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Subrahmanyan Chandrasekhar, FRS (October 19, 1910 – August 21, 1995) was an Indian 

origin American astrophysicist who, with William A. Fowler, won the 1983 Nobel Prize for 

Physics for key discoveries that led to the currently accepted theory on the later evolutionary 

stages of massive stars. Chandrasekhar was the nephew of Sir Chandrasekhara Venkata Raman, 

who won the Nobel Prize for Physics in 1930. Chandrasekhar served on the University of 

Chicago faculty from 1937 until his death in 1995 at the age of 84. He became a naturalized 

citizen of the United States in 1953. 

 

 
 

http://en.wikipedia.org/wiki/Subrahmanyan_Chandrasekhar 

 

_____________________________________________________________________________ 

1. Introduction 

Electron degeneracy is a stellar application of the Pauli Exclusion Principle, as is neutron 

degeneracy. No two electrons can occupy identical states, even under the pressure of a 

collapsing star of several solar masses. For stellar masses less than about 1.44 solar masses, the 

energy from the gravitational collapse is not sufficient to produce the neutrons of a neutron star, 

so the collapse is halted by electron degeneracy to form white dwarfs. This maximum mass for 

a white dwarf is called the Chandrasekhar limit. As the star contracts, all the lowest electron 

energy levels are filled and the electrons are forced into higher and higher energy levels, filling 

the lowest unoccupied energy levels. This creates an effective pressure which prevents further 

gravitational collapse. 
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_____________________________________________________________________________ 

(a) Earth 

M = 5.973610 x 1024 kg 

R = 6.372 x 106 m 

 

(b) Sun 

M = 1.988435 x 1030 kg 

R =6.9599 x 108 m 

 

(c) Companion of Sirius: first white dwarf (Sirius B) 

M = 2.0 x 1030 kg (≈ the mass of sun) 

R = 6.0 x 106 m (a little shorter than the Earth) 

 

(d) Crab pulsar (neutron star) 

M = 1.4 Msun = 2.78 x 1030 kg 

R = 1.2 x 103 m. 

 

2. Kinetic energy of the ground state of fermion 

The kinetic energy of the fermions in the ground state is given by 
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where Nf is the number of fermions, and m0 is the mass of the fermion. Since PdVTdSdE  , 

the pressure P is calculated as 
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The kinetic energy of fermions in the ground state can be rewritten as 
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The volume V is expressed by 
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where R is the radius of the system. We find that P becomes increases as the volume V 

decreases. 

Here we note that the density of the system, , is given by 
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and M is the total mass. The number density nf for fermions is defined as 
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The average nearest neighbor distance between fermions can be evaluated 
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where mf is the mass per fermion. Note that mf is not always equal to the mass of each fermion 

(m0). For the atoms with one proton and one neutron, there is one electron. In this case mf 

should be equal to mf = mp +mn, where mp is the mass of proton and mn is the mass of neutron. 

 

3. Gravitational potential 

We calculate the potential energy of the system. 
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Suppose that M(r) is the mass of the system with radius r. 
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The potential energy is given by 

 


R

r

rdMrGM
U

0

)()(
. 

 

Noting that 

 

3
4

3

R

M


  , 

 

the potential energy is calculated as 

 

R

A

R

GM
R

G
dr

r

rG
U

R

  5

3

5

1
)4(

33

)4(
2

52

0

52




, 

 

where 

 

5

3
2

GM
A   

 

r dr

MHrL dMHrL



5 

 

and G is the universal gravitational constant.  

 

4. The total energy 

 

 
 

Fig. A balance between the gravitational force (inward) and the pressure of degenerate Fermi 

gas  

 

The total energy is the sum of the gravitational and kinetic energies. 
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From the derivative of fnonrel(R) with respect to R, we get the distance R in equilibrium. 
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Thuis, for the nonrelativistic degenerate Fermi gas, there is a balance between the gravitational 

force (inward) and the force due to the degenerate Fermi gas pressure, leading to a stable radius 

R0. 

 

5. Relativistic degenerate Fermi gas 

When Nf is the number of fermions, V 0, F increases.When F ≈ m0c
2, then the relativistic 

effect becomes important. 
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where m0 is the mass of fermion and mf is the mass per fermion. Note that 
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The density of states: 
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where 
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The total energy in the ground state is obtained as 
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Using the expression of Nf, EG can be rewritten as 
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The pressure P is calculated as 
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The total mass M is denoted as 

 

ff mNM  , 

 

where mf is the mass per fermion. Note that mf is not always equal to the mass of each fermion 

(m0). 
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where 
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Since the gravitational energy is 
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the total energy (relativistic) is given by 
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Fig. Schematic plot of frel(R) vs R for M>M0 and M<M0. When M = M0, frel(R) = 0. For M>M0, 

the total energy decreases with decreasing R, leading to the stable state near R = 0. For 

For M<M0, the total energy decreases with increasing R, leading to the stable state near 

R = ∞. 

 

For M>M0, R tends to zero, while for M<M0, R tends to increase. The critical mass M0 is 

evaluated from the condition, 
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The interior of a white-dwarf star is composed of atoms like 12C (6 electrons, 6 protons, and 6 

neutrons) and 16O (8 electrons, 8 protons, and 8 neutrons), which contain equal numbers of 

protons, neutrons, and electrons. Thus,  

 
mf = 2 mp 

 

where mp is the proton mass. Then we have 

 

M0 = 1.72438 Msun. 

