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1. Definition of thermal conductivity 

The thermal conductivity  of a solid is defined with respect to the steady-state flow of 

heat down a long rod with a temperature gradient ,T  

 

T J , 

 

where J is the flux of thermal energy, energy transmitted across a unit area per unit area. The 

unit of J is erg/(cm2 sec). This form implies that the process of thermal energy transfer is a 

random process. The random nature of the thermal conductivity process brings the 

temperature gradient and a mean free path into the expression for the thermal flux. 

The thermal conductivity gives the ease with which energy in the form of heat can pass 

through a system. In the harmonic approximation, a heat source will create lattice vibrations 

in the form of phonons. The phonons will move through the system, and will deposit their 

energy at the other end of the system.  

 

2. Derivation of the kinetic formula of  (Ashcroft and Mermin) 
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Fig.1(a) The solid angle. �� = 2� sin � �� . The radius of sphere is 1. 
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Fig.1 (b): Spherical co-ordinate system. The volume element is given by 

�
 = ��( � sin ���)(���) = ���� sin �����. In the present model, �� =
��� = �  for dt = 1 (unit time). � = � . �� = 2� . So we have �
 =
2���� sin ���.   
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Fig.2 Propagation by phonons in the presence of a uniform temperature gradient along the 

x axis. Point P ( cos0 lxx  ). Point O ( 0xx  ). The radius of the sphere is l (= v), 

where l is the mean free path, v is the velocity of phonon, and  is the relaxation time. 

The total surface of the sphere with a radius l is 4�l2. The fraction of phonons with 

angles between  and  + d is 2/sin)4/(sin2 22 �� dldl  . u(x0) for the energy 

density at x = x0 (the origin O). u(x0 - lcos) for the energy density at the point P (x = 
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x0 - lcos). l is the mean free path for phonons entering into the sphere with the angle 

 from the (-x) axis. The temperature gradient is given by .0
)(






x

xT
 

 

We consider the heat propagation in the presence of a uniform temperature gradient along 

the x axis. The thermal current at x0 is carried by phonons whose last collision was, on the 

average, a distance l = v away from x0, where  is a time. Phonons with velocities making 

angle  with the x axis at x0 collided last at a point P, a distance l cos up the temperature 

gradient, and therefore carry an energy density u(x0 – l cos) with x-velocity v cos, where 

the energy density is a function of x; u = u(x). The flux of thermal energy (energy per unit 

time per unit area) along the x axis is given by 

 

�� = 2��� sin ���
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where  = cos, the unit of u is erg/cm3 and the unit of the thermal flux J is erg/(cm2 s). We 

use the Taylor expansion and take a linear order in the temperature gradient. 
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Then we have the expression of the thermal conductivity as 
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' is the heat capacity per unit volume. Then the thermal conductivity can be expressed as 

 

 = 1
3 '�� 

 

where v is the velocity and � = � is the mean free path. Since the specific heat c is [erg/(cm3 

K)], the unit of the thermal conductivity is 
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The specific heat capacity of phonon c at low temperatures is given by 
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with the number density as 

 

3 = -

  

 

3. Derivation of the formula of thermal conductivity (by C. Kittel) 
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Fig.3 )( 0 lxu  : the energy density at lxx  0 . vl  . The temperature gradient, 

0/  dxdT . 

 

The net flux of energy (energy per unit time per unit area) is 
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Note that 
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where 
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2
2 v

vx   and 0xv . Then we have 
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leading to the thermal conductivity 

 

 = 1
3 '�� 

 

where c is the specific heat per unit volume and l is the mean free path. 

 

(a) Expression of  at high temperatures ( �T ) 

 


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The relaxation time is inversely proportional to Tn /1)(/1    

 

T
l

1
 ,  c = const. 

 

T

1
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(b) Expression of  at the intermediate temperature: 

The umklapp process (as shown in this Fig.) is significant, where 

 

Gkkk  321  

 

and 

 

321    
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Fig.4 Umklapp process. k1 + k2 =k3+ G. 

