 
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where the initial conditions [φ1(0) and φ2(0)] are chosen appropriately  
 
8 Simulation 

The differential equations for φ1(τ) and φ2(τ) are numerically solved by using the 
Mathematica 5.2. We show our calculation on the τ dependence of η.  The parameters κB, 
βJ, β and 0/ ΦΦext  are appropriately changed for our calculations.  
 
8.1 Relation of <η> vs κB with 0/ ΦΦext  as a parameter 

We calculate the relation <η> vs κB where 0/ ΦΦext  = 0, 0.05,0.1, 0.15, 0.20, 0.25, 
0.30, 0.35, 0.40, 0.45, and 0.5. We choose βJ = 10 for the over-damped case. So that no 
hysteresis is seen in the I-V curve. The parameter β is changed as a parameter: β = 0.02 - 
3. The voltage <η> suddenly increases from zero to a finite value at the critical current 
which is dependent on the magnetic flux 0/ ΦΦext  and β. 
(i) Using the following Mathematica 5.2 program, we find the maximum and 

minimum of Ω(τ) in the long time region where Ω(τ) periodically oscillates with τ. 
(ii) The average <Ω> is calculated as (maximum+minimum)/2. The average voltage 

>Ω<>=< Jβη  is plotted as a function of κ for the fixed βJ (= 10) and β, where 
the magnetic flux 0/ ΦΦext  is changed as a parameter. 

(iii) The voltage is equal to zero for κ<(κB)c. It suddenly increase with increasing κ 
above (κB)c. We determine the critical current (κB)c as a function of the magnetic 
flux where β is changed as a parameter. 

 
((Mathematica 5.2)) Program-12 
 
Clear["Global`*"] 
 <<Graphics`Graphics` 
 (*Subroutine, DC SQUID beta=1 betaJ=10 voltage vs magnetic 
flux*)  
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DCSQ@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, τmax_, opts__D:=

ModuleA8numso1, numgraph<,

numso1=

NDSolveA9 βJφ1'@τD + Sin@φ1@τDD κB
2

−
2
β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD + Sin@φ2@τDD κB
2

+
2
β
J φ1@τD − φ2@τD

2 π
− N0N, φ1@0D φ01,

φ2@0D φ02=, 8φ1@τD, φ2@τD<, 8τ, 0, τmax<E êê Flatten;

numgraph= PlotAJ κB− Sin@φ1@τDD −Sin@φ2@τDD
2

N ê.numso1, 8τ, 0, τmax<,

opts, DisplayFunction→ IdentityEE;

Max1@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, 8τmin_, τmax__<D:=

ModuleA8numso1<,

numso1=

NDSolveA9 βJφ1'@τD + Sin@φ1@τDD κB
2

−
2
β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD + Sin@φ2@τDD κB
2

+
2
β
J φ1@τD − φ2@τD

2 π
− N0N, φ1@0D φ01,

φ2@0D φ02=, 8φ1@τD, φ2@τD<, 8τ, 0, τmax<E êê Flatten;

maximum = FindMaximumAJ κB− Sin@φ1@τDD −Sin@φ2@τDD
2

N ê.numso1,

8τ, τmin, τmax<EE;

Min1@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, 8τmin_, τmax__<D:=

ModuleA8numso1<,

numso1=

NDSolveA9 βJφ1'@τD + Sin@φ1@τDD κB
2

−
2
β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD + Sin@φ2@τDD κB
2

+
2
β
J φ1@τD − φ2@τD

2 π
− N0N, φ1@0D φ01,

φ2@0D φ02=, 8φ1@τD, φ2@τD<, 8τ, 0, τmax<E êê Flatten;

maximum = FindMinimumAJ κB− Sin@φ1@τDD −Sin@φ2@τDD
2

N ê.numso1, 8τ, τmin, τmax<EE
 

 
Sei[βJ_,β_,N0_]:=Module[{A1,B1,list1,ave1},A1=Max1[{0,0},{β
J,#,β,N0},{400 π,800π}]&/@Range[0,3,0.01];  
B1=Min1[{0,0},{βJ,#,β,N0},{400 
π,800π}]&/@Range[0,3,0.01] ;ave1=(A1+B1)/2; 
list1=Table[{0.01 (k-1),ave1[[k,1]]},{k,1,301}]] 
 h[n0_]:=ListPlot[Evaluate[Sei[10,1,n0]],PlotStyle→{Hue[2  
n0],PointSize[0.01]},AxesLabel→{"κB","η"},PlotLabel→NumberF
orm[n0]] 
 f1=Table[h[p],{p,0,0.5,0.05}] 

 
Fig.30 >Ω<>=< Jβη  vs κ (βJ = 10 and β = 1) for 0/ ΦΦext = 0 – 0.5. The number 

denoted in each curve is the value of 0/ ΦΦext . Note that ><η  takes several 
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values at the same κ around 0/ ΦΦext  = 0.4. All solutions are plotted in the figures. 
Some values are unphysical. We do not understand why so many values appear. 
Some solutions may correspond to metastable states. 

