
Thermoelectric power 

Masatsugu Sei Suzuki 

Department of Physics, SUNY at Binghamton 

(Date: April 13, 2018) 

 

When I was a graduate student, I was doing an experiment on the temperature dependence of 

niobium (Nb) at low temperatures as my first experiment. I got a result which is almost the same 

as that shown below. The conduction electrons as well as phonons shift from the high temperature 

side (T T ) to the low temperature side (T) under the presence of temperature difference T . 

There are two components of thermoelectric power; (a) the diffusion of electrons which is negative 

(usually) and very small in magnitude, and (b) phonon drag which is very large at low temperatures. 

Due to the interaction between electrons and phonons, when phonons shift from the high 

temperature side to the low temperature side, electrons are swept by phonons. During my research, 

my teacher suggested me to read a book. I was very impressed with the book of D.K.C. MacDonald, 

Thermoelectricity; An Introduction to the Principles. I guessed that the positive phonon drag 

observed in Nb (superconductor)) may be related to the possible hole-like Fermi surface (small 

size). Unfortunately, I could not explain quantitatively the overall behavior of thermoelectric 

power of Nb.  

For many metals a qualitative understanding of the thermoelectric properties has now emerged, 

taking into account the details of the Fermi surface and of the electron-phonon interaction. In 

Phys.472-572, I have an opportunity to teach topics on the thermoelectric power. Here we discuss 

the physics of the thermoelectric power, based on the Boltzmann transport theory. 
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1. Seebeck, Peltier, and Thomson effect 

Three thermoelectric effects occur when an electric field and a temperature gradient exist 

simultaneously in metals; Seebeck effect, Peltier effect, and Thomson effect. 

 
 

Fig.1 (a) Seebeck effect. (b) Peltier effect. (c) Thomson effect. 

 

  
 

Fig.2 Unsymmetrical thermoelectric circuits constructed from different metals A, B, and C. In 

both cases the Seebeck emf. AB AB
V E , determined solely by the metals A and B, is 

measured.  

 



(a) Seebeck effect 

The phenomenon of thermoelectricity was first observed in 1826 by Seebeck, who found that 

a current will flow in a closed circuit made of two dissimilar metals when the two junctions are 

maintained at different temperatures. Today, when we speak of the Seebeck effect, we generally 

envisage an open circuit, such as that shown in where E .2. The voltage A B
V V V    is the 

thermoelectric voltage developed by this couple, and the thermoelectric power of the couple is 

defined by 

 

0
lim AB

AB
T

V
S

T 





 

 

We consider a temperature gradient in a specimen that is on open circuit. Putting J = 0, we have 

the electric field E which is given by 
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We note that 

 

V Ε ,  V S T      dV SdT   

 

where E is the electric field and V is the electric potential. We consider a closed circuit of two 

metals A and B, with junctions at different temperatures 1
T  and 2

T , and with a voltmeter 

interposed at some intermediate point, temperature 0
T . The emf round the circuit is defined by the 

integral of E along the length of the wire, is given by 

 



 
 

Fig. Seebeck effect. 
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since V SdT   . The voltage generated in the circuit looks like a function of the difference in 

temperature of the two junctions, and of the difference in the absolute thermoelectric power, A, of 

the two metals. This is the well-known Seebeck effect. We note that the thermoelectric power of 

superconductors is absolutely zero. 

 

(b) Peltier effect 

Two metals A and B are connected on the junction. No temperature gradient exists. These two 

metals are at the same temperature. Suppose that a steady electric current flows from A to B. This 

electric current creates an interesting situation at the junction. The electric current flow at the 

junction is 
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with A B
J J J  . The heat flow at the junction is given by 
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where A
v  and B

v  are the electron velocity inside the metal A and metal B, respectively. 
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h     are the energy of electrons in the metal A and metal B from each 

chemical potential. The net rate of release or absorption of the heat energy is 

 

( )

Q A A A B B B

e
A B

J n h v n h v

J
h h

e

  

 
 



 

If A B
h h , an absorption or release of heat will take place at the junction via the interaction of 

electrons with the lattice. This reversible heat absorption process is known as the Peltier effect. 

The Peltier coefficient is defined by 
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We now drive a current J round the circuit by means of a battery. In the branch A, there will be a 

heat current A
J . In the branch B there will be a different heat current B

J . At the junction, the 

balance heat must be restored; the heat flux ( )
A B

J   will be emitted at one junction and 

absorbed at the other. One junction will become warmer, the other colder. This is the Peltier effect. 

