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Abstract

Here we consider a wavefunction of an electron in a periodic potential of metal. The
translation symmetry of periodic potential is imposed on the wave function. The wave
function of electrons is a product of a plane wave and a periodic function which has the
same periodicity as a potential. These electrons are often called Bloch electrons to
distinguish them from the ideally free electrons. A peculiar aspect of the energy spectrum
of the Bloch electrons is the formation of energy band (allowed energy regions) and band
gap (forbidden energy region).

In this note we discuss the Bloch theorem using the concept of the translation operator,
the parity operator, and the time-reversal operator in quantum mechanics. Our approach is
similar to that used by S.L. Altmann (Band theory of metals: the elements, Pergamon Press,
Oxford, 1970). This book is very useful in our understanding the concept of the Bloch
theorem. The eigenvalue problems are solved, depending on the strength of the periodic
potential (we use Mathematica 5.2 to solve the problems). The exact solution of the Kronig-
Penny model is presented using Mathematica 5.2. We also discuss the persistent current of
conducting metal ring in the presence of magnetic field located at the center (the same
configuration as the Aharonov-Bohm effect) as an application of the Bloch theorem.
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1 Translation operator’
1.1 Analogy from the classical mechanics for x

Here we discuss the translation operator T (a) in quantum mechanics,
) =T(@ly), (1)
or
W=l @. 2)
In an analogy from the classical mechanics, it is predicted that the average value of x
in the new state |‘//'> is equal to that of X in the old state |1//> plus the x-displacement a
under the translation of the system
(yfl) = (w2 +dy),
or
(W[ (@3T(@)|y) = (vt +dy),
or
T*(a)iT(a)=3+adl. 3)
Normalization condition:
(Ww') =l (@T (@) =(v|v).
or



T (a)T(a)=1. (4)
[f (@) is an unitary operator].
From Egs.(3) and (4), we have

iT(a)=T(a)x+a)=T(a)% +al(a),

or the commutation relation:

[,7(a)] = aT(a). (5)
From this, we have

fcf(a)|x> = f(a))€|x> + af“(a)| x> =(x+ a)f“(a)|x> )
Thus, T (a)| x> is the eigenket of x with the eigenvalue (x+a).

or

f(a)|x>:|x+a>, (6)
or

T*(a)T(a)x)=T"(a)|x+a) =|x). (7)
When x is replaced by x-a in Eq.(7), we get

|x—a>:f+(a)|x>, (8)
or

<x—a|:<x|f(a). 9)
Note that

<x|1//'>=<x|f(a)|y1>=<x—a|y1>=1//(x—a). (10)

1.2 Analogy from the classical mechanics for p
The average value of p in the new state |1//'> is equal to the average value of p in the

old state |1//> under the translation of the system

(w'lplw) =(wplw). (11
or

(W[ (@pT (@)= (v|ply).
or

T*(a)pT(a)=p. (12)
So we have the commutation relation

[T(a),p]=0.
From this commutation relation, we have

pT(@)|p) =T()p| p)= pT(a) p).
Thus, T (a)| p> is the eigenket of p associated with the eigenvalue p.

1.3 Infinitesimal translation operator
We now define the infinitesimal translation operator by



f(dx):i—%édx, (13)

G iscalled a generator of translation. The dimension of G is that of the linear momentum.
The operator T (dx) satisfies the relations:

TH(dx)T(dx) =1, (14)

TH(dx)XT(dx) = % + dx
or

RT(dx)—T(dx)% = dxT(dx), (15)
and

[T (dx), p]=0, (16)
Using the relation (14), we get

A~ i A oA .

1-—Gdx)" (1-—Gdx) =1,

( > ) ( > )
or

A+ %é*dx)(i —%de) ~1+ %(GA* ~ G)dx + O[(dx)*] =1,
or

G'=G. (17)
The operator G is a Hermite operator. Using the relation (15), we get

(1 —éédx) ~ —%de))e = ax(i —éédx) = dxl + O(dx)?,
or

—%[i,GA]dx = dxl,
or

[x,G]=ihl. (18)
Using the relation (16), we get

[i —%de,ﬁ] =0.

Then we have

[G,p]1=0. (19)
From these two commutation relations, we conclude that

G=p,
and

T(dx)=1 —é pdx . (20)

We see that the position operator x and the momentum operator p obeys the
commutation relation

[x, p]=ihl, (21)
which leads to the Heisenberg’s principle of uncertainty.



1.4  Momentum operator f) in the position basis
T(&)|w) —f(c%c)j e[ x)(x'|w) = [ de |+ e)(x )
= [ax'|x){(x'=c|y) = [ de| )y (x'=)..
We apply the Taylor expansion:
Y-30) = () - 8-Sy ().
Substitution:

T(@0ly) jdx W) = [ |y () - -2y ()] =

= Jaxaii(xlw) - a2 (el =) - & aelo) ) = - paoly).
Thus we have
h ' '
=P fael) 2 (o)
h o h ho
=P o) £ (el =2 faw o) 2 (el) =22 (o).
We obtain a very important formula

(+lpt) =22 (alw). @)

(w]plw) = [dx(y|x) <IPIW = [dx{y|x ——< ) = Idx x|w) ——< ).

1.5 The finite translation operator
What is the operator T(a) corresponding to a finite translation a? We find it by the

following procedure. We divide the interval a into N parts of size dx = a/N. As N—o0, a/N
becomes infinitesimal.

~ ~ i _,a
T(dx)=1-—p(—).
(dx) - P( N)
Since a translation by a equals N translations by a/N, we have

A ~ 0 .a [
T(a) = Lim[1-— p(=)]" = exp(-— pa).
(@)= Lim[1=—pCI" = exp(=— pa)

N
—_—

T —

0 > e a
a
(=)
N
Fig.1 The separation of a divided by N, which becomes infinitesimally small when N—oo.

Here we use the formula



jlvi£)130(1+%)N=e, jlviirgo(l—%)fv:e‘,
N

lim[(1==)]" = lim (1= )" = () =7
In summary, we have

T(a) = exp(—é ha). (23)
It is interesting to calculate

T*(a)3T (a) = eéimieiéim ,
by using the Baker-Hausdorff theorem:

exp(Ax)Bexp(—Ax) = B+ %[A,B] + %2'[21,[21,3]] + %7[21,[21,[21,3]]] o
When x = 1, we have

exp(A)Bexp(-A) = B + 11![21,13’] + %[21,[21,1%]] + %[21,[21,[21,1%]]] T

Then we have

x+al.

P @@ =e"te " =3[ pail =5+ Lalp.il=i+ %aﬁ
1

So we confirmed that the relation
T*(a)iT(a)=%+al.

holds for any finite translation operator.

