Sommerfeld formula

Masatsugu Sei Suzuki
Department of Physics, SUNY at Binghamton

(November 01, 2018)

Arnold Johannes Wilhelm Sommerfeld: 5 December 1868 — 26 April 1951) was a
German theoretical physicist who pioneered developments in atomic and quantum physics,
and also educated and mentored a large number of students for the new era of theoretical
physics. He served as doctoral supervisor for many Nobel Prize winners in physics and
chemistry (only J. J. Thomson's record of mentorship is comparable to his). He introduced
the 2nd quantum number (azimuthal quantum number) and the 4th quantum number (spin
quantum number). He also introduced the fine-structure constant and pioneered X-ray
wave theory.

https://en.wikipedia.org/wiki/Arnold Sommerfeld

A Sommerfeld formula is an approximation method developed by Arnold Sommerfeld for
the integrals represent statistical average using the Fermi-Dirac distribution.
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where f(¢)= is the Fermi-Dirac distribution function. x is the chemical
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potential. When Su >>1 (the condition of strong degeneracy), the derivative —

becomes a Dirac delta function, which takes a very sharp peak around & = z2. The chemical

potential x is dependent on temperature.

1. Derivation of Sommerfeld formula
We assume that

G(e) = j g(x)dx

where g(¢) is a slowly varying function around ¢ = u

g(e)=G'(e)

We now calculate the integral

I=[dsf(e)g(s)
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Note that —? ~ 0(& — p)which is the Dirac delta function having a very sharp peak at
&

e = u. Weexpand G(g) by using Taylor expansion around & = u

G(e) = G(u) +%(e )G () +%(s 1 G(w) +$(e WG )+

Thus we get

[ de f @)= [del-LENG () 1. G (1) + . (6 - 0 G () +

1 3,403
+§(g—lu) G()(y)+ ....... ]

-G+ 1.0 @[ el Lo - gy G(z)(y)jd[ ey,

l 3) T _af(é‘) N3
+5,0 (y).([de[ Ryl Ry DI
We put x = f(e—u) with yfg >>1.
G(u) = [ g(e)de

GV () =g(w), GP(w=g"w), G(w=g%W).,....

Then we have
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We have the Sommerfeld formula
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2. T dependence of the chemical potential
We start with

= Tf(g)D(g)dg

where
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We get

N = Tf(e)D(e)dg
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But we also have ¢, = y(7 =0). Then we have

f 2a
N = .([D(g)dg =?€F3/2 .

Thus the chemical potential is given by
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The chemical potential  is approximated by the forms

) 2
p=e,[1-2 kT | (3D case)
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This result confirms that the chemical potential (Fermi level) remains close to the Fermi
energy as long as k,7 << ¢, . As the temperature increases, the chemical potential falls

below the Fermi energy by a margin that grows quadratically with the temperature.
For the 1D case, similarly we have

) 2
p=e 1+ kT (1D case)
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3. Total energy and specific heat

Using the Sommerfeld’s formula, the total energy U of the electrons is approximated
by

['e]

U= jf(g)gD(e)dg

0

= JeD(e)de + L (T VLD )+ 6,D'6,)

0

=T(C"D(g)dg+(/Ll_gF)gFD(gF)+%7z-2(kBT)2[D(€F)+€FD'(€F)]

0

The total number of electrons is also approximated by
N= j f(&)D(e)de

0
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= j D(¢)de +g7z2(kBT)2D'(5F)
0
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= [ De)dz+(u=e,)Diep) +o 7 (6 T) DY)
0

Since N /0T =0 (N is independent of 7), we have
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The internal energy U is

U= T eD(g)de +(u—¢&r)e-D(&r) +%7[2(kBT)2[D(€F) +&,D'(¢,)]

0
The specific heat C is defined by

_du
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1
- 5;zszzT[D(gF) +&,.D'(e)]+ ' e.D(gr)

= %ﬁszzTD(eF) +é&, [%ﬁszzTD (e,)+ u'D(g,)]

The second term is equal to zero. So we have the final form of the specific heat
1 27 2
€ =§7: ky"D(gp)T .

