
1 
 

Kronig Penney model 

Masatsugu Sei Suzuki 

Department of Physics, SUNY at Binghamton 

Binghamton, NY 13902-6000 

(Date: March 23, 2018) 

 

_____________________________________________________________________________ 

Ralph Kronig was a German-American physicist (March 10, 1904 – November 16, 1995). He is 

noted for the discovery of particle spin and for his theory of x-ray absorption spectroscopy. His 

theories include the Kronig–Penney model, the Coster–Kronig transition and the Kramers–Kronig 

relation. 

 

 
 

http://en.wikipedia.org/wiki/Ralph_Kronig 

 

______________________________________________________________________________ 

William George Penney, Baron Penney (24 June 1909– 3 March 1991), was an English 

mathematician and professor of mathematical physics at the Imperial College London as well as 

the rector of the imperial college. He is widely held responsible for his leading and integral role in 

the development of Britain's nuclear program, a clandestine programme started following the 

World war II and the success of Soviet nuclear program. 
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http://en.wikipedia.org/wiki/William_Penney,_Baron_Penney 

 

1. Kronig-Penney model 

The essential features of the behavior of electrons in a periodic potential may be explained by 

a relatively simple 1D model which was first discussed by Kronig and Penney. We assume that 

the potential energy of an electron has the form of a periodic array of square wells. 

 

 
 

Fig. Periodic potential in the Kronig-Penney model 

 

We now consider a Schrödinger equation, 
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where  is the energy eigenvalue. 

 

(i) V(x) = 0 for 0≤x≤a 
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(ii) V(x) = U for -b≤x≤0 
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The Bloch theorem can be applied to the wave function 

 

)()( )( xebax baik   , 

 

where k is the wave number. The constants A, B, C, and D are chosen so that  and d/dx are 

continuous at x = 0 and x = a. 

 

(a) At x = 0, 

 

DCBA  , 

 

)()( DCQBAiK  . 

 

Thanks to the Bloch theorem, the boundary condition of the wave function at x b   is related to 

that at x a . In other words, we have only to know the knowledge of the wave function in a unit 

cell (the period is a b ). 

 

(b) At x = -b, 
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or 
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The above four equations for A, B, C, and D have a solution only if det[M]=0, where the matrix 

M is given by 
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The condition of det[M] = 0 leads to 
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The energy dispersion relation (E vs k) can be derived from this equation. 

 

2. Numerical claculation 

The essential features of the behavior of electrons in a periodic potential may be explained by 

a relatively simple 1D model which was first discussed by Kronig and Penney. We assume that 

the potential energy of an electron has the form of a periodic array of square wells. 

Here we show only the result of the Kronig-Penny model: 

 

((Mathematica)) 

Using the Mathematica, one can derive the fundamentak equation for the energy diagram in the  

Kronig-Penney model. 
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E is the energy of electron and U is the potential height. 

 

((Note)) 

We check to see whether this energy dispersion relation coincides with that of the free particle. 

To this end, we assume that U→0 and b→0. This gives a particle in a quantum box (with the wall 

of infinity potential). 
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Then we get the Kronig-Penney expression. 

 
)cos()](cos[ aKak   

 

M = 881, 1, −1, −1<, 8� K, −� K, −Q, Q<,
8Exp@� K aD, Exp@−� K aD, −Exp@� k Ha + bL − Q bD, −Exp@� k Ha + bL + Q bD<,
8� K Exp@� K aD, −� K Exp@−� K aD, −Q Exp@� k Ha + bL − Q bD,
Q Exp@� k Ha + bL + Q bD<<; M2 = Det@MD;

Simplify@ExpToTrig@M2DD
4 � HCos@Ha + bL kD + � Sin@Ha + bL kDL
I2 K Q Cos@Ha + bL kD − 2 K Q Cos@a KD Cosh@b QD + IK2 − Q2M Sin@a KD Sinh@b QDM
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3. Dimensionless  expression 

The mass of electron and the Dirac constant are given by 

 

m = 9.10938215 x 10-28 g 

ħ = 1.054571628 x 10-27 erg s 

 

 

(a+b) is the repeat distance. The reciprocal lattice is 
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Here we introduce the dimensionless-quantities , u, and  as follows. 
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where 
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((Note)) That a and b are in the units of Å, k is in the unit of Å-1, and E  and U  is the unit of eV. 

In other words, a0, b0, k0, E0, and U0 are dimensionless. 

 

0aa  (Å), 0bb  (Å), 0kk  (Å-1), 

 

0EE   (eV), and 0UU   (eV), 
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Using the above parameters, the Kronig-Penney expression can be rewritten as 
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which means that the energy dispersion relation is dependent only on the values of  and u. 