 

The currently accepted numerical value of the limit is about 1.4 Msun (Chandrasekhar limit) 

 

6. White dwarf with electron as ferimon 
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Fig. Image of Sirius A and Sirius B taken by the Hubble Space Telescope. Sirius B, which is 

a white dwarf, can be seen as a faint pinprick of light to the lower left of the much 

brighter Sirius A. 

http://www.universetoday.com/wp-content/uploads/dog_star.jpg 
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Fig. A Chandra X-ray Observatory image of the Sirius star system, where the spike-like 

pattern is due to the support structure for the transmission grating. The bright source is 

Sirius B. Credit: NASA/SAO/CXC. 

 

http://en.wikipedia.org/wiki/File:Sirius_A_%26_B_X-ray.jpg 

 

 

 
Fig. mass-radius relationship. mass  and radius are in the unit of the mass and radius of sun. 

 

http://upload.wikimedia.org/wikipedia/commons/8/81/WhiteDwarf_mass-radius.jpg 

 

We consider the case of white dwarf. There is one electron per two protons (2 mp mass for 1 

electron, for example 12C, six electrons, 6 protons, and 6 neutrons). These electrons are assumed 

to form a free electron Fermi gas, where 

 

pf mm 2  m0 = me. 

 

Then the kinetic energy EG can be given by 
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and 
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The equilibrium distance R is given by 
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When mf = 2 mp, 
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The radius R is proportional to M-1/3. When M is equal to the mass of sun, Msun, then we have 
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which is almost equal to the radius of Earth. The Fermi energy of the electrons is 
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The average distance between fermions is 
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((Note)) 

The more massive a white dwarf is, the smaller it is. The electrons must be squeezed closer 

together to provide the greater preasure needed to a more massive white dwarf. 

 

7. Neutron star with neutron as fermion  

We consider the case of neutron star. The system consists of only neutron (spin 1/2 fermion). 

We use  

 

nmm 0 , nf mm  ,  M = Msun (for convenience). 

 

Then EG can be given by 
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Then we have 
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If M = Msun, then we get 
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The Fermi energy is given by 
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= 4.3254 x 107 eV 

 

where 
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with mf = mn. The average distance between fermions is 
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The density  is 

 

 = 3.412 x 1017 kg/m3. 

 

((Note)) 

The electrons are captured by nucleus. N decreases. However, V is also decreased. Then the 

number density n remains unchanged. Thus P does not change. When the system is further 

compressed, then all electrons are captured by nucleus. 

 

Az + e- = Az-1 + 
Az-1 + e- = Az-2 + 

A1 + e- = A0+ 


where A0 is a neutron and  is a neutrino. z is the number of protons. Finally, nucleus is 

composed of only neutrons. 

 

8. Crab pulsar (neutron star) 

The Crab Pulsar (PSR B0531+21) is a relatively young neutron star. The star is the central 

star in the Crab Nebula, a remnant of the supernova SN 1054, which was widely observed on 
Earth in the year 1054. Discovered in 1968, the pulsar was the first to be connected with a 

supernova remnant. The optical pulsar is roughly 25 km in diameter and the pulsar "beams" 
rotate once every 33 ms, The outflowing relativistic wind from the neutron star generates 

synchrotron emission, which produces the bulk of the emission from the nebula, seen from radio 
waves through to gamma rays. The most dynamic feature in the inner part of the nebula is the 
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point where the pulsar's equatorial wind slams into the surrounding nebula, forming a 
termination shock. The shape and position of this feature shifts rapidly, with the equatorial wind 

appearing as a series of wisp-like features that steepen, brighten, then fade as they move away 
from the pulsar into the main body of the nebula. The period of the pulsar's rotation is slowing 

by 36.4 ns per day due to the large amounts of energy carried away in the pulsar wind. 

 

 
 

Fig. The Crab Nebula, which contains the Crab Pulsar. Image combines optical data from 

Hubble (in red) and X-ray images from Chandra (in blue). NASA/CXC/ASU/J. Hester 
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Fig. X-ray picture of Crab pulsar, taken by Chandra 

 

http://en.wikipedia.org/wiki/Crab_Pulsar 

 

Data of Crab pulsar:  

 

 = 30/s (T = 33 ms), M = 1.4 Msun, R = 12 km. T = 36.4 ns. 

 

The density  is 
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  = 3.84598 x 1017 kg/m3. 

 

The moment of inertia I is calculated as 
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The rotational kinetic energy is 
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where the angular frequency  is 
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2
  = 190.4 rad/s. 

 

The loss of energy per day is 
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 = 7.42 x 1031 W, 

 

where T = 36.4 ns per t = 1 day = 24 x 3600 s. 

 

((Note-1)) Density  

For a rotating object to remain bound, the gravitational force at the surface must exceed the 

centripetal acceleration: 
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For T = 33 ms, the density must be greater than 1.31011 g/cm3 = 1.3x1014 kg/m3. This exceeds 

the maximum possible density for a white dwarf. 

 

((Note-2)) Angular momentum conservation 

Suppose that the Sun (T = 25 days, radius 7108 m, mass 1.988x1030 kg) were to collapse to 

a neutron star with a radius of 16 km. Using the angular momentum conservation law, we have 
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In other words, the star is rotating 9
102 faster after the collapse than it was before. 
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