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1. Introduction 

Here we consider the normal state of interacting Fermi particles without any long range order. The 
normal state at low temperatures is called the Fermi liquid and is considered to be the system of free quasi-

particles that is continuously connected with free Fermi gas. The concept of the Fermi liquid was introduced 

and developed by L. D. Landau. Landau’s Fermi liquid theory, which concentrates rich contents. 

The electrons are fermion with spin 1/2. The system of many electrons is a collection of Fermi 

particles. The behavior of electrons in solids can be well explained in terms of quantum mechanics; 

the nature of duality of wave and particle. The electron has a negative charger. There is a repulsive 

Coulomb interaction between electrons. Nevertheless, the electron in metal is well described by a 

free fermion without any interactions. Why is a simple free electron model so useful in spite of 

complicated nature of electrons in metals? What is the role of interactions between electrons? Here 

we discuss the concept of the Fermi liquid theory which is essential to understanding the 

effectiveness of free electron model. 

Here we discuss the relaxation time in the Fermi liquid theory. Several methods for the 

derivation of the relaxation time will be introduced below. 

 

2. Relaxation time due to the collisions of Fermi particles 

The interaction between electron in metal is relatively large. It seems that there are many 

collisions between electrons repeatedly. This is not the case. Because of the Pauli’s exclusion 

principle, the probability for collisions is suppressed as low. The reciprocal of the relaxation time 

for the scattering of electrons is given by 
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 becomes sufficiently small. The scattering effect is neglected. The wave 

vector k of electron can be regarded as good quantum number. This is the fundamental of the 

Landau Fermi liquid theory. Typical examples of Fermi liquids are (i) electrons in metals and (ii) 

liquid 3He. 

According to the Fermi golden rule, the relaxation time due to the scattering of electrons is 

given by 
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where NA is the number of particles. 

 

 
 

Fig. Four states of electrons in the vicinity of the Fermi surface. See the detail in the text. 

 

3. Derivation of the relaxation time by Anderson 



It is no doubt well known that the resulting mean free time varies as the square of the energy 

increment, 

 
2 2

2 2[( ) ]
2 F F FE k a k k a

m m
    

ℏ ℏ
 

 

 22

3
consts.

F

V E

 


 
ℏ

 

 

This may be seen by observing that for any final state with the hole in state k’ energy conservation 

requires: 
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Fig. Four states: k  (A, outside the Fermi sphere), k q  (B, outside the Fermi surface), 'k  

(D, inside the Fermi sphere), 'k q  (C, outside the Fermi sphere). H’ is the center of the 

circle (denoted by green line) where the points A, B, C, and D lie on. The diameter of the 

circle is 'k k . 

 

This is the equation of a sphere whose diameter is 'k k : thus we know that 'k q  must lie on 

the sphere whose diameter is the vector from k  to 'k . When a is small, this sphere can be 

approximated by planes through k  and 'k , since 'k , k , k q , and 'k qmust all lie near the 

Fermi surface (this is true except for '  k k , which is a very small fraction of the available states). 

Now clearly, if 'k  lies within ( cos )a   of the surface, two types of scattering process are possible; 

if we pick a ( '). q k k  and small ( ' cosFq  k k , cosq a  ), we may have  
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 k k q , ' ' k k q  

 

or 

 

' k k q , '  k k q  

 

In either case, the possible ranges both of 'k  and of q for a given   are proportional to 

a E  :thus the total scattering probability at this  is  2
E . I leave it as an exercise to perform 

the integration over  and get the full expression for the /ℏ  of the electron of a given E . 
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We note that 
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When the point B is on the Fermi sphere with 1OB 
����

, we have 
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We note that 
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indicating that 
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2. Approach by Abrikosov and Khalatnikov 



 
 

 
 

Fig. 

 

Let us define the probability for a weakly interacting gas. If there is a particle 1 outside the 

Fermi sphere, then the process of first order in the interaction will be as follows. Particle 1 interacts 

with particle 2 inside the Fermi sphere, following which the two particles pass over to states 1’ 

and 2’ outside the Fermi sphere. Because of the Pauli principle, this is the only possibility. The 

law of momentum conservation requires that 
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and, in accordance with what has been seen said above 

 

1 Fp p , 2 Fp p , 1 ' Fp p , 2 ' Fp p , 

 

The planes 1 2( , )p p  and 1 2( ', ')p p  do not coincide, generally speaking, and in Fig.1 they are 

simply superposed by rotation. The scattering probability is given to within a constant by 
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The integration is carried out only over 2p  and 1 'p , since 2 'p  is determined by the law of 

momentum conservation. The angle between the vectors 1 'p  and 2 'p  is actually specified by the 

law of energy conservation. The integration over this angle eliminates the -function. It now 

remains only to integrate the absolute values of the vectors.  

