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1. Harrison's construction of Fermi surface 

There is a way to represent the Fermi surface in the reduced and periodic zone scheme. 

Fermi surfaces for free electrons are constructed by a procedure credited to Harrison.  

The reciprocal lattice points of a square lattice are determined, and free-electron sphere 

of radius appropriate to the electron concentration is drawn around each point. Any point in 

k space that lies within at least one sphere corresponds to an occupied state in the first zone. 

Points within at least two spheres correspond to occupied states in the second zone, and 

similarly for points in three or more spheres. In other words, the darker the shading, the 

higher the zone number. 

_________________________________________________________________________ 

2. 2D square lattice 
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Fig. Brillouin zone for the 2D square lattice. 

 

We assume that there is only one atom per square lattice. Each atom has p electrons. Then 

we get 
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Note that the Fermi energy is given by 
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Fig. The Brillouin zone of a 2D square lattice, with some points of high 

symmetry labelled. X = /a. P = 2 /a 

________________________________________________________________________ 

(a) p = 1 

 

p kFêHπêaL εêE0
1. 0.797885 0.63662

2. 1.12838 1.27324

3. 1.38198 1.90986

4. 1.59577 2.54648

5. 1.78412 3.1831

6. 1.95441 3.81972

7. 2.111 4.45634

8. 2.25676 5.09296

9. 2.39365 5.72958

10. 2.52313 6.3662
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The radius kF of the Fermi circle is shorter than the length X.  The Fermi circle does not 

contact the zone boubary of the first Brillouin zone. 

 

 
 

Fig. The 2D Fermi circles corresponding to p = 1 electron per atom drawn within 

the first Brillouin zone structure. Each Brillouin zone is separated by straight 

lines. 

 

________________________________________________________________________ 

(b) p = 2 
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The radius kF of the Fermi circle is a little longer than the length X. The Fermi circle 

intersects the zone boudary of the first Brillouin zone around the point X. A part of the 
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Fermi circle passes the region of the second Brillouin zone. The Harrison;s construction of 

the Fermi surface is shown below. 

 

 

 
 

Fig. Harrison construction of free electron Fermi surfaces. The 2D Fermi circles 

corresponding to p = 2 electron per atom. 

 

(i) Hole-like Fermi surface (the first Brillouin zone) 
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Fig. The Fermi surface in the first Brillouin zone (the periodic zone scheme). p = 

2. The shaded areas contain electrons, froming a hole-like Fermi surface at 

each corner of the Brillouin zone (the point M). 

 

(ii) Electron-like Fermi surface in the second Brillouin zone 
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Fig. The Fermi surface in the second Brillouin zone (the periodic zone scheme). 

The shaded areas contain electrons. p = 2. This shaded area (green) forms an 

electron-like Fermi surface. 

 

______________________________________________________________________ 

(c) p = 3 
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The radius kF of the Fermi circle is longer than the length X, but is slightly shorter than the 

length M. The Fermi circle passes through the region of the second Brillouin zones and a 

very small part of the first Brillouin zone. The Harrison's construction of the Fermi surface 

is shown below. 
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Fig. Harrison construction of free electron Fermi surfaces. The 2D Fermi circles 

corresponding to p = 3 electron per atom. The first zone is almost full.  

 

Electron-like Fermi surface (the second zone) 
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Fig. The  Fermi surface in the second zone. p = 3. The shaded areas contain 

electrons. The Fermi surface is electron-like. 

 

______________________________________________________________________ 

(c) p = 4 
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The radius kF of the Fermi circle is much longer than the length X, and is longer than the 

length M. The Fermi circle passes through the region of the second, third, and fourth 

Brillouin zones. The Harrison's construction of the Fermi surface is shown below. 
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Fig. Harrison construction of free electron Fermi surfaces. The 2D Fermi circles 

corresponding to p = 4 electrons per atom. The first zone is completely full. 

A circle is drawn around each reciprocal lattice point. Any point in k-space 

that lies within at least one circle corresponds to an occupied state in the first 

zone. Points within at least two circles correspond to occupied states in the 

second zone. Note that each Fermi surface is uniquely determined by the 

number of overlapping circles. 

 

(i) Hole-like surface in the second Brillouin zone 
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Fig. The Fermi surface in the second zone. p =4 (periodic zone scheme). The 

shaded area represents occupied electron states. The Fermi surface is hole-

like. 

 

(ii) Electron-like Fermi surface (the third Brillouin zone) 
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Fig. The Fermi surface in the third zone (the periodic zone scheme). p = 4. The 

shaded area represents occupied electron states. The Fermi surface is 

electron-like. 

 

(iii) Electron-like Fermi surface (the fourth Brillouin zone). 
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Fig. The Fermi surface in the fourth zone (periodic zone scheme). p = 4. The 

shaded area represents occupied electron states, forming the electron-like 

Fermi surface. 

 

________________________________________________________________________ 

(e) p = 5 
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The Fermi circle passes through the region of the second, third, and fourth Brillouin zones. 

The Harrison's construction of the Fermi surface is shown below. 
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Fig. Harrison construction of free electron Fermi surfaces. The 2D Fermi circles 

corresponding to p = 5 electron per atom. The first zone is completely full. 