In the above expression of Ce1, we assume that there are N electrons inside volume V (= L?).
The specific heat per mol is given by

Cuy -1 Die)
N 3

N jk,'T = %ﬁzDA(gF)NAkBZT :

where Na is the Avogadro number and D?(g,.) [1/(eV at)] is the density of states per unit
energy per unit atom. Note that

%ﬁzNAk32=2.35715 mJ eV/K>.

The entropy S is obtained as follows.



as 1
C,= Ta—T = E7z2k;D(gF)T
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Thus we have

S = %ﬂszzD(gF 7T

which is the same as the heat capacity.

((Note)) The heat capacity of free electron
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The electronic heat capacity per mol is

l722—D(8F)Nk2T=1722 3
3 N T 37 2k,T,

Then y is related to D*(g,.) as
1, 2 4
7:§7z N k;,"D"(¢;.),

or

y (mJ/mol K?) =2.35715 D*(&,).

)

We now give the physical interpretation for Eq.(1). When we heat the system from 0
K, not every electron gains an energy kg7, but only those electrons in orbitals within an
energy range kg7 of the Fermi level are excited thermally. These electrons gain an energy
of kgT. Only a fraction of the order of k,7D(¢,) can be excited thermally. The total

electronic thermal kinetic energy E is of the order of (k,T)* D(&,) . The specific heat Cel

is on the order of k,°TD(&,.).

((Note))



For Pb, y=12.98, D*(&,)=1.26/(eV at)

For Al y=1.35, D*(&,)=0.57/(eV at)
For Cu 7=0.695,  D"(¢,)=0.29/(eV at)
Table 7(mJ/mol K*) (H.P. Myers)
Na: 1.38 Tt 3.35
K: 2.08 \& 9.26
Mg: 1.3 Cr: 1.4
Al: 1.35 Mn: 9.2
Pb:  2.98 Fe:  4.98
Cu:  0.70 Co 473
Ag:  0.65 Ni 7.02
Au:  0.73 Pt: 7.0
4. Grand potential ®; for free electrons with the use of Sommerfeld expansion

Using the formula for fermions,
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with g =2 for spin 1/2, we get the ratio
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where we use the Sommerfeld expansion
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We note that
O, =-PV=-k,TInZ, = —2—U

The internal energy is

) 2
U=—ECDG=§ F[1+57z k,T ]
3 5 12 | &,

The entropy S is obtained by
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S. Summary
(i) Internal energy U

d
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eD(e)f(e)de

u(e)f(e)de

u(e)de +%2 (ks Tt '(0)]
or
U= Iu(e)de +%2(kBT>2[D(eF>+ £-D'(e,)]
where
u(e) = eD(¢), u'(g) = D(g)+eD'(€)

(ii) Number N:

Since N is independent of 7,
2
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0=u D(,u)_"?kg ID'(er)
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(iii) Heat capacity C:

U

c=""2
oT

= () + 7k T ()
= ' uD()+ kg TID(w) + D' (40)]
= W' DO+ Ky TD ()] + =k TD (1)

2
=% ks TD()]

or

C=yT
with
72_2
V= ? szD(‘C"F )]
Note that

u(p) = uD(u) u'(u) = D(u)+ uD'(1)

(vi)  Grand potential

InZ, = .[D(g) In(1+ze #)de
0

1

- plp(e)——ds

—ef 41
z

= B[ #(e) f(e)de
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where

¢'(e) = D()
Thus we have

O, =—k,TInZ;

=—[4@&)f(e)ds
={[de)de+ %(kBT)Z $'(w)]
When

D(s)=ae

we get

#e) = [ D)z = 2as*

u(e)=¢eD(g)=as’* = %qﬁ(s)
The internal energy is
T 1 2 2
U= j u(@)dz + (6, T) u'(10)]
0

= %[ ! #(&)ds +%7z2 (ksT)'$'(10)]

3
Z_ECDG

or

O, =-PV=—=U
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6. Derivation of entropy S (by R. Kubo)
Here we show the method used by Kubo. This method is very instructive to students.
The chemical potential can be derived as follows. We start with

N=IDwM6=I¢wM6=ﬂ&) (1)
at T=0K, where D(s)=¢'(s).