2 Parity operator’

2.1 Property

z

RH new x
(right-handed) v

. LH
+ (left-handed)
x E
v
new z
Fig.2 Right-handed (RH) and left-handed (LH) systems.
7T : parity operator (unitary operator)
v') =7ly), (24)

or



(= (w2 (25)
We assume that the average of x in the new state |l//'> is opposite to to that in the old state
lv)

(W Rly) = ~wlsly).
or

(i 2aly) = (v dy),
or

XX =-X. (26)
The position vector is called a polar vector.
We define the normalization by

Wy =Wl 2y) =(wlv) =1,
or

#z=1. (27)
Thus the parity operator is an unitary operator.

From Eqgs.(26) and (27),

i+ =0,
or

)%7%| x> = —7272| x> = —xfz| x> :

Thus 7%| x> is the eigenket of x with the eigenvalue (—x).

or

7%x>=|—x>, (28)
or

ar x>=7% —x>=|x>,
or

72 =1. (29)
Since #°7=1 and 7> =1,

AT =T,
or

Tt =7. (30)

So the parity operator is a Hermite operator.

)= [ae|)fv]p) = Javalx)e|p) = [ael- 5] )

= jdxl _x'>\/21_7zh exp(%) = jdx|x)J21—m exp(—lp?x) = jdx|x)(x|—p>.

A

TT|

Note that x' = -x and dx' = —dx. Then we have

#p)=|-p), 31)
and

plp)=rlp).



So we have
#|p)=p#|p)=p|-p),
or
pi|p)=pl-p)=-p|-p).

Thus we have

A+ pi=0, (32)
or

T pr=-p.
Thus the linear momentum is called a polar vector.

2.2 Commutation relation
Here we show the commutation relation between the parity operator and several

operators including fx(a). The orbital angular momentum iz (the x axis component) is
defined by L. = xp, — yp, . The commutation relation ([#,L)=00r #°L_#=L_) holds
valid, since X, J, p,, and p, are odd under parity. Similar commutation relations hold
for the spin angular momentum S and general angular momentum J: #*S#=S and
#*J7#=J . We show that there is a commutation relation between 7 and 7.(a) ;
#T(a) =T (a)#, or [#,T.(a)]=0.

AT (@) = 7" exp(— payi = exp(— &' pia) = exp( pa) = T(-a) = 1," (@),
or

#T(a)=T(a)7,
or

#T.(a) =T, (a)#, (33)
since 7 =7 .

e ~ 1 . L
The Hamiltonian is given by H = Ey. p*> + V(%) . Here we assume that the potential is
m

symmetric with respect to x = 0: V(x) =V (—x). Then we have the commutation relation
A HA=H or [#,H]=0, since 7'V ()7 =V (-%) =V (%) and 7#*p*# = (=p)* = p°
In conclusion, we have the followmg commutation relations.
(D 7872 =8, # La=L,and #7372 =J.
(2) 7[Tx (a)= Tx (a)7.
(3)  AHr=H for H=p/2m)+V (%), only if V(%) =V (-%).

2.3 Parity operator on electron-spin state

Electrons has a spin (s = 1/2). The spin angular momentum is § (=#%6/2 ) and the spin
magnetic moment is given by s = —(2us/h)S, where s (= e i/2mc) is a Bohr magneton.
We now consider how the electron-spin state changes under the parity operator. The spin



operator S of electron commutates with 7 : A87'=S . Since £S5, =S.7% ,

S.A+) =4S,

+> = gﬂ +> , Where |+> is the spin-up state. So the state 7%| +> is the eigenket

_>’
where |—> is the spin-down state. So the state 7%|—> is the eigenket of 7 with the
=1

In conclusion the spin state remains unchanged under the parity operator:

#|+)=|+) and 7|-)=|-). (34)

_>:%,;

of 7 with the eigenvalue 7/2, or 7%| +> = |+> . Similary we have §Z7%| —> = 7S,

eigenvalue —#/2,0r 7

3. Time-reversal operator'
3.1  Definition

The time reversal is an odd kind of symmetry. It suggests that a motion picture of a
physical event could be run without the viewer being able to tell something is wrong. We
now consider the Schrédinger equation

., 0 _
zhgt//(t) =Hy((t).

Suppose that y(¢) is a solution. We can easily verify that y/(—¢) is not a solution because
of the first-order time derivative. However,

. a * * % *
—zhaw O=Hy ()=Hy (1).
When ¢t — —¢, we have
0 .
ih—y (=t)=Hy (-t).
% (-)=Hy (-1)
This means that " (—¢) is a solution of the Schrodinger equation. The time reversal state

is defined by
Oy )=y (-1). (35)

Ly
If we consider a stationary state, y(f)=e " w(0),

* ’LE[ *
y (-t)=e" y (0),
or
i g
Op)=0le " y(0)]=e" v (0),
or

Oc " p(0)=¢ "y (0),
where ®(0) =y (0) = Kw(0) and K is an operator which takes the complex conjugate.

3.2.  Property
The state before the time reversal (|1//>) and the state after the time reversal (|1ﬁ>) are

related through the relation



)= [7)=6lw),
where (:)(C1|a> + C2| ,B>) =C *1(:)|a> + Cz*é)| ,B>) . The time-reversal operator acts only to the
right because it entails taking the complex conjugate. The inner product of the time-reversal
states |&) = @|a and ‘,E> = (:)|,B> is defined by

<,B‘a> a|,b’ < |a>*. (36)
One can then show that the expectation operators must satisfy the identity
(B|6467@) = (a|4|p)=(Blda) . (37)
Suppose that @40~ = +4, then we have
(aldp)=(B|646 @) = (5| + da)=+(p|4la) = +(@|4|F) .
If |a> = |,6’> , we have
(a|de)=Ha]4a). (38)

In conclusion, most operators of interest are either even or odd under the time reversal.
OAO™' = +A4 (+: even, -: odd).
(1) OO =il (i is a pure imaginary, 1 is the identity operator).
(2)  ©po™ =-p:(6lp)=|-p)).
(3) ©6p°O=p.
@  Of0 '=1 :(Or)=|r).
(5)  OV(E)O =V(f): (V(F) is a potential).
(6) eSO =-§ (é is the spin angular momentum).

~2

(7) OHO ' = H,when H = ;; +V(x) and V' (x) is a potential energy. The relation is
m

independent of the form of V' (X).
®) OO0 '=T(a) or 6T (a)=T (a)0.

3.3  Time reversal operator on electron-spin state
We now consider how the electron-spin state change under the time-reversal operator.

Since OS. 0™ =-S. and OS. =—S5.0, we have
$.6]+)=-65[+)=—7 61+).