 

(i) Hole-like Fermi surface (the second Brillouin zone) 
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Fig. The Fermi surface in the second zone. p =5 (periodic zone scheme). The 

shaded area represents occupied electron states. The Fermi surface is hole-

like. The first zone is completely full. 

 

(ii) Electron-like Fermi surface (the third Brillouin zone) 
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Fig. The Fermi surface in the third zone (the periodic zone scheme). p = 5. The 

shaded area represents occupied electron states. The Fermi surface is 

electron-like. 

 

(iii) Hole-like Fermi surface (the fourth Brillouin zone) 
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Fig. The Fermi surface in the fourth zone (periodic zone scheme). p = 5. The 

shaded area represents occupied electron states, forming the electron-like 

Fermi surface. 

 

__________________________________________________________________ 

3. 2D hexagonal lattice metal 
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Fig. The Brillouin zones for a 2D hexagonal lattice. 

 

We assume that there is one atom per area 
2

3
2

a
. Each atom has p electrons. Then we get 

 

 
p

a

A
k

A
F

2

32
2

2

2

2



, 

 

Then kF is calculated as 

 

a

p
kF 4/1

3

2 
 , 

 

The Fermi energy is given by 
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Note that the reciprocal lattice vector is given by 
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The ratio kF to the zone boundary of the first Brillouin zone (G/2) is 
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For p = 1, this ratio is smaller than 1, while for p2, this ratio is larger than 1. This means 

that for p = 1, there is a Fermi circle inside the first Brillouin zone. We also calculate 
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Fig. Brillouin zones for the 2D hexagonal lattice with some points of high 

symmetry labelled. M =
2

1G
. K = 

3

1G
. G1 (= 

a3

4
) is the reciprocal 

lattice 

 

 

p kFêHG1ê2L kFêHG1ê 3 L εêE0
1. 0.742515 0.643037 0.735105

2. 1.05008 0.909392 1.47021

3. 1.28607 1.11377 2.20532

4. 1.48503 1.28607 2.94042

5. 1.66031 1.43787 3.67553

6. 1.81878 1.57511 4.41063

7. 1.96451 1.70132 5.14574

8. 2.10015 1.81878 5.88084

9. 2.22755 1.92911 6.61595

10. 2.34804 2.03346 7.35105
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Here we apply the Harrison's construction of Fermi surfaces to the case of 2D hexagonal 

lattice where p2.  

 

(a) p = 2 
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The radius kF of the Fermi circle is a little longer than the shortest length (M)of the first 

Brillouin zone However, the Fermi circle does not contact the zone corner (the Point K) of 

the first Brillouin zone. The Fermi circle passes the region of the first and second Brillouin 

zones. The Harrison's construction of the Fermi surface is shown below. 

 

 
 

(i) Hole-like Fermi surface (the first Brillouin zone). 
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Fig. The Fermi surface in the first zone (periodic zone scheme). p = 2. The 

shaded area represents occupied electron states, forming a hole-like Fermi 

surface. 

 

(ii) The electron-like Fermi surface (the second Brillouin zone) 
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Fig. The Fermi surface in the second zone (periodic zone scheme). p = 2. The 

shaded area represents occupied electron states, forming an electron-like 

Fermi surface. 

 

 

________________________________________________________________________ 

(b) p = 4 
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The Fermi circle passes outside the zone corner (the point K) of the first Brillouin zone. 

The first zone is completely full. The Harrison's construction of the Fermi surface is shown 

below. 
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Fig. Harrison's construction of Fermi surfaces for the 2D hexagonal lattice. p =4. 

 

(i) The hole-like Fermi surface (the second zone) 
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Fig. The Fermi surface in the second zone (periodic zone scheme). p = 4. The 

shaded area represents occupied electron states, forming a hole-like Fermi 

surface. 

 

(ii) The electron-like Fermi surface (the third zone) 
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Fig. The Fermi surface in the third zone (periodic zone scheme). p = 4. The 

shaded area represents occupied electron states, forming an electron-like 

Fermi surface. 

 

______________________________________________________________________ 

(c) p = 6 
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The first zone is completely full. The Fermi circle passes through the secod, third, and 

fourth Brillouin zones. The Harrison's construction of the Fermi surface is shown below. 

 

 



27 

 

 
 

Fig. Harrison's construction of Fermi surfaces for the 2D hexagonal lattice. p =6. 

 

(i) Hole-like Fermi surface (the second zone) 
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Fig. The Fermi surface in the second zone (periodic zone scheme). p = 6. The 

shaded area represents occupied electron states, forming a hole-like Fermi 

surface. 

 

(ii) Hole-like Fermi surface (the third zone) 
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Fig. The Fermi surface in the third zone (periodic zone scheme). p = 6. The 

shaded area represents occupied electron states, forming a hole-like Fermi 

surface. 

 

 

 

(iii) Electron-like Fermi surface (the fourth zone) 
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Fig. The Fermi surface in the fourth zone (periodic zone scheme). p = 6. The 

shaded area represents occupied electron states, forming an electron-like 

Fermi surface. 
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