The Peltier coefficient is related to the absolute thermoelectric power; 
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(c) Thomson effect 

We consider a single metal A, where a current density is flowing and a temperature gradient 

exists. 
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Thus we get 
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The heat is released or absorbed in a conductor in which a fixed temperature gradient and an 

electric field exist. This effect is called the Thomson effect. The Thomson coefficient T
  is 

defined as 
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where el
cɶ  is the heat capacity per electron. It was because of this connection that Thomson 

suggested that the Thomson heat be regarded as the specific heat of electricity. 

We note that 

 

2

e e T e

dQ
J E J J T

dt
    

r
 

 

T

dS
T

dT
   

 

The thermoelectric power of a substance is obtained from the Thomson coefficient by integration, 



3. Derivation of thermoelectric power (D.K.C. MacDonald) 

We start with two equations for current density and heat current density 
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((Thermoelectric power)) 
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Using the Boltzmann equation, we calculate the current density as 
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The condition of x
J  0 (open circuit) leads to 
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For convenience, we use x y zd dv dv dvv  instead x y zd dk dk dkk , 
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We use 2 21
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where U is the internal energy of the system and the specific heat capacity per electron is 
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To obtain the Seebeck potential or absolute thermoelectric power we have primarily to determine 

the electric field produced in the conductor when a temperature gradient and no current is permitted 

to flow in the circuit (i.e. open conditions). One can then show rather generally that the absolute 

thermoelectric power of a conductor is given by: 
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We use the chemical potential of free electron derived from the Sommerfeld’s formula 
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where F
  is the Fermi energy at T = 0 K. Then we have 
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4. Definition of current density and heat current density 

In order to get the general form of thermoelectric power, we use the following current density 

along the x direction as 
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We define the conductivity as 
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Thus the current density can be rewritten as 
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which is in effect the conductivity of the conduction electrons that have energy  . 

 



 
 

The charge Q  passing through the area A  per unit time t   
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The energy passing through the area A  per unit time t   
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where h is the energy of electron 
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and   is the chemical potential. The Fermi energy F
  is the chemical potential at T = 0 K. The 

Peltier heat is defined by 
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The thermoelectric power S is related to the Peltier heat as 
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This can be rewritten as 

 

0

0

0

0

( )( )( )
1

( )( )

x

x

df
d

d
S

eT df
d

d

   


 






 

 






 

 

5. The expression of thermoelectric power 

 

0
0

0 0

( )( ) '( )
f

I d g f d      


 
   

   

 

where 
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Using the Sommerfeld formula, we get 
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Noting that 
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we have 
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The thermopower can be expressed as 
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S can be rewritten as 
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This expression for S provides the most valuable way of interpreting the thermoelectric power of 

metal. 

 

6. Phonon drag 

Phonon flow frags electrons with it and extra ele4ctrons tend to pile up at the cold end over 

and above those electrons which are there as a result of the diffusive process. We assume a gas of 

phonons in which electrons are travelling. The average pressure on the electrons due to the phonon 

gas is 
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where U is the energy per unit volume of this gas. When the temperature is homogeneous, this 

pressure is isotropic and has no effect on any preferential orientation for electron travel. But a 

temperature gradient would generate a pressure gradient; in other words, a net force on electrons 

along the temperature gradient. The density of this force would be 
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This force is to be counterbalanced to keep the net flow zero. This can be done by an electric field 

acting on the charge of carriers, with a density of 
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Here n is the carrier density, and -e is the charge of electron. Now the temperature derivative of 

the phonon’s energy density ( )U T , is basically the phon specific heat L
C . So, all this will add up 

to 
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In other words, the additional Seebeck signal caused by phonon drag is 
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The phonon drag is proportional to the phonon specific heat. The larger the capacity of the lattice 

to stock energy, the more efficient are phonons to damp the impulsion of the travelling electrons. 

Phonon drag also inversely proportional to the carrier density: the lower concentration, the higher 

the ability of phonons to pull them. 

 

 
 

Fig. Sketch of idealized absolute thermoelectric power of a simple quasi-free electron metal. A: 

electron diffusion component of thermoelectric power approximately proportional to T. B: 

Phonon drag component with magnitude increasing as T3 at very low temperatures 

(T ≪ ), and decaying as 1/ T  at high temperatures (T  ) [D.K.C. MacDonald, 1962]. 

