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Using the Boltzmann equation, we discuss the transport phenomena such as electrical conductivity
and thermoelectric effect.

1. Definition of current density
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v, = %ngk is the group velocity.



Fig. The separation ok, = 0k, between the two adjacent energy surfaces ¢ and ¢+de. The

group velocity v, is normal to the energy surface.

Thus the current density is defined by
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We use the distribution function
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with the conductivity tensor as
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We calculate one of the conductivity tensor
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1 . . .
where vk,x2 —>§ka , [ =v.7 is the mean free path, Here we note that the density of states is

defined by
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where dS is the surface element in k- space, and the integral is over the surface of constant energy
¢ . The density of states per unit volume is
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Using this expression of N(&,.), the conductivity can be rewritten as
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which is equal to

for free electrons.



((Note)) Discussion on free electrons

All parameters in this conductivity are the values on the Fermi surface. For free electrons,
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2. Distribution function
We have
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by Taylor’s theorem. It is as if the whole Fermi surface had been shifted by the amount —e—hTE in

the k-space.



3. Boltzmann transport theory
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We note that the Fermi-Dirac function is given by
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Newton’s second law:
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where E is an electric field. The group velocity:
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4. Current density
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The energy flux

The energy density is given by
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((Note)) This expression of U is not used in the discussion below. In the above expression, there

are two kinds of integrals; |dkze, (g, — p)v, - v, (——= fo) and |dkre,v, -v, (— fo) Instead of
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using the expression of U, we use the heat current dens1ty Jy-

6. Heat current density J
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From these above relations, we see that there is a close connection between J. and Q. The heat
current density may be formulated through the thermodynamic relation
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Here we introduce the heat current density which is defined by
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where K (¢) is the integral over a surface of constant energy &. We use the

Sommerfeld’s formula:
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For this proof, we use the Sommerfeld’s formula
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7. Transport properties

Using two equations
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(a) Current density
For V.T =0
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The conductivity tensor is
We can use this relation to express K'” in terms of the known electrical conductivity.
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(b) Thermal conductivity
For J,=0
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(¢) Thermoelectric power
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where (&) means the conductivity tensor for a hypothetical metal in which the Fermi level is &.
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Fig.  Seebeck effect
(d)  Peltier effect
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The heat current is proportional to the electric current, but is also dependent on the Peltier
coefficient, which is material specific. Since J is the same in both segments, for different materials
A and B, the heat current is different in the two branches. This leads to a warming of one junction
and a cooling of the other (solid state refrigeration)
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Fig.  Peltier effect
(e) Thomson effect

The electric current density for the one dimensional case
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In a metal the heat AQ ,produced per second in unit volume is given by
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The Thomson coefficient is defined by
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The first term is the Joule heat, the second the thermoelectric heat, and the third being due to the
heat conduction.

((MacDonald)) Physical explanation

The electric current:
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Fig. Thomson effect

The electric current density:
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where This equation points out that if a given electric charge Ag is moved through a conductor,
then the amount of heat envolved or absorbed depends on the rate at which the electric charge Ag

is transported. If the rate is made slow enough ( Az sufficiently long), then the first (Joule) term
will become insignificant in comparison with the Thomson heat term, and it is clear that the amount
of heat or entropy involved is then directly related to the electric charge transported and is
independent of the rate at which this is done (as long as the rate is slow enough). Thus we can
(perhaps best) refer to the Thomson heat as the heat absorbed per unit (positive) charge and unit
temperature difference, when this charge is transported sufficiently slowly in the direction of
increasing temperature.

REFERENCES

J.M. Ziman, Principles of The Theory of Solids (Cambridge, 1964).

J.S. Dugdale, The Electrical Properties of Metals and Alloys (Dover, 1977).

R.G. Chamber, Electrons in Metals and Semiconductors (Chapman and Hall, 1990).

M.L. Cohen and S.G. Louie, Fundamentals of Condensed Matter Physics, Cambridge, 2016).
D.K.C. MacDonald, Thermoelectricity, An Introduction to the Principles (Dover, 2006).