Suppose that p1 is close to pF. Then, all the remaining momenta will also be close to pF in 

absolute value, and, consequently, in Fig.1 they will make nearly equal angles with the horizontal 

line (with the sum 1 2p p ). Hence, from the relationship between the projections on this axis we 

can write the relation between the absolute values:  
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Since 2 ' Fp p , it follows that we have 
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But at the same time 1 ' Fp p , from which it follows that 
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The upper limit for 2p  is 
Fp . Thus, we have 
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On integration we obtain 
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The complete formula for   can be obtained from dimensionality considerations. It must be 

proportional to the square of the interaction constant and, according to the above calculation, to 

the quantity 2
1( )Fp p . Following this, we have to introduce a further factor made up of 

Fp , m 

and ℏ  in such a manner that the result has the dimension of energy. 
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Fig. The conservation of momentum and energy. 1OA  p
����

. 2OC  p
����

. 1 'OB  p
����

. 2OC  p
����

. 

1 'OB  p
����

. 2 'OD  p
����

. 2AP  p
����

. 2BP  p
����

. 1 2 1 2' 'OP    p p p p
����

. H is the center of mass.  

 

 

 
 

Fig. Point B and point D can rotate around the axis OP by the same angle. The point H is the 

center of mass between OA
����

 and OB
����

. Triangle OAP is fixed. In other words, the vector 

OP
����

 is fixed. The vector AB
����

 is always parallel to the vector C D
����

 from the momentum and 

energy conservation laws: A B C D 
���� ����

. 1 2 1 2' ' OP   p p p p
����

 or 1 1 2 2' ( ')  p p p p  

 



 
 

 

Note that   is the angle between 1p  and 2p ; 
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    . The vector f is in the plane where 
1p  and 

2p  lie; 
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where 
zf  is the component of the vector f along the axis parallel to 

1 2p p  and 
rf  is the 

perpendicular component. We have the relation 
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We also have the relation 
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Jacobian: 
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For 
2p , we use the polar co-ordinate 

2 2( , , )p    around the vector 
1p . 
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We put 
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The relaxation time is obtained as 
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Note that the integral given by 
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has a finite value when 0 1a  . When a = 0, 
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((See APPENDIX)) 
 
Thus the relaxation time is 
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where A is a dimensionless number and is of the order of unity.  
 
((Heisenberg’s principle of uncertainty)) 

This equation can be explained using the Heisenberg’s principle of uncertainty,  
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Bk T  (thermal energy) in the 
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((Note)) 
The density of states for free electrons 
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The fraction of number of electrons in the vicinity 
F  nis 

 
1/2( ) ( )

F B F B
N D k T a k T     

 

Thus we have the fraction 

 
1/2

3/2

( ) 3
2 2
3

F B B B

F F
F

a k T k T k TN

aN


 

 
   

 
 

 

3. Approach by Kittel 

 

 
Fig. The point H is the wave vector of the center of mass of 1 and 2. All pairs of states 1’ and 

2’ conserve momentum and energy if they lie at opposite ends of a diameter of the small 

sphere. The small sphere is drawn from the center of mass of 1 and 2. But not all pairs of 

points 1’ and 2’ are allowed by the exclusion principle, for both 1’, 2’ must lie outside the 

Fermi sphere; the fraction allowed is / F  . (Kittel, ISSP 8-th edition) 

 



It is an astonishing property of metals that conduction electron, although crowded together 
only 2 Å apart, travel long distances between collisions with each other. The mean free paths for 
electron-electron collisions are longer than 104 Å at room temperature and longer than 10 cm at 
1K. 

Two factors are responsible for these long mean free paths, without the free-electron model of 

metal would have little value. The most powerful factor is the exclusion principle, and the second 
factor is the screening of Coulomb interaction between electrons. 

We show how the Pauli’s exclusion principle reduces the collision frequency of an electron 
that has a low excitation energy 

1  outside a filled Fermi sphere. We estimate the effect of the 

exclusion principle on the two collision, 1 2 1' 2'    between an electron in the excited state (1) 

and an electron in the filled state (2) in the Fermi surface.  
It is an astonishing property of metals that conduction electron, although crowded together 

only 2 Å apart, travel long distances between collisions with each other. The mean free paths for 
electron-electron collisions are longer than 104 Å at room temperature and longer than 10 cm at 
1K. 