 

Thus k3 must be large enough for its energy to be equal to the sum of energies of k1 and k2. 

But the sum of the energies must go beyond the first Brillouin zone if we are to have the 

umpklapp processes at al. so that k3 cannot be very much less in length than G/2. In the Debye 

model, this means that 

 

Dkk 3 , 

 

where  is a fraction, of the order of 1/2 or 2/3 (see the Appendix). In other words, 

 

� BD kvkvk  ℏℏℏ 33 . 

 

Note that 

 

� BDD kvkℏℏ  
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The probability of the occurrence of the umklapp process is given by 

 

)exp()exp()exp()exp()()( 321
21
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at low temperatures since 
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The effective relaxation time must vary as 

 

)exp(
T

�



 . 

 

The mean free path of the phonon increases very rapidly with decreasing temperature. 

sufficiently low temperatures.  
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T
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Since 3Tc  , the thermal conductivity is assumed to have the form 

 

)exp()(
3

T

T �
�




  

 

(c) Expression of  at low temperatures (T<<�) 

The low temperature thermal conductivity is limited by temperature-independent 

scattering processes determined by the geometry and the purity of the sample. The mean free 

path is independent of temperature. 

 

Dl  , 

 

where D is the size of the system. Since 3Tc  , we have 

 

3

3

1
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Fig.5 Schematic diagram for the T dependence of the thermal conductivity of 

insulator. 

 

4. Experimental results of thermal conductivity (Cochran) 
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Fig.6 The thermal conductivity of some artificial sapphire crystals according to Berman. 

Curve a (1.5 mm diameter). Curve b (3.0 mm diameter). Curve c (crystal from a 

different source, 2.5 mm diameter). The broken lines give the conductivity of a and b 

expected if only boundary and umklapp processes contributed to the resistance. 
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Fig.7 Thermal conductivity of a highly purified crystal of NaF crystal (H.E. Jackson, C.T. 

Walker, and T.F. McNelly, Phys. Rev. Letters 25, 26 (1970). 
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Fig.8 Isotope effect on thermal conduction in Ge, amounting to a factor of three at the 

conductivity maximum. The enriched specimen is 96 % Ge74, natural Ge is 20% 

Ge70, 27 % Ge72, and 8 % Ge73, 37% Ge74, and 8% Ge76 (T.H. Geballe and G.W. 

Hull, Phys. Rev. 110, 773 (1958). 
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Fig.9 Temperature dependence of the thermal conductivity of various crystals and glasses. 
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Fig.10 (a) The principal form for the variation of thermal conductivity. (b) Experimental data 

for LiF crystals containing different amount of the isotope 6Li. 0.02% (▲). 0.01% 

(). 4.6% (x). 9.4% (●). 25.4% (○), 50.1% (+). (Berman and Brock, 1965). 

 

5. Three phonon processes 
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If the Hooke's law were rigorously obeyed in a solid, and the potential energy of an atom at 

location r (whose equilibrium position is r0) could be expressed by 

 

)()()()( 0

2

00 rrrrrr  aVAVV  

 

where 

 

.....)()( 3

0  rrr AVa  

The anharmonic potential Va provide a coupling between phonons. We consider the case 

when two phonons are scattered inside the system. When the outgoing wavevector of phonon 

is k3, we get the scattering amplitude as 
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where Va(r) is a periodic potential energy arising from the anharmonic terms 

 

)()( Trr  aa VV , 

 

and Va(r) is described by 

 

 
G

rGr i

aGa eVV )( , 

 

where T is the translation vector. The Fourier component aGV  is given by 

 

 


 rG

rr
i

aaG eVdV )(
1

, 

 

where W is the volume of the system. From the above equations, we get the momentum 

conservation law, 

 

Gkkk  321 . 