 

4. Energy gap regions 

Here we put the right hand side of the above equation as H(), 
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The left-hand side )cos(  oscillates between -1 and 1. We make a plot of H() as a function of , 

where u is given as a parameter. The energy gap occurs in the energy range where |H()|>1. 

 

 
 

Fig. The right hand side of the Kronig-Penney expression, H() as a function of , where 

u = 100.  = b/a = 0.1/3. The energy gap exists in the green zone where |H()|>1.  
= (9.87507 - 15.4575).  = (39.5002 - 45.6691),  = (88.8754 - 95.1686), and  = 

(158.0 - 164.288).  The energy gap width () is the same  

 

5. Energy dispersion relation (numerical calculation) 
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The energy dispersion relation ( vs k) can be determined the ContourPlot of the 

Mathematica, where u and  are given as parameters. 

 

((Parameters)) 
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(i) units of horizontal and vertical axes for the energy dispersion relation 
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  (given in the unit of Å-1) 
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   (given in the unit of eV) 

 

Note that k0 and E0 are dimension-less. 

 

(ii) Brillouin zone boundary of the first Brillouin zone 

 

 B
. 

 

(iii) Empty lattice approximation: Free electron model 

 
2)2( Bn   

 

where n = 0, ±1, ±2, ...... 

 

((Example)) 

 

 b/a = 0.1/3. u = 100.  
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Fig. Kronig-Penney energy band in the extended zone scheme. b/a = 0.1/3. u = 100. 

When a0 = 5 (Å), E0 = /6.5617 (eV). It means that E0 = 15.24 eV for  = 100. 
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Fig. Kronig-Penney energy band in the reduced zone scheme. b/a = 0.1/3. u = 100. 

 

5. Dirac delta function 

The Result of Kronig-Penney can be simplified if we represent the potential by the periodic 

delta function.  

We start with the equation given by 
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We assume the limit b = 0 and U = ∞ such a way that  
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In this limit, 
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Fig. Dirac-comb type potential energy with the separation distance a.  

 

Then we have 
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where P remains constant as a fixed parameter. 
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((Note)) Why is P constant? 

 

Since 1Ub  , 
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the ratio is given by 

 

K E

Q U E



 

 

In the limit of U  , we have Q K≫ , leading to the relation 
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6. Numerical calculation 

We use the same notion, 
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We make a plot of f() as a function of . P is a parameter. When )sin(  =0 (   , 2, 3), 

the value of f() is independent of P.  

 

 
 

Fig. Plot of f() as a function of , where P is changed as a parameter. P = /2 (red),  

(orange), 3/2 (green), 2 (dark green), and 5/2 (blue). Allowed state in the region 

where |f()|<1 (the purple zone). The forbidden states in the region where |f()|>1. 

The energy gap increases with increasing P.  

 

Using the ContourPlot of the Mathematica, we can draw the  vs  diagram for each P. 
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Fig. Energy band in the expended Brillouin zone. P = /2 (red), , 3 /2, 2, 5 /2 (green). 

The dashed lines (blue) are described by (- 2n)2.  
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Fig. Energy band in the reduced Brillouin zone. 
 
8. Summary 

The following interesting conclusions may be derived from the above figures. 
(a) The energy spectrum of the electrons consists of a number of allowed energy bands separated 

by energy gaps. 
(b) The discontinuities in the energy spectrum, occur for the zone boundaries. 
 

APPENDIX 

Mathematica program for the Kronig-Penney model with Dirac-comb type potential 
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Clear@"Global`∗"D; eq1 = Cos@κD � P

SinB ε F

ε

+ CosB ε F;

p11 = ContourPlot@Evaluate@Table@eq1, 8P, π ê2, 5 π ê2, π ê2<DD,
8κ, −20, 20<, 8ε, 1, 100<, PlotPoints → 100,

ContourStyle → Table@8Hue@0.1 iD, Thick<, 8i, 0, 5<DD;
g1 = PlotAEvaluateATableAHκ − 2 n πL 2, 8n, −3, 3<EE, 8κ, −50, 50<,

PlotStyle → Table@8Blue, Dashed, Thick<, 8n, 0, 5<D,
PlotRange → 88−30, 30<, 80, 100<<E;

g2 = Graphics@8Black, Thin, Arrow@880, 0<, 80, 100<<D,
Arrow@88−20, 0<, 820, 0<<D, Text@Style@"κ", Black, 15D, 815, −3<D,
Text@Style@"ε", Black, 15D, 81, 100<D,
Text@Style@"O", Black, 10D, 80, −3<D,
Text@Style@"π", Black, 10D, 8π, −3<D,
Text@Style@"−π", Black, 10D, 8−π, −3<D, Line@88−π, 0<, 8−π, 100<<D,
Line@88π, 0<, 8π, 100<<D<D;

Show@p11, g1, g2, PlotRange → 88−π, π<, 8−10, 100<<D


