Universal constants: Lorenz number, Wiedermann Franz law for conduction electrons Masatsugu Sei Suzuki

Department of Physics, SUNY at Binghamton

(Date: March 11, 2018)

Thermal conductivity of electron is expressed by

$$
\kappa_{e}=\frac{1}{3} c_{V} v l
$$

where c_{V} is the heat capacity of electron per unit volume.

$$
c_{V}=\frac{C}{V}=\frac{1}{3} \pi^{2} \frac{D\left(\varepsilon_{F}\right)}{V} k_{B}^{2} T=\frac{1}{3} \pi^{2} \frac{3 N}{V 2 \varepsilon_{F}} k_{B}^{2} T=\frac{\pi^{2} n k_{B}^{2}}{2 \varepsilon_{F}} T
$$

The heat capacity of electron is

$$
C=\frac{1}{3} \pi^{2} D\left(\varepsilon_{F}\right) k_{B}^{2} T
$$

The density of states is

$$
D\left(\varepsilon_{F}\right)=\frac{3 N}{2 \varepsilon_{F}}
$$

Then the thermal conductivity can be rewritten as

$$
\kappa_{e}=\frac{1}{3} c_{V} v l=\frac{1}{9} \pi^{2} \frac{D\left(\varepsilon_{F}\right)}{V} k_{B}^{2} v l T=\frac{1}{9} \pi^{2} \frac{3 n}{2 \varepsilon_{F}} k_{B}^{2} v l T
$$

or

$$
\kappa_{e}=\frac{1}{6} \pi^{2} \frac{n k_{B}^{2}}{\varepsilon_{F}} v^{2} \tau T
$$

Using the relation,

$$
\varepsilon_{F}=\frac{1}{2} m v_{F}^{2}
$$

the thermal conductivity for electron us

$$
\kappa_{e}=\frac{1}{3} \pi^{2} \frac{n{k_{B}{ }^{2}}_{m v_{F}^{2}} v_{F}^{2} \tau T=\frac{\pi^{2} n \tau k_{B}^{2}}{3 m} T}{T}
$$

2. Lorenz number L

The conductivity is given by

$$
\sigma=\frac{n e^{2} \tau}{m}
$$

The Lorenz number L is defined by

$$
L=\frac{\kappa}{\sigma T}=\frac{\pi^{2} n \tau k_{B}{ }^{2}}{3 m} \frac{m}{n e^{2} \tau}=\frac{\pi^{2}}{3}\left(\frac{k_{B}}{e}\right)^{2}
$$

which is equal to $2.44301 \times 10^{-8} \mathrm{~W} \Omega / \mathrm{K}^{2}$ in SI units and $2.71821 \times 10^{-13} \mathrm{erg} \mathrm{K}^{-2} \mathrm{~cm}^{-1}(=\mathrm{esu} / \mathrm{K})$

((Experimental results))

Lorenz number $\times 10^{8} \mathrm{~W} \Omega / \mathrm{K}^{2}$

	$T=273 \mathrm{~K}$	$T=373 \mathrm{~K}$
Ag	2.31	2.37
Au	2.35	2.40

Cd	2.42	2.43
Cu	2.23	2.33
Ir	2.49	2.49
Mo	2.61	2.79
Pb	2.47	2.56
Pt	2.51	2.60
Sn	2.52	2.49
W	3.04	3.20
Zn	2.31	2.33

The simple relation between thermal and electrical conductivity applies component by component to electrical and thermal conductivity so long as the relation time approximation is valid at 300 K . The comparison of theory and experiment is considerably less successful at 20 K , because at low temperatures the relaxation time approximation is less reliable. (M.P. Madar).

4. Widerman-Franz law and Maxwell-Boltzmann statistics

Drude used the Maxwell-Boltzmann statistics to interpret the Wiedermann-Franz law. The heat capacity in the Maxwell-Boltzmann statistics is

$$
c_{V}=\frac{C}{V}=\frac{3}{2} n k_{B}
$$

where we use the relation;

$$
C=\frac{3}{2} N k_{B}
$$

The thermal conductivity is

$$
\kappa_{e}=\frac{1}{3} c_{V} v l=\frac{1}{2} n k_{B}\left\langle v^{2}\right\rangle \tau=\frac{3 n}{2 m} \tau k_{B}^{2} T
$$

where

$$
\frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{3}{2} k_{B} T
$$

This relation leads to a simple relation between κ and σ;

$$
L_{\text {classic }}=\frac{\kappa}{\sigma T}=\frac{3}{2}\left(\frac{k_{B}}{e}\right)^{2}
$$

which is equal to $1.11388 \times 10^{-8} \mathrm{~W} \Omega / \mathrm{K}^{2}$.

3. Pauli susceptibility

The Pauli susceptibility

$$
\chi_{P}=\mu_{B}^{2} D\left(\varepsilon_{F}\right)=\frac{3 N \mu_{B}^{2}}{2 \varepsilon_{F}}
$$

or

$$
\frac{\chi_{P}}{V}=\frac{3 n \mu_{B}^{2}}{2 \varepsilon_{F}}
$$

The ratio:

$$
\frac{C}{T \chi_{\text {Pauli }}}=\frac{\pi^{2} k_{B}{ }^{2}}{3 \mu_{B}{ }^{2}}
$$

which is equal to 7.2914 . Note that this ration can be evaluated directly as

$$
\frac{C}{T \chi_{\text {Pauli }}}=\frac{\frac{1}{3} \pi^{2} k_{B}{ }^{2} T D\left(\varepsilon_{F}\right)}{\mu_{B}^{2} D\left(\varepsilon_{F}\right) T}=\frac{\pi^{2} k_{B}^{2}}{3 \mu_{B}{ }^{2}}
$$

REFERENCES

H. Alloul, Introduction to the Physics of Electrons in Solids (Springer, 2011).
S.H. Simon, The Oxford Solid State Basics (Oxford, 2013).
M.P. Marder, Condensed Matter Physics, $2^{\text {nd }}$ edition (Wiley, 2010).

