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Paul Karl Ludwig Drude (July 12, 1863 – July 5, 1906) was a German physicist specializing 

in optics. He wrote a fundamental textbook integrating optics with Maxwell's theories of 

electromagnetism. 

 

 
 

http://en.wikipedia.org/wiki/Paul_Karl_Ludwig_Drude 

 

In 1897 J.J. Thomson presented the experiments which embody the “discovery of the 

electron, and to Drude (1900) we owe the concept of a metal as a framework of atoms 

permeated by a more or less “free electron gas.” Drude took a particular kinetic model for 

the behavior of these free electrons, assuming that the electron in equilibrium were moving 

randomly as a classical gas but making frequent collisions with the atomic lattice. (D.K.C. 

MacDonald). 

 

1. Classical theory of DC electrical conductivity (Drude model): Maxwell-

Boltzmann statistics 

In the presence of an electric field E, the motion of electron (mass m and charge -e) can 

be governed by a Newton's second law, 
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where  is a relaxation time and -e is the charge of electron; e>0. In the steady state, we 

have 
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The current density J is given by 
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Fig. Current density (current passing through a unit area): nvAdteQ )( ;  
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The conductivity  is defined by 

 

m

ne 


2

 , 

 

where n is the number density. The unit of  is 
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((Note)) In the Drude model at the beginning of the 20th century, the conduction electrons 

are treated as a classical particle. The electrons, like the molecules of a gas, undergo 

collisions.  

 

2. Change in Fermi sphere due to the presence of electric field (Fermi-Dirac 

statistics) 

 

We consider the equation of motion,  

 

eE  p kɺɺ ℏ  

 

From this, we get 
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At t = 0, the field E is applied to an electron gas that fills the Fermi sphere centered at the 

origin of k-space. At time t, the Fermi sphere will be displaced to a new center at 
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E
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ℏ
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Because of collisions with impurities, lattice imperfections, and phonons, the displaced 

sphere may be maintained in a steady state in an electric field; 

 

t   collision time 
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Fig. Fermi sphere with radius kF.  
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Fig. The shift of the Fermi sphere in the presence of an electric field along the negative x 

direction. 

 

Then we have 
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The current density J is given by 
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which is the Ohm's law. The electrical conductivity  is defined by  
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The electrical resistivity  is defined by 
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The unit of  is [s]. 

 

((Note)) 

The expression of   is practically the same as the one derived by Drude. However, the 

relaxation time e  has a completely different meaning. Indeed, for a classical gas, the 

electrons can all undergo collisions whatever their kinetic energy, and e  is a collision time 

which affects all the electrons equally. According to the Pauli exclusion principle, the 

collisions can only transfer electrons from occupied states to unoccupied states. If Fk  is the 

radius of the Fermi surface when there is no field, these collisions can therefore only bring 

states with Fk k | on the right back to states with Fk k  on the left of Fig.(the shift of the 

Fermi sphere). Only collision processes involving electrons with energy close to F  can 

therefore contribute to establishing the stationary state and the corresponding redistribution 

of the velocities. Pauli’s principle thus restricts the kind of collision that can occur, and the 

collision time e  only concerns electrons at the Fermi level, with speed Fv . Likewise, the 

mean free path concerns only these electrons, which can undergo collisions. The mean free 

path is given by e F el v  . 

 

3. Relaxation time of electron for Cu at 300 K 

It is instructive to estimate from the observed conductivity the order of magnitude of the 

relaxation time . We observe Cu at 300 K, 

 

cm  7.1   or  15 )(100.6  cm   (practical units) 

 

We note that 
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Then we have 
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or 

 
171029.5   s-1 

 

((Note)) 1 statV = 300 V, 1A = 2.997924536.8431 x 109 = 3 x 109 statA 

 

Using the number density of electron in Cu, 

 

n = 8.47 x 1022/cm3. 

 


2ne

m
 2.47 x 10-14 s  T = 300 K. 