Two factors are responsible for these long mean free paths, without the free-electron model of 
metal would have little value. The most powerful factor is the exclusion principle, and the second 
factor is the screening of Coulomb interaction between electrons. 

We show how the Pauli’s exclusion principle reduces the collision frequency of an electron 
that the energy 

1  is outside a filled Fermi sphere. We estimate the effect of the exclusion principle 

on the two collisions, 1 2 1' 2'    between an electron in the excited state (1’) and an electron in 

the filled state (2’) in the Fermi surface. Because of the exclusion principle the states 1’ and 2’ of 
the electrons after collision must lie outside the Fermi sphere, all states within the sphere being 
already occupied; thus both states are outside the Fermi sphere. 

The conservation of energy (
1 2 1 2' '      ) requires that 2 1F F      . This means that 

collisions are possible only if the state 2 lies within a shell of thickness a   within the Fermi 

surface. Thus the fraction / F   of the electrons in filled states provides a suitable target for 

electron 1. But even if the target electron 2 is in the suitable energy shell, only a small fraction of 
the final states compatible with conservation of energy and momentum are allowed by the 
exclusion principle. This gives a second factor of / F  . In Fig. we show a small sphere on which 

all pairs of states 1’, 2’ at opposite ends of a diameter satisfy the conservation laws, but collisions 
can occur only if both 1’ and 2’ lie outside the Fermi sphere. The product of the two fractions is 

 2
/ F  .  

 



 
 
Fig. 

 

1 p k , 2 'p k , 1 ' p k q , 2 ' ' p k q  

 

4. Heat capacity and entropy for Fermi gas 

The internal energy 
FGU  of the Fermi gas 
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The heat capacity: 
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The heat capacity 
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((Note)) 

In general case, 
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F

D   is the density of states at the Fermi energy F
 Using the relation 
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have the specific heat for free electron Fermi gas 
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where  4.94 K
F

T   for liquid 3He. 

 

5. Pauli paramagnetism for Fermi gas model 

The Pauli paramagnetism is given by 
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The magnetic moment of liquid 3He is 
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   and I = ½. The nuclear magneton is defined by 
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(mp is the mass of proton). The gyromagnetic ratio (the ratio of the magnetic moment to the angular 

momentum) is given by  
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The Pauli susceptibility can be rewritten as 
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6. Fermi energy of liquid 3He 

Liquid 3He as a Fermi gas 

 

spin 
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1
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Density 081.0  g/cm3 

 

The Fermi energy: 
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where m0 is the mass of 3He atom, 
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Then the Fermi energy is 
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The Fermi temperature 
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That is only a little higher than the boiling point, 3.2 K. 

 

7. Heat capacity of fermi liquid 

As predicted for the fermi gas mode, the heat capacity of liquid 3He should be 
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So although the linear temperature dependence agrees with experiment, the predicted coefficient 

is too small by almost a factor of 3. According to the Fermi liquid theory, the heat capacity of the 

liquid 3He is predicted as 
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where 
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1 5.39s
F   for P (pressure) = 0. Similarly, the entropy S is predicted as 
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The entropy of the solid, meanwhile, should be  

 

 

 

since each nucleus has two possible spin orientations. This constant value should apply down to 

very low temperatures, when the nuclear spins finally align and the entropy freezes out. Here is a 

sketch of both entropy functions. We make a plot of the entropy of the fermi gas and Fermi 

liquid as a function of T as well as the entropy of solid 3He. 

 

 
 

For the Fermi gas, we have  
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For the Fermi liquid, we have  
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The temperature FL
T  (=0.25 K) is much lower than the temperature FG

T  (=0.69 K). 

According to the Clausius-Clapeyron relation, the slope of the solid-liquid phase boundary on 

a graph of P vs T should be proportional to the entropy difference, liquid solidS S . The above analysis 

predicts that the slope should be positive for T>0.25 K, and negative at lower temperatures. The 

experimental phase diagram shows just this behavior, with the transition from positive to negative 

slope at about 0.3 K, just slightly higher than the prediction 0.25 K. This discrepancy could be 

because of lattice vibrations giving the solid some additional entropy, and/or the entropy of the 

liquid no longer being quite linear at relatively high temperatures. At very low temperatures, where 

the entropy of the solid also goes to zero, the phase boundary becomes horizontal. 

 

8. Entropy 

The entropy is mainly due to the nuclear spin of the solid 3He around T = 0.3 K. The 3He atoms 

form a lattice. Below 10 mK the nuclear spins starts to order because of the antiferromagnetic 

exchange interaction. The nuclear spins antiferromagnetically ordered below the Neel temperature 

TN = 2 mK. The antiferromagnetic exchange interaction is -0.85 mK. 