The time reverse state (:)| +> is the eigenket of S’z with an eigenvalue —7/2. Then we have

>: 77| —> where 7 is a phase factor (a complex number of modulus unity). Here we

choose 77 = 1. In this case, © can be expressed by
0= —iG, K, (39)

10



where K isan operator which takes the complex conjugate and &, is a Pauli spin operator.
Note that 6y|+> = i| —> and &y|—> = —i|+>. First we calculate
O(C,|+)+C_|-) = ~i6, K(C,|+)+C_|-)) ==i6,(C.'[+)+ C_|-)

=—i(C, 6,|+)+C 6 |-)=C|-)-C|+).

where C and C; are arbitrary complex numbers. We try to apply 6) again to the above
state

@' (C|+) +C|-)=0(C, |-) - C|+) ==ié K (C,'|-) - C|+))
=-i6,(C,|-)-C|+)) =-il(C,6,|-)-C.S,|+)]

= —i[(C, (=) +) = C_i|+)]=—=(C,|+)+ C_|-))
or

~

0> =-1. (40)

4 Bloch theorem

Felix Bloch entered the Federal Institute of Technology (Eidgendssische Technische
Hochschule) in Ziirich. After one year's study of engineering he decided instead to study
physics, and changed therefore over to the Division of Mathematics and Physics at the
same institution. After Schrodinger left Ziirich in the fall of 1927 he continued his studies
with Heisenberg at the University of Leipzig, where he received his degree of Doctor of
Philosophy in the summer of 1928 with a dissertation dealing with the quantum mechanics
of electrons in crystals and developing the theory of metallic conduction.

By straight Fourier analysis I found to my delight that the wave differed from the plane
wave of free electrons only by a periodic modulation. This was so simple that I did not
think it could be much of a discovery, but when I showed it to Heisenberg, he said right
away; “That’s it!! (F. Bloch, July, 1928) (from the book edited by Hoddeson et al.?).

His paper was published in 1928 [F. Bloch, Zeitschrift fiir Physik 52, 555 (1928)].
There are many standard textbooks>'® which discuss the properties of the Bloch electrons
in a periodic potential.

4.1 Derivation of the Bloch theorem
We consider the motion of an electron in a periodic potential (the lattice constant a).
The system is one-dimensional and consists of NV unit cells (the size L = Na, N: integer).

V(+al)=V (),

T (OFT.(0) =%+ 01, (41)
fx(€)|x>=|x+€>, (42)
T (5 =i—% .5, 43)

where / is any finite translation (one dimensional) and ox is the infinitesimal translation. a
is the lattice constant. The commutation relations hold

11



[7,(&). p,1=0,
and
[7,.(&). p,"1=0.
Therefore the kinetic energy part of the Hamiltonian is invariant under the translation.
When ¢ = a (a is a period of potential V(x)),
T (a)iT (a) = % +al,
T @)V (R)T.(a) =V (Z+al) =V(F).
Thus we have
(.7 ()] =0,
or
T (a)AT (a)=H . (44)
The Hamiltonian is invariant under the translation with a.
Since f(a)|x> = |x+ a> and f*(a)|x> =|x—a> or f*(—a)|x> =|x+a>,
we have
T, (a)=T.(-a). (45)
So T* (a) is not a Hermite operator.
We consider the simultaneous eigenket of H and f“x (a) for the system with a

periodicity of L = Na (there are N unit cells), since [H ,YA“X(a)] =0.

ﬁ|l//k>=Ek|Wk>’ (46)
and

(@)= ), (47)
or

R Y

T (@1 y)=|—| |w,).

7 @1v) [pj )
Note that

fx(a)|x>:|x+a>, (48)
[7.(a)]"|x) =|x + Na) =|x) (periodic condition).
Thus we have

p=1,
or
= exp(i ) = exp(i 27 = explika), (49)
N Na
with
27 27 )
k = N s = 7 s (s: integer). (50)

Therefore, we have
Tx (a)| l//k > = eilka

Wy)- (51)

12



—ika

The state |y, ) is the eigenket of T (a) with the eigenvalue e

or

(xT(@y,) = exp(=ika)(x|y ),

<x fx(a) = <x —al,

(r=aly) = (xlu). )
or

v (x—a)= eiikal//k(x) . (53)
By changing for a to —a, we have

v, (x+a)=e"w (x). (54)

This is called as the Bloch theorem.

4.2 Symmetry of E; and E_;: the time-reversal state

We assume that the Hamiltonian A is invariant under the time-reversal operator (this
assumption is valid in general): ©@H = HO . Then the state |y,) is the simultancous
eigenket (the Bloch state) of H and O

Fl|l//k>:Ek|l/lk> and 7:x(a)|‘//k>=eiﬂm l//k>' (55)
Since ﬁ@| l//k> = (:)FI| l//k> = Ek®| l//k> , the time-reversal state |1/7k> = (:)| l//k> is also the

eigenket of H with the energy eigenvalue Ex. Since [TA“X (2),0]=0,
T(a)|7,)=T.(2)Oy,) = OT (a)y,) = O ™“|u,)) = €“Oly,) = ™| 7).
The time-reversal state |7, ) = Oy, ) is the eigenket of 7, (a) with the eigenvalue ¢, So

the state |1/7k> is different from the state |1//k> and coincide with the state |W7k> , where

H|l/7k> = E—k|l/7k>'
In conclusion, the property of Ex = Ex is a consequence of the symmetry under the time
reversal:

(D) Oy =ly.)- (56)
(2) Both states ((:)| l//k> = |1//7k> and |1//k>) are degenerate states with the same energy
eigenvalue:
E=E,. (57)

4.3 Kramer’s theorem for electron-spin state
We consider how the electron-spin state changes under the time reversal. The

Hamiltonian A is invariant under time reversal, [H ,(:)]zf) . Let ‘l//k,s> and

A

C)

1//,{,S> =‘1//7k,7s> be the simultaneous eigenket of H and §Z ([H ,S’Z] =0) and its time-

reversed states, respectively. H ‘l//k,s>=Ek,s l//k,s>, where Eis is the eigenket with the

wavenumber k and spin state s (s = up or down).
H®‘l//k,s> = ®H‘l//k,s> = ®Ek,s l//k,s> = Ek,s®

l//k,s> =E,, l//—k,—s> .

