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The electrical resistivity of metals can be measured along the direction of electric field. We
define the magnetoresistance as the electrical resistivity when the magnetic field is applied along
a direction perpendicular to the magnetic field (transverse magnetoresistance) or the magnetic field
is applied along the direction of the electric field (longitudinal magnetoresistance). Here we

discuss only the transverse magnetoresistance.

1. Introduction
We consider a free particle with mass m and a charge ¢ in the presence of Electric field E and
the magnetic field B along the z axis. We start with an equation of motion (classically),
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From this equation we get
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Thus we have
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The current density:
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is the conductivity in the absence of fields.

The conductivity tensor
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The resistivity tensor:
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Note that the resistivity p_ in the presence of magnetic fields is the as that in the absence of the
field.

2 The case of two carriers (two-band model)
Next we consider two kinds of carriers (n,,q,, 4, , and n,,q,, &, ). Using the same procedure

above discussed, we have
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(a) Weak magnetic field (w7 <<1)
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The case of the strong magnetic field (.7 >>1)
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The Hall coefficient:
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3. Compensated metal (semi metals such as Bi)

In semimetal, there are both electron and holes. The number of holes is equal to that of
electrons.
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Then the Hall coefficient is equal to zero. The current density (x-component) is
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So the magnetoresistance is proportional to B .
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4. Origin of B* dependence in resistivity in semimetal

Inside the sample, electrons undergo a circular motion with the radius 7, in the presence of a

magnetic field along the z axis. Note that
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When the electron is scattered by impurities and so on, electron shifts over the distance r, to the

direction of electric field. Correspondingly, the diffusion constant D is given by

where 7 is the number density of electrons. This expression can be derived as follows in the free
electron Fermi gas model. When D, is given by
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with /=v.7 (mean free path). Using the expression of D,, we have the conductivity in the

presence of B as

leading the B* dependence of the resistivity; p oc B>

S. Discussion

For the monovalent metal (Li, Na, K), there is one electron per unit cell. The valence band is
half filled. For the odd number of electrons per unit cell, the Lorentz force is cancelled out by the
Hall electric field built. The situation is similar to the case in the absence of magnetic field. The
magnetoresistance becomes saturated in the limit of high magnetic field.

For divalent metals (Zn, Cd), there are two electrons per unit cell. The magnetoresistance is

proportional to B>. This implies that the number of holes is equal to that of electrons, which is
predicted from the band structure model.

For trivalent metals (In, Al), there are three electrons per unit cell. The magnetoresistance
becomes saturated in the high magnetic field. This implies that the number of holes is not equal to
that of electrons. The Lorentz force is cancelled out by the Hall electric field built.



6. Magnetorestance for the open orbits
We now turn to an open section of Fermi surface about which an electron cannot perform

closed orbits in the presence of a magnetic field. In this case the magnetorestance is proportional
to B? in the limit of high magnetic field. This has been used to great deal in elucidating the Fermi
surface of metals such as Cu, where changing the orientation of the magnetic field can produce

open or closed orbits about the Fermi surface.
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Fig. Angular dependence of transverse magneto-resistatnce of copper single crystal. B = 1.35
T. The current axis is <21 1>. The magnetic field is rotated in the symmetric planes. (Funes

and Coleman, Phys. Rev. 131, 2084 (1963).



Fig.  Stereographic plot of the field directions in which high maxima of resistance are observed.
o-deep minima; ®-High maxima; x-orientation of crystal axis used.



Fig. Klauder et al.
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10. Open orbits and magnetoresistance. We considered the transverse magneto-
resistance of free electrons in Problem 6.9 and of electrons and holes in Problem
8.5. In some crystals the magnetoresistance saturates except in special crystal ori-
entations. An open orbit carries current only in a single direction in the plane
normal to the magnetic field; such carriers are not deflected by the field. In the
arrangement of Fig. 6.14, let the open orbits be parallel to k,; in real space these
orbits carry current parallel to the y axis. Let o,, = so be the conductivity of the
open orbits; this defines the constant s. The magnetoconductivity tensor in the
high field limit w7 > 1 is
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with Q = w,7. (a) Show that the Hall field is E, = —E./sQ. (b) Show that the ef-
fective resistivity in the x direction is p = (QQ/G‘O)(S/S + 1), so that the resistivity
does not saturate, but increases as B>

((Solution))
10a. jy, = Go (QEx+ sEy) = 0 1n the Hall geometry, whence E, = — E,/sQ.

b. We have jx= 60 (QZ Ex— Q™! Ey). and with our result for Ey it follows that
jx = O-o ((2_2 + S-IQ_2 ) Ex ]
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whence p=E_/j, :(Q2/60)8+1.