 

Solidliq VV   

 

For example, at T = 0.3 K, it is determined experimentally that 
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9. Pomeranchuk cooling 

In the P-V phase diagram, the solid-liquid boundary below 0.3 K has a negative slope. This is 

very unusual. Note that the solid-liquid boundary for most materials (except water) has a positive 

slope. What are the entropies for the liquid phase and solid phase? The 3He atom is a fermion. The 

heat capacity is proportional to T at low temperatures  
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The entropy is evaluated as 
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where 
FT  is the Fermi temperature. The entropy is proportional to T.  

The entropy of solid 3He is dominated by the much larger contribution of the disordered nuclear 

spins (spin 1/2). Each the nuclear spin (spin 1/2) of 3He atom has a magnetic moment, just like a 

paramagnetic salts. In the paramagnetic state where the directions of spins are random, the solid 

entropy is given by 

 

2lnBAsoilid kNS  . 

 

Note that these spins are antiferromagnetically ordered with a Neel temperature NT 1 mK and 

the entropy drops rapidly to zero. The liquid entropy coincides with the solid entropy at a 

characteristic temperature 
1T  (=0.32 K). Below 

1T , the solid entropy is higher (more disordered) 

than the liquid entropy. Above 
1T the liquid entropy (more disordered) is higher than the solid 

entropy. Such a cross-over of the liquid and solid entropies of 3He at about 0.32 K produces a 

pronounced minimum in the melting curve at about 2.93 MPa, followed by a rise in the melting 

pressure to 3.45 MPa at T = 0 K. This negative slope is used to produce adiabatic compressional 

cooling along the melting curve, a technique called Pomeranchuk cooling after its proposer, and 

used by Osheroff et al. (1972a) in their discovery of the superfluid phases of 3He. 

 

 
 

Fig. Entropy per atom in the coexisting solid and liquid phases of 3He. The entropy of the liquid 

phase is less than that of the solid phase below a characteristic temperature 
1 2

2 ln 2
FT T


 . 

The dotted line from a to b corresponds to slow adiabatic compression from pure liquid to 

pure solid. 
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The phase boundary is expressed by the Clausius-Clapeyron equation 
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In the phase diagram of 3He around 0.3 K,  

 

0
dT

dP
for T>0.3 K corresponding to solidliq SS   

 

0
dT

dP
for T<0.3 K corresponding to solidliq SS   

 

since Solidliq VV   in the vicinity of 0.3 K.  

 

Consider the liquid-solid boundary (denoted by red open circle) below 0.32 K, where solidliq SS  , 

When temperature is increased, the entropy increases. The only way this can happen here is to 

solid which has higher entropy. So the liquid freezes when the temperature rises. This explains the 

negative slope below 0.32 K. 

In order for entropy to increase, heat must be absorbed from the surrounding (like when a 

normal solid melts). This gives rise to a cooling effect. Higher pressure forces the liquid to become 



solid. This gives a cooling effect. This compressional cooling" method was proposed by Issak 

Pomeranchuk in 1950. 

Pomenranchuk predicted that adiabatic compression of coexisting solid and liquid would cool 
3He. If the initial temperature is below 0.32 K, then an increase in the external pressure moves the 

helium along the melting curve up and to the left: toward higher pressure and lower temperatures. 

Typically, the temperature decreases from 0.3 K to 1 mK. The solid-liquid boundary (arrow) below 

0.3 K has a negative slope. 

 

APPENDIX-I  Fermi liquid theory 

The life time a quasi-particle excitation dressed by interactions is rather long owing to the 

surrounding degenerate Fermi sea. Thus the physical properties at 
FTT   may be well described 

by a theory based on quasi-particle excitations, the so-called Landau Fermi liquid theory. Since 

the critical temperature Tc of this superfluid is of the order of 1000/FT , similar to that for 

superconductivity in a metal, one can naturally study the system on the basis of this theory. 

 

 
Fermi liquid relations between the Landau parameters and experimentally measured quantities 
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(c) Spin suceptibility: 
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(d) Compressibility: 
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(e) The sound velocity: 
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APPENDIX 

 
The integral 
 

0 0

1 1 1
( )

1 1 1x y a x y
F a dx dy

e e e

 

   

               

 
When a = 0, 
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When a increases, the function ( )F a increases as shown in Figure below. 

 

 
 

Fig. Plot of ( )F a  as a function of a. 
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