13



It follows that (:)‘ l//k,s> is the eigenket of A with the eigenvalue Ex,s. On the other hand,
. > = ‘1//7 krs> is the eigenket of H with the eigenvalue E,. Therefore Ej,s is equal to

E. When ©% =1 (half-integer), @‘l//k,s> and ‘l//k,s> are orthogonal. This means that

@‘l//k,s> and ‘1//,“> (having the same energy Ej,s) must correspond to distinct states

(degenerate) [Kramer’s theorem)].
In order to prove this orthogonality, we use the formula

(Bla)=(alp)=(pla)"

where A A
| >= > 67>_® _é(é‘l//k,s>)=®2‘l/lk,s>

‘l//kv ’ >
Since © ‘l//,”>— ‘l//,”>, we have Ne) ‘l//,”>— ‘l//,”>.
Then
(Bla@)=—alB)=(alB).
or

(o) =0.
indicating that for such systems, time-reversed states are orthogonal.
In conclusion, when the effect of spin on the energy eigenket is taken into account

(1) =) (58)
(2) Both states ((:)‘ l//k,s> = ‘l/lfkrs> and ‘l//k,s>) are degenerate states (the same energy

but different states):
E  ,=E,  ,orE,=E,  and E =E ;. (59)

4.4  Parity operator for symmetric potential
What is the effect of the parity operator on the eigenket |Wk>? Using the following

relations
T(@ly)=¢"w),
T (a)=T, ()7,
we have

A (@) =T, (@&w,) =e ™A,
or
Tx+(a)7%|l//k>= >a
or
7yl = il
When a is changed to —a in the above equation, we get

T (a)Ay,)=e"Ay,). (60)

14



In other words, the state 7%| Wk> is the eigenket of 7' ' (@) with the eigenvalue ™.
Here we consider the limited case that the potentlal energy V(x) is an even function of
x:or V(=x)=V(x). Then the Hamiltonian H commutes with 7 : [H 7] = 0. In other

words, H is invariant under the parity operation. The state ‘l//k,s> is a simultaneous
r —ika
l//k,s> and Tx(a)‘l//k,s> =e K > .

l//k,s> .
Thus 7%‘l//,m> is the simultaneous eigenket of H with Ey, and fx(a) with e, The state

.S

eigenket of H and T (a): PAI‘I//,{,J =E,
[:17%‘1//,{,S> = 7%1LAI‘1//,{,S> =E 7

fz‘ l//k,s> coincides with ‘l/lfk,s> with E_. Therefore we can conclude that Eys = E.t,s; Exp =
E.r and Ey| = Eog,).
4.5  Brillouin zone in one dimensional system
We know that the reciprocal lattice G is defined by
G= 2—7[11, (n: integer). (61)
When £ is repciaced by k + G,

i(k+G ik
Vig(x+a)= e )aWk+G(x) ="y . o(x),

since “ =™ =1. This implies that . (x) is the same as y, (x).

Vi (X)) =y, (). (62)
or the energy eigenvalue of v, . (x) is the same as that of y, (x),
E . .=E,. (63)

Note that the restriction for the value of s arises from the fact that v, .(x) =y, (x).

2zs  2ns 7w 2s
k=B TBE S,
L Na a N
where
—Eéséﬁ.
2 2

The first Brillouin zone is defined as |k| < z . There are N states in the first Brillouin zone.
a

When the spin of electron is taken into account, there are 2N states in the first Brilloiun
zone. Suppose that the number of electrons per unit cell is ne (= 1, 2, 3, ...). Then the
number of the total electrons is ncN.

(a) nc = 1. So there are N electrons. N/2N = 1/2 (band-1: half-filled).

(b) ne=2.2N/2N =1 (band-1: filled).

(c) nc=3.3N/2N = 1.5 (band-1: filled, band-2: half-filled).

(d) nc = 4. 4N/2N = 2 (band-1: filled, band-2: filled).

When there are even electrons per unit cell, bands are filled. Then the system is an insulator.
When there are odd electrons per unit cell, bands are not filled. Then the system is a
conductor.

4.6 Bloch wavefunction
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Here we assume that

W (x) = eikxuk (%), (64)
v, (x—a)=e"e ™y (x—a)=e ™™ u (x—a),
which should be equal to
e—ikal//k (x) = ok eikxuk (x),
or
u,(x —a)=u,(x), (65)

which is a periodic function of x with a period a.

The solution of the Schrodinger equation for a periodic potential must be of a special
form such that w, (x)=e"u, (x), where u (x+a)=u,(x). In other words, the wave
function is a product of a plane wave and a periodic function which has the same periodicity
as a potential

Here we consider the 3D case. The solutions of the Schrodinger equation for a periodic
potential must be of a special form:

v, (r)=u, (r)e*" (Bloch function), (66)
where

u, (r)=u (r+T). (67)
Bloch functions can be assembled into localized wave packets to represent electrons that
propagate freely through the potential of the ion cores. 7 is any translation vectors which
is expressed by T = nia1+maax+nzas (n1, no, n3 are integers, ai, az, a; are fundamental lattice
vectors). From Eq.(67), u, (r) can be expanded as follows. (Fourier transform)

1 (1) =3 Cp ge ™" (68)

where G is the reciprocal lattice vector. We use the same discussion for the periodic charge
density in the x-ray scattering. Then the wave function in a periodic potential is given by

v ()=Y C e T =Ce™ +C g™ T+
G

or
W () =..+C "+ C T+ C ™ +C T+ C @Y+ (69)
The eigenvalue-problem

[:I|l//k>:Ek|l//k>a or Hy, (x)=Ey,(x).
E is the eigenvalue of the Hamiltonian and has the following properties.

(1) E, =E -

(i) E, =E . (70)
The first property means that any reciprocal lattice point can serve as the origin of Ex. The
relation £, = E | is always valid, whether or not the system is centro-symmetric. The

proof of this is already given using the time-reversal operator. The proof can be also made
analytically as follows.

Hy, (x)=Ey,(x),
Hwk*(x) = Ekwk*(x) (FI is Hermitian),
or

16



Hy , (x)=E_ v, (x).
From the Bloch theorem given by
Vi (x—a)= eilkal//k (x),

or
v, (x) = ¢ (x), and v, (x) = e, (%),
we have
* _ —ik(x—a),, * _ —ik(x—a),, * _ika *
v, (x—a)=e u, (x—a)=e u, (x)=e"y, (x),
or

v, (x—a)=e "y (x).
Thus the wave functions y, (x) and y_ k*(x) are the same eigenfunctions of T " (a) withthe

same eigenvalue e " . Thus we have

v () =y, (%), (71)
with
E =E,.
What does this relation mean?
Y ()= C o™ =Ce™ +C g™ T+
G

l//k*(r) — zCkic*efi(kfc)-r ,
G
or

* * i(k+G)- * i(k—-G)-
L (r)=zc—k—G et =chk+c et
G G

Then we have the relation

*

C7k+G = Cka >
or

*

Cic =Chic- (72)
4.7  Properties of energy band
(1) E =E.q

We consider the case of an infinitely small periodic potential. The curve Ej is
practically the same as in the case of free electron, but starting at every point in reciprocal

lattice at G = (27/a)n (n: integer). We have Ei+g = Ei, but for the dispersion curves that
have a different origin.

((Mathematica 5.2))
2

£ L (k— 27

2m a

sl = Plot[Evaluate[Table[g, {n, -3, 3}1], {k, - 3n, 3x}, PlotRange-» {{- 37, 37}, {0, 125}},

Prolog- BbsoluteThickness[2.0], PlotStyle—» {Hue[0], Hue[0]}, Background -» Graylevel[0.8]]

2
n) ;rulel={m->1,2-1,a-1}; g=£f/. rulel;
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5 7.5

=-Graphics-=
Fig.3 The energy dispersion (Ex vs k) of electrons in the weak limit of periodic potential
(the periodic zone scheme), where E, = E, .. m—1. a—1. h—1. G—2nn (n =0,

+1, £...).