N=If@ﬂXﬂdg=ID@%M+%¢%@TfD(@) (2)
Subtracting Eq.(1) from Eq.(2), we get

jD@ﬂk+%ﬁ%@TfD(q):0
Noting that

[ D)z = D& uu—2,)

ér

we have
1
D(gF)(/Ll_gF)+g7[2(kBT)2D'(€F) =0

Then the chemical potential is obtained as
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where
P'(e)=D(¢)

The internal energy:

U=\|eD(e)f(e)de
=|eD(¢)de +%(k T)’ —[ED(E)H

=|eD(¢)de +—(k TY[D(g;)+&.D'(g,)]

Il
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Here we use the Taylor expansion
E&F

TsD(s)d& = .[ eD(e)de+(u—er)e-D(eg;)

0 0

Thus the internal energy can be rewritten as

U= [ eD(e)de+(u—z,)e, D(eF)+ (k TY[D(¢,)+¢e,D'(g,)]

_t 7 orye P& Ty .
= j £D(@)dz =~ (k,T)' & D(gF)D(em = T [D(e)+ 2]
= j gD(g)dg——(k T)e D'(eF)+ (k T)[D(e,)+&.D'(e,)]

- j eD(¢)de +%(kBT)2D(gF)

or
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where

T eD(g)de = T ep'(e)de =¢.9(e,)— T d(e)de
The heat capacity:

Note that D(e,)k,T is the number of particles which are in the softened edge in the
vicinity of Fermi energy.

The grand potential:
InZ, = [ D(&)In(1+ ze7)de
0

1

= plp(e)——ads

~e’ +1
z

= B[ d(e)f (e)de
= B[ §(e)de+7 (k)¢ ()]
Using the Taylor expansion,

(o) = [ perds+(u-e0)pe)
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=—k,TInZ,
=~ [ de)de— (=)o) =" (kT) ¢'(er)

__«S‘F l 5 5 ¢H(€F)
= {ﬂeﬂg+6ﬁ(@T)5R;j

_F 1 o o B"E)PE) [T
= j pe)de + 7 (6T) §'(20) ST
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where

e, =, Ty 2 =Ly )

6 D(g;) 6 P'(&r)
Thus we have

PV =-@,

.f (E)dé‘——ﬂ' (k,T) §'(e F){¢”(EF)¢(8F)_[¢'(€F)] !

7 A
using these expressions, the entropy can be obtained as follows.

ST =@, +U — uN

¢"(e.)p () ~[¢'(e)T
[¢'(e,)T

e, h(er) - j He)ds+7 (k) §'(s;)

[ derde (T e }

2 9"(&r)
e, ——n*(k, T X
[e; —— 7" (kyT) o F)]¢( )

=1n2(kBT>2¢'(eF>

:%z%kT)D@g

or
S=%ﬂ%;HX%)
7. Grand potential
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The Gibbs free energy:
G=uN=F+PV=U-ST+PV
The grand potential is given by

@, =—PV =U—ST—uN

Since
d®.=d(U—-ST - uN)
=TdS — PdV + udN — SdT —TdS — udN — Nd u
=—SdT — PdV — Nd u
we have

),
Gu T,V oT V.u

b

We now calculate the grand potential using the Sommerfeld formula,

O, =-PV
=—k,TInZ,

= —k,T j D(¢)In(1+ ze *)de
0

T 1
=—[¢(e)——de
0 ~e” +1
z
=—[¢(e) f(e)de
0
with
#(e)= D) f&)= =
’ leﬁs +1 eﬁ(gi'u) +1
z
8. The derivation of § from the grand potential
The entropy S is given by
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Noting that
5 -7
oT u B T )oe
ST can be rewritten as
18 = —I¢(€)(€ - u)%da
= Th(g)f(g)dg
where
h(e) = a—ag[(g —WP(&)]= (e —)p'(e) + d(e)

and
h'(e)=(e— )" (&)+2¢'(¢)