 
(1) 0/ ΦΦext  = 0. β = 1 and βJ = 10 
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(2) 0/ ΦΦext  = 0.1. β = 1 and βJ = 10 
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(3) 0/ ΦΦext  = 0.2. β = 1 and βJ = 10 
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(4) 0/ ΦΦext  = 0.3. β = 1 and βJ = 10 
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(5) 0/ ΦΦext  = 0.4. β = 1 and βJ = 10 
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(6) 0/ ΦΦext  = 0.45. β = 1 and βJ = 10 
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(7) 0/ ΦΦext  = 0.5. β = 1 and βJ = 10 
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________________________________________________________________________ 
Fig.31 >Ω<>=< Jβη  vs κ (βJ = 10) and (β = 0.3) for 0/ ΦΦext =0 – 0.5. The number 

denoted in each curve is the value of 0/ ΦΦext . Note that ><η  takes several 
values at the same κ around 0/ ΦΦext  = 0.4 (multi-valued function). All solutions 
are plotted in the figures. Some values are unphysical. We do not understand why 
so many values appear. Some solutions correspond to metastable states. 

 
(1) 0/ ΦΦext  = 0. β = 0.3 and βJ = 10 
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(2) 0/ ΦΦext  = 0.1. β = 0.3 and βJ = 10 
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(3) 0/ ΦΦext  = 0.2. β = 0.3 and βJ = 10 
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(4) 0/ ΦΦext  = 0.3. β = 0.3 and βJ = 10 
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(4) 0/ ΦΦext  = 0.4. β = 0.3 and βJ = 10 
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(5) 0/ ΦΦext  = 0.45. β = 0.3 and βJ = 10 
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(6) 0/ ΦΦext  = 0.5. β = 0.3 and βJ = 10 
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8.2 Critical current vs 0/ ΦΦext  with β as a parameter 

From the above simulation we find that the critical current (κB)c decreases with 
increasing the magnetic flux from 2 at 0/ ΦΦext  = 0 to some finite value (but not zero) at 

0/ ΦΦext  = 0.5 because of the finite value of β (finite inductance). First we estimate the 
critical current analytically based on an approximation πφφ /2sin ≈  for |φ|<π/2 (one can 
easily prove this using the Mathematica 5.2). We use the following approximations, 
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−= extB

β
κκ . 

 
The value of κ1 has a maximum at 0/ ΦΦext  = 1/2. The condition for the critical current is 
that the maximum of κ1 should be equal to 1. As 0/ ΦΦext  changes from zero to 1/2, the 
value of κ1 changes from κ1 = κB/2 to  

1
1

21 +
+=

β
κκ B , 

Since the critical current of κ1 is equal to 1, the critical current of κB should be equal to 

1
1

1
2

)()( 1 =
+

+=
β
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c  

or 

1
2)

1
11(2)(

+
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+
−=

β
β
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κ cB . (50) 

Note that the change in the SQUID voltage is approximated by 
 

11
1

1 +
=

+
=Δ=Δ

ββ
κ cN

cNcN
IRIRIRV , (51) 

where )1/(11 +=Δ βκ : 2/1 Bκκ =  at 0/ ΦΦext  = 0 and )1/(1)2/(1 ++= βκκ B . We 
assume that the normal-state resistance of the DC SQUID is RN/2: the slope of I-V curve 
is given by RN/2, but not by RN. So the resistance of each Josephson junction is RN since 
the parallel configuration. In our Mr. SQUID, we have RN/2 = 1.44 Ω and  2Ic = 66mA.  

In Figs.30 and 31, we show the plot of <η> vs κB. The zero-voltage state (<η> = 0) is 
stable for κB≤(κB)c, where (κB)c is the critical current. Figure 32 shows the critical current 
(κB)c as a function of Φext/Φ0, where β is changed as a parameter and βJ = 10.  We find 
that (κB)c decreases with increasing the magnetic flux Φext/Φ0. There occurs a transition 
at κB = (κB)c from the zero-voltage state (<η> = 0) to a finite-voltage state (<η> ≈ κB). In 
Fig.33 we show the plot of (κB)c as a function of β at Φext/Φ0 = 1/2, where βJ = 10. The 
data point fall well on the solid line denoted by )1/(2)( += ββκ cB . 
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Fig.32 The critical current (κB)c as a function of Φext/Φ0, where β is changed as a 

parameter. βJ = 10.  
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Fig.33 The critical current (κB)c at Φext/Φ0 = 1/2 as a function of β. βJ = 10. The solid line 

denotes the expression given by )1/(2)( ββκ +=cB .  
 