(i) £, = E,

R -k
O @ @@«
3 2 E

-a 0 wa

Fig.4 The relation of Ex = E) in the reciprocal lattice plane. k = +n/a is the boundary of
the first Brillouin zone (|k|<r/a).

It follows that from the condition (E, = E ), in Fig.4, E(1) = E(2). On taking 6—0,
the group velocity defined by[E(2) — E(1)]/26 reduces to zero (d£i/dk—0). On applying
the periodicity condition E, = E, ; this result can immediately be extended as follows.

dE/dk—0 at k=0, £2/a, +4/a,.. ..,
We now consider the value of this derivative at the Brillouin zone boundary.
From the condition E, = E ,, E(3) = E(4).
From the condition E, = E,, ;, E(3) = E(5).
Therefore, we have E(4) = E(5).

On taking 6—0, the group velocity at the boundary of Brillouin zone is defined as
[E(5)— E(4)]/26, which reduces to zero (d £i/dk—0).

In conclusion, the group velocity (dEi/dk) is equal to zero at k=0, £G/2, £G, +3G/2, £2G,.
(see the books written by S.L. Altmann® for more detail.)

5 Solution of the Schrodinger equation
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5.1 Secular equation
We consider the Schrodinger equation of an electron in a periodic potential U(x) with

a period a.
n d’
—%WvLU(X)]%(X) =Ey,(x), (73)
where
U(x)= ZUGef'AGx [(G=n (2n/a), n: integer)], (74)
G
with
U, =U,
Vi (0)=Y.C g =Ce™ +C, e 4,
G
with
C*ka = C—k+G >
2
zzh_ C, o(k—=G) e ¢ (ZUG'eiG'xj(z CkGei(kG)xj _ Ez C,_ e
G <m rel S =

Here we note that

[ = [ZUG'eiG'X J[z CkGei(kG)xj — ZZUG'CkiGefiG'xei(ka)x '
¢ G G G
For simplicity, we put G"=G + G' or G'=G"-G
I = ZZUG"—GCk,Gei(ka")X — ZZUG*G'Cka'ei(kiG)X ’
G G G G

where we have a replacement of variables: G"— G,G — G' in the second term.
Then the Schrodinger equation is
h? o o o
Z_Ck,G (k _ G)Zel(k G)x + ZZUG,Gka,Gvel(k G)x — Ez Ck,Gel(k G)x ,
2m G G G

G
or
h? )
[~ (k=G) = EIC, 6 + 2 UsoCie =0
m Vel
When k > k+G
hz
G =BG+ 2 Us6Crg =0
m Vel

2

Here we put 4, = ;l—kz .
m

(46 —EIC, ¢+ ZUGfG'Cka' =0,
vl

or
[ﬂ“k—G - E]Ck—G + ( + U—4GCk75G + U73GCk—4G + U—ZGCk—3G + U—GCk—ZG + UOCk—G +

+ UGCk + UZGCk+G + U3GCk+2G + U4GCk+3G + ) = 0
(75)
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When k — k+ G in Eq.(75)
[4 —E1C, + (.4 U _46C, 46 U 36C 56 +U ,6C 16 U G +UC, +

+ UGCk+G + UZGCk+2G + U3GCk+3G + U4GC + ) = 0

k+4G e
(76)
When k — k+2G in Eq.(75)

[Aiic = ElC .o + (. U_i6Ch 36 +U_36Cy 6 +U G 6 +U_oCp + UGy +

+ UGCk+2G + UZGCk+3G + U3GCk+4G + U4GC + ) = 0

k+5G T e

(77)
The secular equation is expressed by
Az —E Usg U Uy U_is U.so U Criso
UG ﬁ“k+2G —E U—G Usz U—3G U—4G Ust Ck+2G
UzG UG lk+G —E UfG Usz U—3G U—4G Ck+G
Use Usg Ug A —E Uy Uy Uy G =0,
Us Use Usg Ug g —E Usg Uy Ci-c
USG U4G U3G UzG UG ﬁ“k—ZG —E U—G Ck—ZG
Usge Use Us Use Usg Ug Aesg —ENCisg

with Up = 0 for convenience, where we assume that Cyimg =0 for m = +4, £5, £6,....

5.2 Solution for the simple case
Now we consider the simplest case: mixing of only the two states: |k> and |k —G>

(k=mla. k-G = -7la, G = 27/a). Only the coefficients C; and Ci.¢ are dominant.
- " C 0
A, —FE U, ko ( J ' (78)
Ug lka —E\Cig 0
From the condition that the determinant is equal to 0,

(A —EXA,_q —E)-[Us] =0,
or

o At At VG =2y +4U L
5 .
Now we consider that 4, = 4, ; (|k| = |k - G| with k = 7/a, Bragg reflection)

(4 - E) -ug[ =0,

(79)

or
E=2 £|Ug.
Note that the potential energy U(x) is described by
Ux)=U,+Ugze ™ +Uge'” =U_+2Ucos(Gx),

where we assume that Ug is real;
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U,=U_, =U_.

At k = G = 27/a only the coefficients Cy2¢ and Cy are dominant. In this case we have
the secular equation only for Ci26 and Ci..

e e o)
U2G ﬁ“k—ZG_E Ck—ZG 0 '

The condition of det(M) = 0 leads to

L—-E U,
Usg ﬂ“k—ZG —E

Since A, =4, ,;, we have

(& —EY =[U,q] =0,

=0.

or
E=X +Uy.
521 U;<0
For E=1, + |U G| =4, — U, (upper energy level)
U, U;\ C, 0
o, vi)e )G}
or
G _ —1.
Ck—G

Then the wave function is described by
G
‘ ‘ , e k== G
Vi (1) = Cue™ + C o' """ = C [e" =" 1= 2iC,e zsmgfx
or

v, ()c)|2 = 4|Ck|2 sinz(%) (upper energy level).

For E=1, - |U G| =4, + U, (lower energy level)
-U, U, G ) (O
U, -U,)\C..) \0)
Ck

Ck—G
The wave function is described by

or

=1.

G
‘ o ‘ L i(k=2)x Gx

v, (x)=Ce™ +C,_ " " =C "+ ]=2C.e ZC%G;L
or

v, ()c)|2 = 4|Ck|2 cosz(%) (lower energy level).
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522 U,>0

|l//k ()c)|2 = 4|Ck|2 cosz(%) for E =4, +U,; (upper energy level),
and

|Wk ()c)|2 = 4|Ck|2 sinz(%) for E=4, —U, (lower energy level).

