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1. Introduction
The dynamics of the Bloch electrons are determined by simple relations

hk:F:—e(Eleva),
c

where F is the Lorentz force, E and B are the electric field and the magnetic field. The
velocity v is given by

. 1
V=F=v, =%Vk6‘k

where v, is the group velocity. The wavevector k is the quantum number which describes
a Bloch state.

It is surprising that these results are so simple and elegant, in spite of the fact that the
wavefunction of the Bloch electrons is given by

W (r)= eik.r”k (r).

We can use the above equations for the discussion of the motion of Bloch electrons.
Nevertheless, here we discuss the validity of such a simple equation, under the basis of the
quantum mechanics.

28 Derivation of group velocity I
For free electrons, we have

my = hk .

This relation is not valid for the Bloch electrons. The electron experiences a large and
rapidly fluctuating force as it moves through the periodic potential, so that its instantaneous
velocity and momentum likewise fluctuate rapidly. However, its mean velocity, averaged
over a unit cell, is well-defined, and is given by
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Here we use the commutation relation of the quantum mechanics,

rH]="p. P_
m
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where H is the Hamiltonian and is defined by

2

H=2 vm).
2m

When the wavefunction of the Bloch electron is given by
wi(r)= eik.ruk(r)

we get

(v)= % j e u, (P H,rle™ u, (r)d’r

Here we note that
(1) the property (I)

—ik- ik - . —ik- ik - . —ik- ik -
vk[e lerelkr]:_le lkrrHelkr+le i rHrel r

— l-e—ik-r[H’r]eik-r
and

(1) the property (1)



H(p,r)e* =e* " H(p+k,r)
which is derived from the relation
ple* g(r)]=e""(p+k)g(r)

for any @(r). Then the velocity can be rewritten as

(v)= % j u, (Ne ™ [H,rle* u, (r)d’r
_ % [, (Ve ™ He* Yuy (r)d’r
:% [u (Ve ™ e H(p+ k), (r)d’r

:% [ VL H(p + kg (1) r

Here we use the Feynman theorem
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Then we have
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This expression leads to a surprisingly simple result;
(v)=v, (k)= —Ve(k)

This velocity is called the group velocity. Since



de=v (k)-dk,

the wavevector dk on the constant energy surface (de = 0) is perpendicular to the group
velocity;

de=v (k)-dk=0.
In other words, the group velocity is normal to the surface of & _= constant.

3. Derivation of the group velocity II
We start with the Schrodinger equation for the Bloch electron,

Hy, (r) = [—% VIV (Oy, (r) =gy, (r),
where

v(r)=e""u,(r),
V(r) is a periodic potential. We note that

Vzl/’k(”) =V? [eik.ruk(”)]
=™ [~k’u, (r)+ Vu, (r) + 2ik -Vu, (r)]

(V+ik) u, (r)=[-k"u, (r)+Vu, (r)+ 2ik - Vu, (r)]
and
Vzl/’k(”) =" (V+ik)’ u, (1)

Then we get the Schrodinger equation for u, (r),



2

[—ﬁvz +V (M), (r) = [—h—e"’”(v +ik) u, (r)+V (r)e" u, (r)]
2m 2m

"
=g.e"u,(r)

or
n’ N2
[_%(V +ik)” +V(r)u, (r)=¢c,u,(r)
or simply,
Hu, (r)=¢gu,.r)
with

2

Ho=-T vk v ()
2m

We take an derivative Eq.(1) with respect to k.

(H, =)V, (r)=—[V, (H, —&)]u,(r)

= [%(V +ik)+V, &, Ju (r)

The velocity vk is evaluated as
<v> =y, = _—je”k"uk (r)V[e* u, (r)]d’r.
im

Since
Ve  u, (r)=e*" (V +ik)u,(r)

we have

(1



)
hv, = _in” u, (F)(V +ik)yu, (r)d’r
m

or

)
h, =— j uk*(r)i(v +ik)u, (r)d’r
m

= [, (NI(H, = £V, (1) = (V,8)u, (1]d°r
=V,&, [u, (N r = [u, (O[(H, =)V, (r)d’r

= V&
using the relation

ﬁ(v +ik)u, (r)=(H, —&,)V,u, (r)—(V,&)u,(r)
m

Note that the integral vanishes because of the Hermitian nature of H, .