 

Averaging of S over time t, 

 

  ti
dte

)( 213 
, 

 

yields to the energy conservation law, 

 

213   . 

 

((Note)) In quantum mechanics, the second term of the potential is given by the  matrix 

form 

 

))(( ''''22 ssss aaaaMiHf kkqk  



 , 

 

where M2 is a constant, aks is the annihilation operator for the phonon with the wavevector k 

and polarization vector s, and aks
+ is the creation operator for the phonon with the wavevector 

k and polarization vector s. The Hamiltonian H2 contributes to the two-phonons process;  
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21   , Gkk  12 . 

 

On the other hand, the third term (anharmonic term) of the potential is given by the matrix 

form 

 

))()(( '''"''''33 ssssss aaaaaaMiHf qqqqqq  






 . 

 

where M3 is a constant. This Hamiltonian H3 contributes to the three-phonons process;  

 

213   , Gkkk  213 . 

 

Therefore, the contribution of the anharmonic potential is inevitable for the three-phonons 

process. 

 

((Note)) 

Va(r) is proportional to the matrix form of the Hamiltonian H3. Here we discuss 

qualitatively the three phonon processes semi-classically.  

 

6. Normal process 

The N processes (G = 0) is defined by 

 

213 kkk  , 

 

where k1, k2, and k3 are the wavevectors in the first Brillouin zone. In this process, the phonon 

energy is conserved. The scattering merely redistributes the energy into different phonon 

modes without altering the total flow. In this sense, the N processes do not contribute to the 

thermal resistivity. The total crystal momentum 

 


k

knkJ ℏ , 

 

will remain unchanged by the N process. 
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Fig. Normal process. 

 
 

Fig. Normal process. 213 kkk  , 

 

________________________________________________________________________ 

7. Umklapp process 
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Here are examples of umklapp process in the 2D squarelattice Brillouin zone. The 

important three-phonon processes that cause thermal resistivity are of the form 

 

Gkkk  321 , 

 

where G is the reciprocal lattice vector. These processes discovered by Peierls, are called 

umklapp processes. For the umpklapp process as well as the normal process, the energy must 

be conserved, so that 

 

321    

 

 
 

Fig. Umklapp process. Gkkk  321 . The square (green region) represents the first 

Brillouin zone. In the umklapp process, the direction of the x-component of the 

phonon flux is reversed.  
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8. Umklapp process in the 1D system 

 

 
 

Fig. Umklapp process for the one dimensional system. The green zone is the first 

Brillouin zone. 
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The momentum conservation: 

 

nGkkk  321  

 

where G is the reciprocal lattice vector (G = 2�/a), n = ±1 (umklapp process) and n = 0 

(normal process). 

 

The energy conservation: 

 

321    

 

where 

 

)
2

sin( 1
1

ak
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2
sin( 2

2
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2
sin( 3

3

ak
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For simplicity, we use the following notation 

 

x
G

k
1 , y

G

k
2 , z

G

k
3  

 

Then we have two equations, 

 

nzyx   
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Fig. Umklapp process with n = 1 which appears for x + y>1/2. The straight lines with z = 

-0.5, -0.4, -0.3, -0.2, and -0.1 are shown. x = k1/G. y = k2/G, and z = k3/G. The 

momentum conservation; x + y = z + n, with n = 0 (the N process) and n = ±1 (the U 

process). The region with the green zone is the first Brillouin zone (|x|<1/2 and 

|y|<1/2). 
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Fig. Normal process with n = 0, which appears for -1/2<x + y<1/2. The straight lines with 

z = -0.5, -0.4, -0.3, .., 0.4, and 0.5 are shown.  
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Fig. Umklapp process with n = -1, which appears for x+y<-1/2. The straight lines with z 

= 0.5, 0.4, 0.3, 0.2, and 0.1 are shown.  