Using the Sommerfeld formula, we get
H 7[2
TS = j h(e)de + ?(kBT)Z h'(12)
0
H 7[2
= [ he)de+= (kT)'9' ()
0
Here we note that

Th(g)dg = Th(g)dg

=[d(e)(e - )]y
=0

Thus ST can be approximated as
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~ ?(kBT)2¢'(€F) = ?(kBT)ZD(gF)
The entropy S is
72_2
S= ?k;TD(eF)

9. The derivation of the number /N from the grand potential
The number N is expressed by

at
U Jry

Note that
S, el -
| _J‘¢( )af(E)d
=- j $'(e)f (e)de
- —ID(e)f(e)de
where

o)) _ e
ou ). oe

This leads to the results which is familiar to us,
N =[D(e)f(e)de
0

10. Derivation of the entropy using the Maxwell’s relation
From the thermodynamics, dG van be expressed as
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dG=d(U-ST+PV)
=T1dS — PdV + udN — SdT —TdS + PdV +VdP
=—SdT +VdP + udN

leading to the relations

s-{(2) (%) ()
or PN op T.N ON T.P

From these relations, the Maxwell’s relation can be expressed by

)&
or P.N ON PT

since

(&), (7). (&), (o

or ),y \oT ), \oN )., | oTen ),
(2] (2] (2) (2
oN ), \on ), \or )., |aner ),

Suppose that N depends only 7 and . We get

(a_uj _ O, N)
or ), o(T,N)
o(u, N)
oT, p)
o(T,N)
oT, p)
O(N, u)
__oT,p)
A(N,T)

o(u,T)
ON

(or),

o)
ol ),
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and

( as j _9(8,T)
oN ), O(N,T)
o(S,T)

_ o(u,T)
~ O(N,T)

o(u,T)
%)
%)
ou ),
Thus we have the relation
) 2
ou), \oT ),

Here we note that

N = TD(g)dg +%7z2(kBT)2D '(u)

Then we get

(Z_Nj = D)+~ 7 (,T)’ D" () ~ D(,)
1)y 6

ON 7, 7,
—_— :—k TD' :_k TD'
(aTl 3 Ko (£0) 3 K (&r)

(a) Chemical potential
Using the above relation, we have

or [GNJ T3 8T Diey)

ou

(o7
(G_ﬂj __\or), 7, 2Dy

or
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(b) Entropy S
Using the above relation, we can calculate the entropy S as

2
£ :(G_Nj ="k, TD ()
ou), \or), 3

The integration of this with respect to x leads to
T, T,
S =?k3 TD(p) z?kg TD(&)

11. Sommerfeld formula: 1D case
We consider the case of one-dimensional system.

N = ngf(g)Dl(g) = T deD,(¢)de

where the density of the state for the 1D system is

L(2m\" _
Dl(g):_(_zj e 1/2
7\ h

since

L L(2m\" de
D (s)de =2| = |2ak == | L&
one=2( - Jak= (32| 2

The factor 2 of 2dk comes from the even function of the 1D energy dispersion relation.
We use the Sommerfeld formula

N=[dsf(e)p(e) = [dep(e)ds +- k' T'p ()

where

L(2m v _ _
q)(g) = Dl(g) :_(_zj e 2 _ ae 1/2
z\ h
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do(e) :A(z_’?jm (—1)873/2 _ 1 e
de 7w\ h 2 2

Thus we have

2

U
N = aljd€€*1/2d€ +7Z—szT2)(—lalu*3/2)
0 6 2 1
) (1)
r }
— 2a1ﬂ1/2 _EszTzal/,l 3/2
But we also have
N= .[ deD(¢)=a, .[ e "de =2a,"” ()
0 0