5.2.3 Probability of finding electrons
((Mathematica 5.2))

Comparison of the two standing wave solutions at k— 7/a is presented. Note that the
wave motion is in phase with the lattice.

fl-= Cos[nx]z; f2-= Sin[nx]z; £f3=-1.2 -Cos[2 7 x];
Plot[{fl, £2, £3}, {x, -2, 2}, PlotStyle -» Table[Hue[0.41i], {i, 0, 3}], Prolog - AbsoluteThickness[3],
Background - Graylevel[0.8] ]

YVYYVYYVYY Y

=2 =il 1 2

-Graphics=

Fig.5 At k = n/a, Bragg reflection of the electron arises, leading to two possible charge
distributions fi(x) and f>(x). The case of Ug<0 (attractive potential due to positive
ions). fi(x) (red) probability of the wave function (lower energy level), f2(x) (green)
probability of the wave function (upper energy level), and the potential energy U(x).
The phases of fi(x) and U(x) are out of phase, while the phase of />(x) and U(x) are
in phase. When the electrons are close to the ions located at the lattice sites, the
energy of the electrons becomes lower. When the electrons are far away from ions,
on the other hand, the energy of the electrons becomes higher. (see the book of C.
Kittel’> for more detail).

5.2.4 Eigenvalue problem for the system with only Ug

((Mathematica 5.2))
(* attractive potential Vk = -2%)
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2

£k ] = : K%; M= {{£[k], VK}, {Vk, £f[k-K]}};rulel={a-1, m>1, K> 27, Vk- -2};

m
Ml = M/. rulel; A = Eigenvalues[Ml] ;
pl=Plot[{A[[1]], A[[2]], ];2 , % (k—27r)2}, {k, 0, 27}, Prolog - RbsoluteThickness[3.0],
PlotPoints - 200, PlotStyle - {Hue[0], Hue[0.7], Hue[0.4], Hue[0.4]},
Background - Graylevel[0.8]]; rule2={a>1, m>1, K»-2x, Vk»>-2}; M =M/. rule2;
B = Eigenvalues[M2] ;
p2 = Plot[{B[[1]], B[[2]], g % (k+2m?}, (k, 27, 0},
PlotStyle » {Hue[0], Hue[0.7], Hue[0.4], Hue[0.4]}, PlotPoints - 200,
Prolog - AbsoluteThickness[3.0], Background- Graylevel[0.8]];

Show[pl, p2]
'\ 23/\ /n

15r

-Graphics-=-

Fig.6 The energy dispersion curves of Ej vs k with Ug = -2 (red and yellow curves) and
with Us—0 (blue curve). a—1. i—1. m —1. K= G—2x. There are energy gaps at
k = +G/2 = +r/a for the energy dispersion curve with Ug = -2. The energy gap is
2|Ug| there. Note that dEw/dk =0 at k = G/2 = +n/a.

5.3. Eigenvalue problem for the system with Ug, Uxg, Usg, Usg, Usg, and Usg
((Mathematica 5.2))

(* Nearly free electron approximationt*)
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7n? 27
h= — (k—
2m a

sl = Plot[Evaluate[Table[hl, {n, -3, 3}1]1, {k, - 6, 6}, PlotRange- {{- 6, 6 7}, {0, 125}},

Prolog - AbsoluteThickness[2.5] , PlotStyle— {Hue[0.4], Hue[0.4]}, Background -» Graylevel[0.8]] ;
2
£kl ] = 2 x12;
- 2m

2
n) ;rulel= (m>1,5-1,a-1};hl=h/. rulel;

M= {{f[k+3K], U, V, W, X, Y, 2}, {U, £f[k+2K], U, V, W, X, Y}, {V, U, £f[k+K], U, V, W, X},
{W,V, U, £f[k],U,V, W, {X,W,V, U, £[k-K], U, V}, {Y, X, W, V, U, £f[k-2K], U},
{2, Y,X,W,V, U, £f[k-3K]}};
rule2={a-1, m->1, K->-25x,U>-2, V-2, W -2,X>5-2,¥>5-2,Z2-5-2};ML=M/. rule2;
A= Eigenvalues[Ml];
pl = Plot[Evaluate[Table[A[[i]], {i, 1, 5}1], {k, - 6, 67}, Prolog- AbsoluteThickness[2.5],
PlotStyle—- {Hue[0], Hue[0.5]}, PlotPoints - 300, Background - Graylewvel[0.8],
PlotRange- {{- 6, 67}, {0, 125}}];

Show[sl, pl]
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=Graphics=

Fig.7 The energy dispersion of Ej vs k for free electrons (in the limit of weak potential)
and the Bloch electrons with Ug, Uz, Usg, Usa, Usg, Usc (Uc—-2, Urg—-2 Uzg—-
2, Usg—-2, Usg—-2, Usc — -2) in the extended zone scheme. a—1. i—1. m —1.
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K = G—2r. There are energy gaps with 2|Ug|. 2|Uzql, 2|Usal, 2|Usg|, 2|Usg| 2|Usg|,
of at the Brillouin zone (k = m/a).

5.4  Energy dispersion curves in different scheme zones

The above results on the energy dispersion relation are summarized as follows. Three
different zone schemes are useful. (a) The extended zone scheme where different bands are
drawn in different zones in wavevector space. (b) The reduced zone scheme where all
bands are drawn in the first Brillouin zone. (¢) The periodic zone scheme where every band
is drawn in every zone. The formation of energy bands and gaps are generated. The main
effects are at the zone boundary of the Brillouin zone.

Extended zone

scheme

Reduced zone
scheme

AN

\/

-3n/a -2rn/a -n/a 0 m/a 2n/a 3n/a
k

Fig.8 Three zone schemes for the 1D system. Extended zone scheme. Reduced zone
scheme. Periodic zone scheme.

5.5 Bragg reflection at the boundary of the Brillouin zone
The Bragg reflection occurs when the degeneracy condition E(k) = E(k-G) or |k-G| =

|k|. This condition is equivalent to the condition 2k*G = G®. For the 1D system the Bragg
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reflection occurs when k = +G/2 =+ 7/a, or at the zone boundary of the first Brillouin zone
(Fig.9). For the 2D system, the boundaries form lines in the reciprocal lattice plane (Fig.10).
The degeneracy condition |k-G| = |k| geometrically means that k& lies on the perpendicular
bisector of the reciprocal lattice vector G. For the 3D system, the Bragg reflection occurs
when £ is located at the zone boundary surfaces of the first Brillouin zone.

5.5.1 1D system:
For For the 1D system this condition at the zone boundary at k = G/2 = +7/a.
A

zone boundary

2pla

Fig.9 Condition of the Bragg reflection for the 1D case. [k| = |k - G|. G=27xla. K’ = k- G.