 

Here we use the dispersion relations for the longitudinal acoustic (LA) and transverse 

acoustic (TA) waves as, 

 

)sin(0 xL �  ,  for the LA wave 

 

)sin(0 xaT �    for the TA wave 

 

where a is lower than 1 and 0 is constant, reflecting that the velocity of the LA wave is 

larger than that of the TA wave. 
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Fig. Dispersion relation of the LA phonon ( = 0|sin(�k/G)|) and TA phonon ( 

= a 0|sin(�k/G)|). a = 0.6.  

 

For the case of L + T →L, we have 

 

)sin()sin()sin( zyax ��� 
 

 

where  

 

2

1
x , 

2

1
y , 

2

1
z  

 

(in the first Brillouin zone), where a is changed as a parameter (0<a<1) 

 

((Rule-1)) 

There is no process in which all three phonons belong to the same polarization 

branch of the spectrum. (Ziman Electrons and Phonons). 

 

L + L →L (not allowed), T + T →T (not allowed),  

 

(a) For the case of L + L →L, we have 

 

)sin()sin()sin( zyax ���   
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Fig. ContourPlot of )()()( 321 LLL    in the x-y plane. The parameter z is changes 

for |z|<1/2. No intersection is seen between the ContourPlot and the U-process 

denoted by x + y = z +n (n = ±1). 

 

In this case, the U-process does not occur. Only the N process exists. 

 

(b) The case of T + T →T 

 

We have 

 

)sin()sin()sin( zayaxa ���   

 

or 

 

)sin()sin()sin( zyx ���   
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Fig. ContourPlot of )()()( 321 TTT    in the x-y plane. The parameter z is changes 

for |z|<1/2. No intersection is seen between the ContourPlot and the U-process 

denoted by x + y = z +n (n = ±1). 

 

 

((Rule-2)) 

The created phonon must lie in a higher branch than one at least of the destroyed 

phonons. 

 

(c) The case of T + L→L 

 

We have 

 

)sin()sin()sin( zyxa ���   

 

with a = 0.6 
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Fig. ContourPlot of )()()( 321 TLT    in the x-y plane. a = 0.6. The parameter z is 

changes for |z|<1/2. The intersections (denoted by Green circles, ) is seen between the 

ContourPlot and the U-process denoted by x + y = z +n (n = ±1).  

 

(d) The case of T + T→L 

 

We have 

 

)sin()sin()sin( zyaxa ���   

 

with a = 0.6 
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Fig. ContourPlot of )()()( 321 TTT    in the x-y plane. a = 0.6. The parameter z is 

changes for |z|<1/2. The intersections (denoted by Green circles) is seen between the 

ContourPlot and the U-process denoted by x + y = z +n (n = ±1).  

 

9. Thermal conductivity for electron in metal (Cochran) 

The contribution of the thermal conductivity by electron is determined by an equation 

similar to that of phonon. The electron specific heat is small compared with the lattice 

specific heat except at low temperatures. However, the velocity of the electrons is two or 

three orders of magnitude greater than phonon velocities since only those electrons with 

wavevectors near the Fermi surface contribute. The relaxation time for electron collision is 

determined by interaction with the boundaries, with impurities and imperfections, with 

phonons and with other electrons. Detailed calculations give the result that for pure metals 

the electron contribution to the thermal conductivity is generally at least an order of 

magnitude greater than the phonon contribution over the whole temperature range, so that 

the latter contribution can be neglected. In this situation both charge current and heat current 

are carried by the electrons only.  
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Appendix Evaluation of kD 

The cut-off wave number in the Debye model is given by 

 
3/1

2
6 








V

N
kD �  

 

We consider a simple cubic, 

 
3NaV   for sc crystal. 

 

Then we have 

 

   
a

aakD

89778.3
66

13/123/132   �� . 

 

or 

 

.4 = (6��)#/2
�

�
7 = 1.2407 �7  

 

The Brillouin zone is 
a

G �


2
. Thus kD is a little larger than G/2. 

 

 