 

7. Puzzles ((Behnia)) 

For more than thirty years the absolute thermoelectric power of pure samples of monovalent 

metals has remained a nagging embarrassment to the theory of the ordinary electronic transport 

properties of solids. All familiar simple theory has promised us that in these materials the sign of 

the electron-diffusion contribution to the thermopower should be that of the charge carriers as 

determined by the Hall effect, i.e. negative; but instead it turns out to be positive for Cu, Ag, Au 

and—even more perversely—for Li. At least two generations of experimentalists have remained 

completely unshaken in testifying to these results as obstinate facts of life. These are the opening 

sentences of a 1967 paper by John E. Robinson, who presented a simple solution to this puzzle 

[Robinson 1967]. Mysteriously, decades later, both the puzzle and the solution he proposed are 

widely forgotten. The focus of contemporary condensed-matter physics is elsewhere. The puzzle 

of thermoelectricity in noble metals becomes more striking when one considers that the intricate 

details of the Fermi surface of these materials are well established and this knowledge is a 

testimony to the oft celebrated glory of the band theory of metals. The electronic specific heat of 

noble metals has also been measured with great precision [Martin 1973]. Intriguingly, q, the 



dimensionless ratio of thermopower to the electronic specific heat, is close to unity for all these 

three metals. This confirms that we are indeed facing diffusive thermoelectricity of the right 

magnitude but with the wrong sign and looking like what one would expect for a free gas of holes! 

But this cannot be. 

 

 
 

Fig. Thermoelectric power of Au (gold), Cu (copper) and Ag (silver) [D.K.C. MacDonald, 

Thermoelectricity: An Introduction to the Principles (Dover, 2006) 

 



 
 

Fig. Thermopower of Li (MacDonald, 1962) 

 

8. Explanation for the positive thermopower in Cu (Ziman, Huebener) 

 



  
 

 

 

Fig. (a) Electron-like Fermi surface. (b) Hole-like Fermi surface. 

 

The thermopower due to the phonon drag in Cu can be explained in terms of the local 

differential geometry of the Fermi surface. We have two cases as shown in Fig. If the phonon wave 

vector, q, in joining the two electron states k and k’, passes through a region in k space, which is 

occupied with electrons, k and k’ are on an electron-like Fermi surface. The group velocity 

1
k  

k k
v
ℏ

 is normal to the Fermi surface. The main component of the difference '
k k
v v  is 

oriented in the direction of q. Because of the negative electronic charge, we then have a negative 

phonon drag thermopower. On the other hand, if q passes a region in the k-space which is 



unoccupied by electrons, k and k’ are on a hole-like Fermi surface. The main component of the 

difference '
k k
v v  is then oriented opposite to q, and we have a positive phonon drag thermopower. 

The curvature of the Fermi surface (the dog’s bone) in Cu is such that we are dealing with hole 

carriers which contribute a positive thermopower. Actually the dog’s bone is a hole-like Fermi 

surface. Note that a negative sign of the Hall effect in Cu may arise from the electron-like Fermi 

surface (the belly). 

 

 
 

 



Fig. Fermi surface of Cu (M. Suzuki and I.S. Suzuki) 

https://www.researchgate.net/publication/322027719_Understanding_of_open_orbits_in_copper

_Fermi_surface_with_the_use_of_Mathematica 
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APPENDIX I 

(a) Heat capacity: 
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(c) Free electron Fermi gas model 
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APPENDIX II Thermoelectric power of typical metals 

(a) V, Nb, and Ta 

 
 

Fig. Thermoelectric power of V (vanadium), Nb (niobium) and Ta (tantalum) [R.D. Barnard, 

Thermoelectricity in Metals and Alloys (Taylor & Francis, 1972) 

 

(b) Mg 

 



 
Fig. Thermopower of Mg (from Rowe and Schroeder). 

 

(c) Zn 

 

 
 



Fig. Thermopower of Zn (from Rowe and Schroeder 1970). Parallel and perpendicular to the 

hexagonal axis. 

 

(d) Cd 

 

 
 

Fig. Thermopower of Cd (from Rowe and Schroeder 1970). Parallel and perpendicular to the 

hexagonal axis. 

 

(e) Rh, Ir 

 



 
 

Fig. Thermopower of Rh and Ir (From Carter, Davidson, and Schroeder, 1970). 

 

(f) Pt 



 
 

Fig. Thermopower of Pt (From Huebener, 1965) 

 

(g) Alkali metals 



 
 

Fig. Thermopower of alkali metals 