4. Mathematica



Clear["Global %"]; Needs["VectorAnalysis "];
SetCoordinates[Cartesian[x, y, z]]; K = {kx, ky, kz};
R={x,y,z};¥[x ,y , z ] :=Exp[d (K.R)]ul[x, vy, z];
eqll = Laplacian[y[x, vy, z]] // Simplify;

eql2 = Grad [¢[x, v, z]] // Simplify

{(ejl (kx x+ky y+kz z) ( (1,0,0) [

%, y, z1),
%, y, z1),
%, vy, z])}

1kxul[x, v, z] +u
u(orlro> [

2 (00,1

el (kx x+ky y+kz z) (Ji kyul[x, y, z] +

el (kx x+ky y+kz z) (]i kzulx, y, z] +

Ll := (Grad[#] +1 K #) &; Llx := (D[#, x] +1 kx #) &;

Lly := (D[#, y] +1 ky #) &; Llz := (D[#, z] + 1 kz #) &;

Al =Ll[u[x, y, z]] // Simplify;

eq2 = L1x[A1[[1]]] +L1y[Al[[2]]] +L1z[A1[[3]]1] //
Simplify

- (kx2 +ky2 +kz2> ulx, v, z] +

2j.kZU(O’O’1>[ (0,0,2)[

X, ¥, 2] +
X, ¥, 2] +

X, Yy 2]

X, YV, z] +u
ijyu(o’l’m[x, v, z]+u(o’2’o>[
(1,0,0)[ (2,0,0)[

21 kxu X, y, z] +u

eq3 = eqll - et ®®) eq2 // Simplify
0
S. Derivation of acceleration theorem (I)

The work done on the electron (-e) by the electric field E in the interval A¢ is
AW =(—e)E-Ar=(—e)E -v,At.

The change of the kinetic energy in the electron is
AK =hv, -Ak .
Using the work-energy theorem (AK = AW ), we have
hv, -Ak =(—e)E -v, At

or



dk
Z —F=(-e)E
7 (—e)

which is the same relation as for free electrons. We may write this equation for the motion

of an electron in the presence of an electric field E and a magnetic field B. According to the
Newton's second law, we get

d—pzhﬁze—e(Elevk x B)
dt dt c

where F is the Lorentz force, (-e) is the charge of electron and v, is the group velocity of

the electron.

6. Derivation of acceleration theorem (II)
We consider the Hamiltonian of an electron on a loop of wire with the distance L, is
given by

1
H=—(p+S 4 +V(x)
2m c
where A4 is a vector potential. The Schrodinger equation of the system is given by
1 e
Hy(x)= [E(p + ;A)z +HV () (x) = sy (x)

y(x+L)=y(x)

Where y(x) is the wavefunction. We introduce a new wave function defined by

ieAx
w(x) =exp(———)¢(x)
hc
The substitution of this new wavefunction into the original Schrodinger equation leads to

[%pz VW) = eh(x)
m



The wavefunction ¢@(x) is actually the Bloch wave function,

#(x) = e"u; (x)

where ui(x) satisfies the periodic boundary condition. Since

() exp(%) = () = ¢, (x)

and
y(x+L)=y(x)
we have
w(x+ L)exp( fed(x + L)) =d(x+L)=e"""y (x+1)

hc
w() exp<%> = () = "D, (x)

From these, we obtain the relation

o — exp( zeAL)) ’
or
i =AL om
fic
or
k :%+2—ﬁl.
hic L



Since

A=—cEt
k= _e_m + 2_7d
h L
hk = —eE (Acceleration theorem)
7. Derivation of the acceleration theorem (III)

In the presence of an electric field, the Hamiltonian is given by
H=H,+eE-r

where Ho is the Hamiltonian of the crystal in zero field. We consider any function, which is
given by

v, (r)=e""¢,(r)

where this function is not always the Bloch function. Note that
V(1) = XV, g (1) +iry, (1)

or
ry, (r)=-iV,y, (r)+ie*"V, e ™ y(r) ’

Then we have

Hy, (r) = Hyy, (r) + (eE 1)y, (r)
= Hy, (r) +eE [V, y, (r) +ie*"V e ™"y, (r)]
=(H,+ie""eE-V, e ™" —ieE-V )y, (r)
=(H, —ieE-V )y, (r)

Since y, (r) is an arbitrary function, we find that the Hamiltonian can be described by

10



H=H,+H, —icE-V, =H, +H,

with
H, =ie""eE-V, e ™",
H,=-ieE -V,

and
H,=H,+H,

We consider the eigenvalue problem,
0
H0¢k7 = gk ¢ky

where y denotes the specific band number. From the symmetry of the translation of Ho, ¢,,

can be expressed by the Bloch wave function,
@i, (1) =" "uy (1)

Now we calculate the matrix element of H;

Hl‘ ¢ky> = ZZ| Dis ><¢’k'5 |eik.rE : Vkeiik.r ¢ky>
m
With

. iK- —ik-
z<¢k,5|e’ '‘E-V,e™"

¢ky> =iE- .[druk,;(r)e’ik"'eik"vke’ik"eik"uky (r)

=iE- J’drei(kfk')"uk,;(r)Vkuky (r)

We note that the vector defined by

11



thes (OV 4, (1)
has the full periodicity of the lattice;
s D)V, (r) = £(r)
with
f(r+R)=1(r)
Using the reciprocal lattice vector G, the function f{r) can be expressed as

f(r)= cheic.r .
Then

J'drei(k’k')"[uk,;(r)Vkuky (nN]= jdrei(k’k')"ZfGeiG"
G

_ szJ'drei(kfk'JrG)-r
G

This integral is not zero only when
k'-k=G

If we choose to work k, k' in the first Brillouin zone, we must have
k—-k'=0

This means that

ik- —ik-
<¢)k,5|e’ "E-V,e "

¢ky> =0
for

k—Kk'#0

12



It follows that Hr gives inter band mixing between y and 6. While Hr can cause no change
of k, the term —ieE -V, can cause a change of k.