 

4. Units of resistivity in SI units and cgs units 

We consider the Bohr model for a hydrogen atom, where charge q undergoes a circular 

motion around the proton. The current I is obtained as 

 

q
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T
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where T is a period and 1/T  .  is the frequency. If we assume that  
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The resistance R can be expressed by 
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For electron q e  , we get  
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which depends only on the fundamental physical constants e and h. This resistance is called 

the von Klitzing constant, given by 
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where we use the relation W=qV (energy) and 
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Using the fine structure constant (in cgs) 
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the von Klitzing constant can be  
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In cgs units, we note that 
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or 

 
119.02236 10cm s    

 

which is a very important factor for the conversion of resistivity between cgs and SI units. 

 

 

((Mathyematica)) Klitzing constant RK: RK = 25,812.807449(86) Ω, 
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5. Number density 

(a) 

 

: density (g/cm3) 

A: mass of atom (g/mol) 

 

Suppose that there are Z electrons per atom. Then the number density is 

 

AN
A

Z
n


  

Calculation of the Klitzing constant in SI Units and cgs units

Clear@"Global`∗"D;
SIrule1 = 9me → 9.1093821545× 10

−31
, eV → 1.602176487× 10

−19
,

qe → 1.602176487× 10−19, ge → 2.0023193043622,

c → 2.99792458× 108, h → 6.62606896× 10−34,

— → 1.05457162853× 10−34=;

CGSrule1 = 9c → 2.99792× 1010, — → 1.054571628 10−27,

h → 6.62606957 10
−27

, me → 9.10938215 10
−28

, qe → 4.8032068× 10
−10

,

eV → 1.602176487× 10−12=;

RKSI =
h

qe2
ê. SIrule1

25812.8

RKCGS =
h

qe2
ê. CGSrule1

2.87206×10
−8

ratio =
RKSI

RKCGS

8.98756×10
11

Note that

1 s/cm  (cgs units) = 8.98752 x 1011 W  (SI units)
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where NA is the Avogadro number. 

 

(b) Number density of electrons in metal 

What is the number density of conduction electrons in metals? 

 

For Cu (fcc), there are 4 Cu atoms per conventional SC unit cell with a lattice constant a; 

3.61a  Å. Each Cu atom has one conduction electron. Thus the number density is 

 

3

4
n

a
  228.50 10n   /cm3. 

 

_________________________________________________________ 

  Z  n (1022/cm3) 

Li  1  4.7 

Na  1  2.65 

K  1  1.40 

Rb  1  1.15 

Cs  1  0.91 

Cu  1  8.47 

Ag  1  5.86 

Au  1  5.90 

Be  1  24.7 

Mg  2  8.61 

Ca  2  4.61 

Sr  2  3.55 

Ba  2  3.15 

___________________________________________________________ 

6. Mean free path 

 

Fvl   

 

where vF is the Fermi velocity. The conductivity of Cu at 4 K is nearly 105 times that at 300 

K. 

 
22517 1029.5101029.5)4( K  

 



13 
 


2ne

m
 2.47 x 10-9 s  T = 4 K. 

 

When vF = 1.57 x 108 cm/s for Cu, then the mean free path l is 

 
8 9(4 ) 1.57 10 2.47 10 0.3 cml K       

 

and 

 
8 14 6(300 ) 1.57 10 2.47 10 3 10 cml K         

 

7. Temperature dependence of electrical resistivity of metals 

The relaxation time  is described as 

 

iL 
111

  

 

where 
L  and i  are the collision times for scattering by phonons (lattice vibration) and by 

imperfections, respectively. The net resistivity is given by 

 

iL    

 

((Matthiessen's rule)) 

 

L  is the resistivity caused by thermal phonons. i  is the resistivity caused by scattering of 

the electron waves by static defects that disturb the periodicity of the lattice. 

 

8. Residual resistivity 

The residual resistivity i(T = 0 K), is the extrapolated resistivity at T = 0 K. 

 

0)( TL  as T → 0. 