8.3 Relation of <η> vs 0/ ΦΦext  with κB as a parameter 

We calculate the magnetic flux ( 0/ ΦΦext ) dependence on the average voltage, where 
κB is changed as a parameter. When κB is fixed, the average voltage <η> periodically 
changes with 0/ ΦΦext  [the periodicity 1)/( 0 =ΦΦΔ ext ]. In Fig.34, we show our 
calculation for κB = 1.5 – 2.9. We find that <η> is a multivalued function of 0/ ΦΦext . 
We think that the lowest curve may be a stable solution. This curve has a maximum at 

0/ ΦΦext  = 1/2 and 0 near 0/ ΦΦext  = 0 and 1. Note that we do not take into account of 
the effect of Johnson noise. This is a principle of the DC SQUID. The element plays a 
role of the transformation between the voltage and the magnetic flux. 
 
 ((Mathematica 5.2)) Program-13 
Clear["Global`*"] 
 <<Graphics`Graphics` 
 (*Subroutine, DC SQUID beta=1 betaJ=10 voltage vs magnetic 
flux*)  
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DCSQ@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, τmax_, opts__D:=

ModuleA8numso1, numgraph<,

numso1=

NDSolveA

9 βJφ1'@τD + Sin@φ1@τDD κB
2

−
2
β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD + Sin@φ2@τDD κB
2

+
2
β
J φ1@τD − φ2@τD

2 π
− N0N,

φ1@0D φ01, φ2@0D φ02=, 8φ1@τD, φ2@τD<, 8τ, 0, τmax<E êê
Flatten;

numgraph= PlotAJ κB− Sin@φ1@τDD −Sin@φ2@τDD
2

N ê.numso1,

8τ, 0, τmax<, opts, DisplayFunction → IdentityEE;

Max1@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, 8τmin_, τmax__<D:=

ModuleA8numso1<,

numso1=

NDSolveA

9 βJφ1'@τD + Sin@φ1@τDD κB
2

−
2
β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD + Sin@φ2@τDD κB
2

+
2
β
J φ1@τD − φ2@τD

2 π
− N0N,

φ1@0D φ01, φ2@0D φ02=, 8φ1@τD, φ2@τD<, 8τ, 0, τmax<E êê
Flatten;

maximum =

FindMaximumAJ κB− Sin@φ1@τDD −Sin@φ2@τDD
2

N ê.numso1,

8τ, τmin, τmax<EE;

Min1@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, 8τmin_, τmax__<D:=

ModuleA8numso1<,

numso1=

NDSolveA

9 βJφ1'@τD + Sin@φ1@τDD κB
2

−
2
β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD + Sin@φ2@τDD κB
2

+
2
β
J φ1@τD − φ2@τD

2 π
− N0N,

φ1@0D φ01, φ2@0D φ02=, 8φ1@τD, φ2@τD<, 8τ, 0, τmax<E êê
Flatten;

maximum =

FindMinimumAJ κB− Sin@φ1@τDD −Sin@φ2@τDD
2

N ê.numso1,

8τ, τmin, τmax<EE  
 
Sawako[βJ_,β_,κB_]:=Module[{A1,B1,list1,ave1},A1=Max1[{0,0}
,{βJ,κB,β,#},{400 π,800π}]&/@Range[0,1,0.005];  
B1=Min1[{0,0},{βJ,κB,β,#},{400 
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π,800π}]&/@Range[0,1,0.005] ;ave1=(A1+B1)/2; 
list1=Table[{0.005 (k-1),ave1[[k,1]]},{k,1,201}]] 
 
g[κB_]:=ListPlot[Evaluate[Sawako[10,1.5,κB]],PlotStyle→{Hue
[0.7],PointSize[0.015]},AxesLabel→{"Φ/Φ0","<η>"},PlotLabel→
NumberForm[κB], PlotRange→{{0,1},{0,1.3}}] 
 f1=Table[g[κB],{κB,0.5,3,0.1}] 
 
Fig.34 The average voltage <η> vs ΦB/Φ0, where κB is changed as a parameter. βJ = 10. 

