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Arnold Johannes Wilhelm Sommerfeld: 5 December 1868 – 26 April 1951) was a 

German theoretical physicist who pioneered developments in atomic and quantum physics, 

and also educated and mentored a large number of students for the new era of theoretical 

physics. He served as doctoral supervisor for many Nobel Prize winners in physics and 

chemistry (only J. J. Thomson's record of mentorship is comparable to his). He introduced 

the 2nd quantum number (azimuthal quantum number) and the 4th quantum number (spin 

quantum number). He also introduced the fine-structure constant and pioneered X-ray 

wave theory. 

 

 
 

https://en.wikipedia.org/wiki/Arnold_Sommerfeld 

 

A Sommerfeld formula is an approximation method developed by Arnold Sommerfeld for 

the integrals represent statistical average using the Fermi-Dirac distribution. 
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 is the Fermi-Dirac distribution function.   is the chemical 

potential. When 1   (the condition of strong degeneracy), the derivative 
( )f 






 

becomes a Dirac delta function, which takes a very sharp peak around   . The chemical 

potential  is dependent on temperature. 

 

1. Derivation of Sommerfeld formula 

We assume that 
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Note that )(
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which is the Dirac delta function having a very sharp peak at 

  . We expand )(G  by using Taylor expansion around    
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We put )(  x  with 1 . 
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We have the Sommerfeld formula 
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2. T dependence of the chemical potential 

We start with 
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The chemical potential   is approximated by the forms 
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This result confirms that the chemical potential (Fermi level) remains close to the Fermi 

energy as long as B Fk T  . As the temperature increases, the chemical potential falls 

below the Fermi energy by a margin that grows quadratically with the temperature. 

For the 1D case, similarly we have 
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3. Total energy and specific heat 

Using the Sommerfeld’s formula, the total energy U of the electrons is approximated 

by 
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The total number of electrons is also approximated by 
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Since 0/  TN  (N is independent of T), we have 
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The second term is equal to zero. So we have the final form of the specific heat 
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In the above expression of Cel, we assume that there are N electrons inside volume V (= L3). 
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where NA is the Avogadro number and )( F

AD   [1/(eV at)] is the density of states per unit 

energy per unit atom. Note that 
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The entropy S is obtained as follows. 
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which is the same as the heat capacity.  
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((Note)) The heat capacity of free electron 
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The electronic heat capacity per mol is  
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We now give the physical interpretation for Eq.(1). When we heat the system from 0 

K, not every electron gains an energy kBT, but only those electrons in orbitals within an 
energy range kBT of the Fermi level are excited thermally. These electrons gain an energy 

of kBT. Only a fraction of the order of ( )B Fk TD   can be excited thermally. The total 

electronic thermal kinetic energy E is of the order of 
2

( ) ( )B Fk T D  . The specific heat Cel 

is on the order of 
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((Note)) 



 9 

For Pb,   = 2.98, )( F

AD  =1.26/(eV at) 

For Al   = 1.35, )( F

AD  =0.57/(eV at) 

For Cu   = 0.695, )( F

AD  =0.29/(eV at) 

 

Table  2(mJ/mol K )   (H.P. Myers) 

 
Na: 1.38  Ti: 3.35 

K: 2.08  V: 9.26 
Mg: 1.3  Cr: 1.4 

Al: 1.35  Mn: 9.2 
Pb: 2.98  Fe: 4.98 

Cu: 0.70  Co 4.73 
Ag: 0.65  Ni 7.02 

Au: 0.73  Pt: 7.0 

 

 

 

4. Grand potential G  for free electrons with the use of Sommerfeld expansion 

Using the formula for fermions,  
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with 2g   for spin 1/2, we get the ratio 
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where we use the Sommerfeld expansion 
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The entropy S is obtained by 
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5. Summary 

(i) Internal energy U 
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Since N is independent of T, 
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(iii) Heat capacity C: 
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where 
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6. Derivation of entropy S (by R. Kubo) 

Here we show the method used by Kubo. This method is very instructive to students. 

The chemical potential can be derived as follows. We start with 
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Here we use the Taylor expansion 
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using these expressions, the entropy can be obtained as follows. 
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The Gibbs free energy: 
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8. The derivation of S from the grand potential 

The entropy S is given by 
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The number N is expressed by 
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10. Derivation of the entropy using the Maxwell’s relation 

From the thermodynamics, dG van be expressed as 
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(a) Chemical potential 

Using the above relation, we have 
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(b) Entropy S 

Using the above relation, we can calculate the entropy S as 
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The integration of this with respect to  leads to 
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11. Sommerfeld formula: 1D case 

We consider the case of one-dimensional system. 
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where the density of the state for the 1D system is 
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The factor 2 of 2dk  comes from the even function of the 1D energy dispersion relation. 

We use the Sommerfeld formula 
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Thus we have 
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But we also have 
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Combining Eqs.(1) and (2), we get 
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Then the chemical potential  is 
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We make a plot of the number distribution as a function of 
/ Fx  
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where 
/B Fk T 

 is changed as a parameter. We choose 0.3  . 

 

 
 

 
 

Fig. The number distribution vs 
/ Fx  

. 
/ 0.3B Fk T  

 for the 1D case. The 

chemical potential for the temperature with 
/ 0.3B Fk T  

 is denoted by the 

dashed line. It shifts to the high energy side from the Fermi energy at T = 0 K (x = 

1). The area for 1x   (shaded region denoted by green) is the same as the area 

below 1x  . 
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12. Sommerfeld formula for the 3D system 

Next we consider the case of three-dimensional system. 
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where the density of states for the 3D system is 
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We use the Sommerfeld formula 
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Thus we have 
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Combining Eqs.(1) and (2), we get 
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Fig. Chemical potential as a function of temperature for the ideal 3D Fermi gas and the 

1D Fermi gas. 
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Fig. The number distribution vs 
/ Fx  

. 
/B Fk T  

 0.1 – 0.6 for the 3D case. 

The chemical potential for the temperature with 
/B Fk T 

 is denoted by the 

dashed line. It shifts to the low energy side from the Fermi energy at T = 0 K (x = 

1) with increasing temperature. The area for 1x   (shaded region denoted by green) 

is the same as the area below 1x  . 

 

13. Exact solution for the chemical potential for the 2D case 

The density of stares for the 2D system is 
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The density of states for the 2D system is independent of  . The chemical potential can be 

evaluated exactly as follows. In other words, we do not have to use the Sommerfeld 

approximation. 
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Then we have 
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We put 
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Thus we have 
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Fig. Chemical potential of the 2D system. Plot of 
/ Fy  

 as a function of 

/B Fy k T 
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Fig. Chemical potential of the 1D, 2D, and 3D  systems. Plot of 
/ Fy  

 as a 

function of 
/B Fy k T 
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