 

)0(ii    as T → 0. 

 

Often i  is independent of T. 
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Residual resistivity ratio = 
i

KT


 )300( 

, which is a convenient approximate indicator of 

sample purity. 

 

9. Conductivity in the presence of magnetic field 

 
 

 

We consider the motion of an electron (charge q = -e, mass m) in the presence of a 

magnetic field B directed along the z axis. E is the electric field which lies in the x-y plane. 
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where  is a relaxation time. In the steady state ( 0
dt

dv

dt

dv yx ), we get 
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where 

 

mc

eB
c   (cyclotron frequency) 

 

Then we have the velocity v as 
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The current density is 
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with the conductivity without magnetic field 
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10. Measurement of Hall effect 

Experimentally we need the following expression 
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(a) 
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(b) 

 

Fig. Top view of the configuration for the Hall effect measurement. (a) The drift 

of electrons immediately after the electric field is applied. (b) The steady 

state.  

 

In the measurement of the Hall effect, Jy = 0. Then we get 
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From this, we have 
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The Hall coefficient RH is defined by 
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So we can obtain the sign and the concentration of the charge carriers simply by measuring 

Ey, Jx, and Bz. Using conventional definitions for the directions of Ey, Jx, and Bz, RH will be 

negative for free electrons. 

 

11. Definition of thermal conductivity in metal (Feremi-Dirac statistics) 

The contribution to thermal conductivity from conduction electrons is given by 
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where and l ( = vF) is a mean free path of electron, ce is the heat capacity of electrons per 

unit volume, 
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and n is the number density (concentration). Note that Ce is given by 
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F

F

N
D




2

3
)(  . 

 

Then the thermal conductivity in metal is derived as 
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In pure metals the electronic contribution is dominant at all temperatures, compared with 

the lattice contribution. 

 

12. Wiedermann-Franz law 

Here we discuss the ratio of the thermal conductivity to the electrical conductivity in 

metals. 
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which does not involves neither n or m (the universal relation). This relation is called the 

Widermann-Franz law. The Lorentz number L is defined as 
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or 
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= 2.71821 x 10-13 erg/(esu K)2.  (cgs units) 

 

This value of L agrees remarkably well with the results of experiments around room 
temperature on a considerable number of metals. This means that the general concepts of a 
free electron gas is valid. 
 
((Note)) http://en.wikipedia.org/wiki/File:Ohmsketch.gif 

This empirical law is named after Gustav Wiedemann and Rudolph Franz, who in 1853 
reported that κ/σ has approximately the same value for different metals at the same 
temperature. The proportionality of κ/σ with temperature was discovered by Ludvig Lorenz 
in 1872. Qualitatively, this relationship is based upon the fact that the heat and electrical 
transport both involve the free electrons in the metal. 
 

13. Contribution of phonons and electrons to thermal conductivity 

Thermal conductivity from electrons can be expressed by 

 

1

3e e F ec v l  , 
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where vF is the Fermi velocity and le is the mean free path of electrons. The thermal 

conductivity from phonons can be expressed as 

 

1

3g g gc vl 
,
 

 

where v is the velocity of sound and lg is the mean free path of phonons. For simplicity, we 

assume that there is one electron per atom. For N = NA, the number of electrons is NA. Then 

the specific heat from lattice and electrons can be expressed as 

 

 

RkNdxx
T

kN

dx
e

exT
kNC

BA

T

BA

T

x

x

BAg

339

1
9

/

0

2

3

/

0 2

43































 

 

FF

BA
e

T

T
RT

kN
C 0

22

22





  

 

at high temperatures (such as room temperature T0 = 300 K). The ratio of e to g is 

obtained as 
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For Na, TF = 3.75 x 104 K, vF = 1.07 x 108 cm/s and le = 350 Å. The velocity of phonon is v 

is on the order of 105 cm/s and lg is typically on the order of 40 Å. The we have 
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In other words, in metal the conduction electrons mainly contribute to the heat conduction. 

 

 