β = 1.5. 
(1) κB = 1.5. βJ = 10. β = 1.5 
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(2) κB = 1.7.  βJ = 10. β = 1.5 
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(3) κB = 1.9.  βJ = 10. β = 1.5 
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(4) κB = 2.2.  βJ = 10. β = 1.5 



 72

0.2 0.4 0.6 0.8 1
ΦêΦ0

0.2

0.4

0.6

0.8

1

1.2

<η> 2.2

 
 
(5) κB = 2.4.  βJ = 10. β = 1.5 
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(6) κB = 2.9.  βJ = 10. β = 1.5 
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8.4 Loop current 

Here we discuss how the loop current changes with the time τ, depending on the total 
current κB and the external magnetic flux Φext. The loop current is given by 

)
2

(2

0

21

Φ
Φ

−
−

= ext
s π

φφ
β

κ . (52) 

Here we consider one typical case: βJ = 10, β = 1, and 0/ ΦΦext  being changed as a 
parameter. We choose the initial condition that φ1(0) = φ2(0) = 0.  
 
((Mathematica 5.2)) Program-14 
Clear["Global`*"] 
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 <<Graphics`Graphics` 
 (*Subroutine, DC SQUID Magnetic flux dependence of loop 
current*)  

 

DCSQ@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, τmax_, opts__D:=

ModuleA8numso1, numgraph<,

numso1=

NDSolveA9 βJφ1'@τD + Sin@φ1@τDD κB
2

−
2
β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD + Sin@φ2@τDD κB
2

+
2
β
J φ1@τD − φ2@τD

2 π
− N0N, φ1@0D φ01,

φ2@0D φ02=, 8φ1@τD, φ2@τD<, 8τ, 0, τmax<E êê Flatten;

numgraph= PlotA2
β

 J Hφ1@τD − φ2@τDL
2 π

− N0N ê.numso1, 8τ, 0, τmax<,

opts, DisplayFunction→ IdentityEE;  
 phlist=DCSQ[{0,0},{10,1,1,#},3000,  PlotStyle→Hue[1.4 
(#+5)], AxesLabel→{"τ","<κs>"},Prolog→AbsoluteThickness[2], 
Background→GrayLevel[0.5],PlotRange→{{0,800},{-
1,1}},Ticks→{  π Range[0,200,100], Range[-1,2]}, 
DisplayFunction→Identity]&/@Range[0,0.5,0.1 ];Show[phlist,D
isplayFunction→$DisplayFunction] 
 
Fig.35 κs vs τ where 0/ ΦΦext  = 0.1, 0.2, 0.3, 0.4, and 0.5. κB is changed as a parameter. 

β = 1. βJ = 10. Note that in the figures the y axis should be κs, but not <κs>. 
 
 (1) κB = 1.0 and 0/ ΦΦext  = 0, (red), 0.1, 0.2, 0.3, 0.4, and 0.5 (purple) from the top to 

the bottom. β = 1. βJ = 10.  
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(2) κB = 1.1 and 0/ ΦΦext  = 0.1, 0.2, 0.3, 0.4, and 0.5. β = 1. βJ = 10. 
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(3) κB = 1.4 and 0/ ΦΦext  = 0.1, 0.2, 0.3, 0.4, and 0.5. β = 1. βJ = 10. 

The loop current starts to oscillate with time only for 0/ ΦΦext  = 0.4 and 0.5. 
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(4) κB = 1.6 and 0/ ΦΦext  = 0.1, 0.2, 0.3, 0.4, and 0.5. β = 1. βJ = 10. 

The loop current starts to oscillate with time only for 0/ ΦΦext  = 0.1, 0.2, 0.3, 0.4 
and 0.5. 
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(5) κB = 2.0 and 0/ ΦΦext  = 0.1, 0.2, 0.3, 0.4, and 0.5. β = 1. βJ = 10. 
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9 CONCLUSION 

We have discussed the physics of the Josephson junction and the principle of the DC 
SQUID. We do not discuss the rf SQUID (consisting of only one Josephson junction) the 
principle of the SQUID magnetometer. The SQUID magnetometer is the most sensitive 
measurement device. It can measure magnetic flux on the order of one flux quantum. The 
magnetic properties of magnetic systems including spin glass, superspin glass, and 
superparamagnet are studied using the SQUID magnetometer (MPMS XT-5, Quantum 
Design) in our Laboratory. Finally we want to say that a book (in Japanese) written by 
Ohtsuka12 is very useful for our understanding of the principle of the RSI model and DC 
SQUID model.  
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This book was very useful for us in writing this lecture note. 
However,unfortunately this book was written in Japanese. 

 
APPENDIX 

For convenience, the following programs of Mathematica 5.2 are presented. 
(1) Program-5 (Fig.12): Phase space Ω vs φ  with vector field. βJ = 0.60. κ is changed 

as a parameter. 
(2) Program-6 (Fig.13): Ω vs τ for βJ = 0.60. κ is changed as a parameter. 
(3) Program-9 (Fig.16): average voltage vs current 
(4) Program-13 (Fig.34) average voltage vs magnetic flux 