5.5.2 2D system:

The Bragg reflection occurs when k& is on the zone boundary of the first Brillouin zone.
G+(k-G/2) = 0. In other words, G is perpendicular to k-G/2. This implies that k is at the
zone boundary of the first Brillouin zone for the Bragg reflection.
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eciprocal lattice point
2nfa

@ @
wa //zone houndary
k
wa 2nia
Ky
G2
N
™ First Brillouin zone
L ')

Fig.10 Condition of the Bragg reflection for the 2D case. k| = |k — G.

6 Kronig Penny model as an application of the Bloch theorem
6.1 Secular equation
Here we consider a Kronig-Penny model. Using this model we can get an exact solution
for the Schrodinger equation of an electron in a periodic potential. The potential is defined
by,
U(x)=Uy for —b<x<0 and U(x)= 0 for 0<x<a (the periodicity, a+b).

((Mathgematica 5.2)) Periodic potential U(x)
(*A periodic potential Kronig Penny model ¥*)

flx 1:=1/;-1<x<0;£f[x_]:=0/;0sx<1;a[x ]1:=£f[x]/;-
l<x<l;a[x ]:=a[x-2]/;x>1;a[x_]:=a[x+2]/;x<-1;Plot[a[x],{x, -
10,10} ,PlotStyle—-»Hue[0] ,Background-»GrayLevel[0.6] ,PlotPoint
s-»200,Prolog-»AbsoluteThickness[2.5] ,AxesLabel-»>{"x","U(x)"}]
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=Graphics-=
Fig.11 Square-well periodic potential where a =b =1 and Uy = 1.

We now consider a Schrédinger equation,
nod’
5 o)UY (x) = Eyp(x), (80)
2m dx

where £'is the energy eigenvalue.

(1) U(x) =0 for 0<x<a
w,(x)=Ae™ + Be ™, dy,(x)/dx =iK(Ae™ — Be™), (81)
with E=#’K*/2m.

(11) U(x) = Up for -b<x<0
w,(x)=Ce? + De ¢, dy,(x)/ dx = O(Ce® — De™?"), (82)
with U, - E =1*Q*/2m.

The Bloch theorem can be applied to the wave function
w(x+a+b)=e""“"y(x),

where k is the wave number. The constants 4, B, C, and D are chosen so that y and dy/dx
are continuous at x =0 and x = a.

Atx=0,
A+B=C+D, (83)
iK(A-B)=0(C-D). (84)
Atx=a,
y(a)=e""""y(-b), or i (a) ="y, (-b),
y'(a) ="y (=b), or w,'(a) ="y, (=),
or
AeiKa + Be*iKa — eik(a+b)(cebe +DeQb) , (85)
iK(Ae™ — Be™*) = 0e™“™"(Ce™? — De?). (86)

The above four equations for 4, B, C, and D have a solution only if det[ M]=0, where the
matrix M is given by
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1 1 -1 -1
iK —iK ) 0

eiKa efiKa _ ebeJrik(aer) _ eQb+ik(a+b)

Z-KeiKa _ Z-Kefi[(a _ QebeJrik(aer) QeQb+ik(a+b)
The condition of det[M] = 0 leads to

2 g2
cos[k(a + b)] = cos(Ka)cosh(Qb) + @Tg)sin(Ka) sinh(Qb) . (87)
The energy dispersion relation (£ vs k) can be derived from this equation.

6.2 Energy dispersion relation

((Mathematica 5.2)) solution of the secular equation
Here we use the program which was originally written by Noboru Wada.!!

M={{1,1,-1,-1},{1 K,-1i K, _QIQ}I{EXP[j‘ K a] IEXP[_j' K a],-
Exp[i k (a+b)-Q b],-Exp[i k (a+b)+Q b]},{1 K Exp[i K a], -i
K Exp[-i K a],-Q Exp[i k (a+b)-Q b],Q Exp[i k (a+b)+Q
b]}};M2=Det[M] ;Simplify[ExpToTrig[M2]]
41 (Cos[(a+b) k] +1 Sin[(a+b) k])
(2KQCos[(a+b) k] ~2KQCos[aK] Cosh[bQ] + (K
<<Graphics ImplicitPlot"
pll=
ImplicitPlot|
Evaluate|
(2KQCos[ (a+b) k] -2KQCos[aK] Cosh[bQ] +
(K*- @) sin[aK] Sinh[bQ]) /.
{a» 2, b- 0.022, K- Sqrt[e], Q- Sqrt[lOO—e]}] =0,
{k, -10, 10}, {e, O, 30}, PlotPoints -» 200,
PlotStyle—- {Hue[0], Thickness[0.015]}, Background -» Graylevel[0.7],
AxesLabel » {"Wavenumber", "Energy"}]

2_¢% sin[aK] Sinh[bQ])
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=ContourGraphics=
Fig.12 Plot of energy £ vs wave number £ in the Kronig-Penny model (periodic zone

scheme). a =2, b=0.022. K =/ . 0 =100—¢ . 0<£<30. U, = 501> /m .

7 Theory of persistent current in conducting metallic ring
7.1  Model similar to the Aharonov-Bohm effect

This was, in part, anticipated in a widely known but unpublished piece of work by Felix
Bloch in the early thirties, who argued that the equilibrium free energy of a metallic circuit
must be a periodic function of the flux through the circuit with period hc/e; this was jokingly
known as a theorem which disproved all theories of the metastable current in
superconductors. (from a book written by D.J. Thouless!?).
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B A

B=0

X
Fig.13 Circular conducting metal wire (one-dimensional along the x axis). The coordinate
x is along the circular ring. The magnetic field is located only at the center (green
part) of the ring (the same configuration as the Aharonov-Bohm effect). a = 27R
(R: radius).

We consider a circular metal ring. A magnetic field is located only at the center of the ring
(the same configuration as the Aharonov-Bohm effect!®). We assume that g = -e (e>0).
There is no magnetic field on the conducting metal ring (B = 0). The vector potential A4 is
related to B by

B=VxA=0,
or

A=Vy.
The scalar potential y is described by

2(x)= [dxd(x), (88)
where the direction of x is along the circular ring and xo is an arbitrary initial point in the
ring.

We now consider the gauge transformation. 4’ and A4 are the new and old vector
potentials, respectively. y’ and y are the new and old wave functions, respectively.