Combining Egs.(1) and (2), we get

or

2
T _
ILII/Z :gFl/Z + 24 szTzlLl 3/2

Then the chemical potential z is

12
(ﬂj —l+7[—2szT2 -3/2

&p 24 ¢,
LR
24 ¢’
or
2 2T2 2 2T2
ﬂ:(1+7[_k3_2)2z1+7z_k3 a
Ep 24 &, 12 &,

We make a plot of the number distribution as a function of * ~ &l éep
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D(e)f(s)oc% 1

2
exp[ —— (1+ )] +1
a o 12

a=k,T/¢

where F is changed as a parameter. We choose @ = 0.3

20+

i -Mumber
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05

" Number

Fig. The number distribution vs x=elep L@ =kl /e, =03 for the 1D case. The

chemical potential for the temperature with a=k,I'/&: =03 is denoted by the
dashed line. It shifts to the high energy side from the Fermi energy at 7=0 K (x =
1). The area for ¥ >1 (shaded region denoted by green) is the same as the area
below X <1,
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Sommerfeld formula for the 3D system

Next we consider the case of three-dimensional system.

N = Tdef(e)D3(8) = T deD;(g)de

where the density of states for the 3D system is

28
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V (2m

We use the Sommerfeld formula
N= j def(e)p(e) = j p(e)ds +—k Tp(u)

Thus we have
u 2
1
N = a3j€”2d€ +7%k32T2 Ea#[”z

0
2

2 T _
:§a3ﬂ3/2 +EszT2a3ﬂ 1/2

Combining Egs.(1) and (2), we get

2 s 2 7’ “12
—a,& =—a +—k T*a
3 B3¢r 3 ,u 12 sH

or
72_2
3/2 _ ,3/2 22 —1/2
ot =i kT

Then the chemical potential is

3/2 . _1/2
(ij :1—?](327—'2#

3/2

gF gF
z1_7[_2 szTz
2
8 ¢
or
ILI (l_ﬂ__k 2T2 )2/3 72_2 kBZT2
&p 8 & 12 &’
or
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Fig. Chemical potential as a function of temperature for the ideal 3D Fermi gas and the
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Fig. The number distribution vs r= g/gF. a=k;l/e, = 0.1 — 0.6 for the 3D case.

The chemical potential for the temperature with a=k,I'/&; is denoted by the
dashed line. It shifts to the low energy side from the Fermi energy at 7=0 K (x =
1) with increasing temperature. The area for X >1 (shaded region denoted by green)

is the same as the area below * <1,

13. Exact solution for the chemical potential for the 2D case
The density of stares for the 2D system is

2 2
Dz(e)dgz(zL 2 kdk =2 27{2’"}1615

27) ez )2
or
ml? ml?
D,(g)ds = P de, D,(e)= e

The density of states for the 2D system is independent of ¢ . The chemical potential can be
evaluated exactly as follows. In other words, we do not have to use the Sommerfeld
approximation.

ml?

hz

Nw:.[Dz(g)dgz Er
0

T
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de

t Dy(e)de mL T
0

N. :I -
b 0eﬁ(‘g’”)+l h?

Then we have

h?
&p = nyp
m
with
N
nyp = LzzD
We get
T de T de
g = — =
z
We put
x=e"
dx = pe’de = Bxde
T de _]9 dx
1 Pe a 1
0—e™+1 1 px| —x+1
z z
:]3 zdx
1,6’)c(x+z)
]
Bi1 x x+z
1 X
=—[In e
,b’[ (x+Z)]1
:lln(l+z)
s
per =In(1+2)
or

ePe 41
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e’ =14z

Thus we have

u=k,TIn(e” —1)

2D system

Fig. Chemical potential of the 2D system. Plot of » =~ # /& as a function of
v=kT /¢,
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Fig. Chemical potential of the 1D, 2D, and 3D systems. Plot of y=ple asa

function of ¥ = kyT'/ &p
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