A'=A+V(-y)=0,

, ie
() = expC Ehpr(r) (89)
Since 4° =0, v’ is the field-free wave function and satisfies the Schrodinger equation
n 0
-—Vy'=ih—y'. 90
2m v ot v ©0)
In summary, we have
ie |
v () =y (expl— - [A(x)dx], O1)
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. xX+a

w(x+a)=y'(x+ a)exp[—% [A(x)ax)., (92)

where a is a perimeter of the circular ring. From these equation we get

xX+a

y(x+a) _y'(x+a) e _y'&+a) o ieD
Vo i S [T el S
Here we use the relation
) | aA(x)dx =§(VxA)-da=0, (93)

where @ is the total magnetic flux. It is reasonable to assume the periodic boundary
condition

y'(x+a)=y'(x),
for the free particle wave function. Then we have

w(x+a)=y(x) exp(—%) = exp(ika)y (x). (94)
with the wavenumber
= (95)
fica

This equation indicates that y(x) is the Bloch wave function. The electronic energy
spectrum of the system has a band structure.
We now consider the case of k+G with G=27/a.
expli(k + G)aly (x) = exp(ika)y (x) =y (x+a),
since exp(iGa) =1. Therefore we have the periodicity of the energy eigenvalue

E(k+G)=E(k), or E(®+2nd,)=E(D). (96)
From the Bloch theory, we can also derive
E(-k)=E(k), or E(-®)=E(D). (97)

The energy E(k) depends on @ . It is actually a periodic function of @ with the periodicity
20,.

27 eAD 2mhc

G=—"—= , or AD =2 20,. (98)
a hca 2e
The magnetization M (®) is defined as
M(@):—@:—AaE(CD): Ae 8E(k)’ (99)
oB oD hca Ok
where A is the total area. This is proportional to the group velocity defined by
1 OE (k)
v, =———=. 100
FT (100)
The magnetic moment M (®) is related to the current flowing in the ring as
M(CD):lI(CD)A:—Am, (101)
c oD
or
OE(D)
I[(D)=-c . 102
(@) 20 (102)
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7.2 Derivation of E(®)"
We consider the persistent current system in the ring in the presence of magnetic flux.
a=2nR.

¥
A

Fig.14 Circular conducting ring with radius R. The magnetic field B is located only at the
center and is along the z axis (out of the page).

Fig.15 The vector potential 4 is along the e, direction. The magnetic field is along the
cylindrical axis (z axis) and is located only at the center of cylinder.
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An electron is constrained to move on a 1D ring of radius R. At the center of the ring,
there is a constant magnetic flux in the z direction. The magnetic flux through the surface
bounded by the ring

@ =j3(VxA)-da=jSB-da.
Using Stoke’s theorem,
f(VxA)-da=fA-dl={B da=0.

From the azimuthal symmetry of the system, the magnitude of the azimuthal component of
A must be the same everywhere along the path (o= R)
A= ie 4
27R
Now we consider the Schrédinger equation for electron (¢ = -e) constrained to move on
the ring, we have

p =R and z = constant.

(103)

We use the new vector potential

A'=A+Vy=0,
or
1 0
A=A, +—2 4 =0,
¢ ¢ Ra¢Z
or
0=i+la_l=0’
2R RO
or
()
g

The Hamiltonian is given by
N 1 A e 2 1 A D
H=—@+—-A)=—p".
2m ® c ) 2m P
The Schrodinger equation is given by
(r[H]y )= E{rly).

or
. w10t ,

<FHV/>=—%?T¢2V/(F)=EV/ (),
or

o’ 2

oF y'(r)=-Ay'(r), (104)
where

1= 2mER2 (105)

/5 '
Then the wave function is obtained as
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' — el . 106
The old wave function is related to the new wave function (g = -e, gauge transformation)
by

iqy _iedg ilg 1 i ed Y
=e ch ' =e 2mh — 27ch . 107
v (9) v'(#) 2R TR (107)
From the periodic boundary
w(p+27) =y (9), (108)
we have
ed .
2n(A— )=—2nrm (n: integer),
27ch
or
-2, (109)
27ch

Here we define the quantum fluxoid @ as
D, = 2;“7’ —2.06783372 x 107 Gauss cm? (from the NIST Website'%)
e
then we have
o
20,
Then the energy eigenvalue is obtained as

) 2
E= L Z(CD —nj. (110)
2mR°\ 20,
The ground states depend on @ (or @/2@). For -1/2<@/2@<1/2, the minimum energy
corresponds to n = 0. For @2@y>1/2, the energy with n = 0 is no longer the minimum
energy. For 1/2<@/2@<3/2, the minimum energy corresponds to » = 1. For
32D ;<5/2, the minimum energy corresponds to n = 2. In general, for (n-
1)/2<@2 @y<(n+1)/2, the minimum energy corresponds to . So the ground state is periodic

in @2 @, as shown in Fig.16.
We now consider the current density J defined by (quantum mechanics)

—n.

h * * *
Y=gl W' Vy-ywy)—-LAy'y], (111)
2mi mc
where
@ | 10
A=——e,, = e \% —e,—— ,
R v () m v () ¢pa¢l/l(¢)
with
a=A1- e® , and g=-e.
27ch

Then we have
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3= —e( ha N ed Y =—¢f /] ed )+ ed Je
2mR>  Ax’mcR*? 27mR? 2ach” 4 mcR ¢
ehld ’
- 2 €y
27imR

or

J. = —

* 2mm Rz( cp0
This is compared with

0E 1 @ _ eh

o~ mie 20, 20, "

+1). (112)

—n),

20,
or
E
J¢: 15) eh 2(_
GCD 27mmR 20,

+n).

7.3 Energy eigenvalues and persistent current density as a function of magnetic
flux ((Mathematica 5.2))

(*Ground state energy vs magnetic flux¥*)

fix ] :=x2;a[x_] :=f[x] /;-1/2<x<1/2;a[x ] :=a[x-1]/;x>1/2;
a[x ] :=a[x+1] /;x<-1/2;

Plot[a[x], {x, -3, 3}, PlotStyle- Hue[0] , Backgrourd - Graylevel[0.7],

Prolog - AbsoluteThickness[2] , AxesLabel » {"&/ (280)", "E/E0"}]
E/EQ

=Graphics-=

(*Current vs magnetic flux¥)
glx_]:=-x;b[x_]:=g[x]/;-1/25x<1/2;b[x_]:=b[x-
11/;x>1/2;b[x_]1:=b[x+1]/;x<-1/2;Plot[b[x], {x,-
3,3} ,PlotStyle-»Hue[0] ,Background-»GrayLevel[0.7] ,Prolog-»Abso
luteThickness[2] ,AxesLabel-»{"&/ (280)","J¢p/J0"}]
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J¢/J0

5/ (230)

-Graphics-=-
Fig.16 The energy eigenvalue E/E, as a function of @/(2@). E, =h’/2mR*.
Fig.17 The persistent current density J,/J, as a function of &/(2dy). J, = eh/2mmR> .

8 Conclusion

We have discussed the energy spectrum of the Bloch electrons in a periodic potential.
The energy spectrum consists of energy band and energy gap. The difference between the
metals and insulators are understood in terms of this concept. The system behaves as an
insulator if the allowed energy bands are either filled or empty, and as a metal if the bands
are partly filled.

Appendix
Mathematica 5.2 program (see Sec. 5.3) for the Eigenvalue problem for the system with
Us, Uag, Usg, Usg, Usg, and Usg is attached for the convenience.
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