Here we define a set of functions y,, (r) as the eigenfunctions of

HFZky(r) :5ky7(ky(”),

where y denotes the specific band number. Since Hr is invariant under the translation of

lattice, y,,(r) satisfies the Bloch condition; y, (r) is in general different from eik"uky (r).

The Schrodinger equation is
., 0 :
lhal(r,t)=(HF—leE'Vk)Z(r,t)- (1)

We try a solution with

R

xrn=e "y (r),
where no interband transition is assumed (i.e., within the same band y). The derivative is

0 _ dk
i 20 = (&, +ih—=- Vi) (1), )

by taking into account of the time dependence of & (k is not a constant of the motion). The
comparison between Eqs.(1) and (2) yields

dk =—eE
dt
8. The motion of electron in the presence of B

In the absence of E = 0, we have

h%=—ka xB.
dt c

13



Suppose that B is directed along the z axis. Then we get

hdkz _o,
dt

or
k_=kp = constant.

where kg is the component of k parallel to B. The motion in the k space is on a plane
normal to the direction of B, and the orbit is defined by the intersection of this plane with a
surface of constant energy, as shown in the figure below.

14
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Fig.

Motion of electron in the k-space in the presence of the magnetic field
(along the z axis). We assume the Fermi sphere for the simplicity. The Fermi
sphere is filled with electrons. The energy increases toward the exterior. The
group velocity is normal to the Fermi surface. When the magnetic field is
applied along the z axis, the motion of the lectron in the k space is on a plane
normal to the direction of B, and the orbit is defined by the intersection of
this plane with a surface of constant energy.

16
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Electron-like Fermi surface
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Fig. Top view. Electron-like Fermi surface (the shape of the Fermi surface is

sphere). The magnetic field B is out of the page. The group velocity is
normal to the Fermi surface in this figure. The electron rotates counterclock-
wise in the orbit.
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Fig. The area A4 enclosed between two adjacent orbits on a given slice-plane is

given by A4 = ff Ak dk, . The magnetic field B is applied in a direction (out

of the page). A(&,k,) is the area of the orbit which is determined by the
energy ¢ and k, (the component of k parallel to B.

From the above equation, we get

chAk, = ev BAt,

where k, is measured around the orbit and v, is the component of velocity vk normal to B.

The component v, is defined as

18



where ki 1s measured normal to the orbit. Here we define the period rc, which is the time
taken for the electron to travel once around the orbit,

chdk, ch® 0A(s,ky)
Idt_T §er eB§ e_B o€ N

The area A4 enclosed between two adjacent orbits on a given slice-plane is given by
= § Ak, dk,

or

0A(e.ky) _ §6kn i = cé/z :; dk,
ok,

The period T is also defined as

using the cyclotron (angular) frequency @, defined by

eB
@, =—.
mc

The effective mass m* is thus defined as

= fi §dk h_ZGA(e,kB)
27 2r 0g

For the electron-like Fermi surface, m™>0 and for the hole-like Fermi surface, m"<0.
Using the relation

0A(&,ky)  2meB
os hc

A(e)=ho,

19



we can evaluate the degeneracy for the Landau level (we will discuss in the de Haas van
Alphen effect)

I’ 2mB L' eBL
2r)* he (2r)* 27hc’

AA(e)

where L? is the area of the system.

((Note)) The cyclotron frequency of free electron (classical electricity and magnetism)

2

v 1 v eB
m—=—evB, or —=—
r o c r mc
Then the cyclotron frequency is
2r v eB
wc ===
T r mc
9. The motion of Bloch electron in the real space.

As the electron traverses its orbit in k-space, it will at the same time purse a
corresponding path through the real space. Since

a_,
i~

we have
dk __edr o
dt ch dt

so that
e
k-k,=——(@-1r)xB
ch

If we choose the direction of B as the z axis, we get

20



or

h )
(r = x) +i(y = y) == ek, +ik,)
eB

The orbit in the k -space is similar to that in the r - space. The orbit of the real space can be
obtained from the rotation of the orbit in the k-space [scaled by the factor (iic/eB = 1/I7)] by
-72.

ky
B A
® g
k
> k.
Fig. The motion of Bloch electron in the k space in the presence of a magnetic

field B which is directed in the direction (out of page)
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Fig.

10

- <

The motion of Bloch electron in the r space in the presence of a magnetic
field B which is directed in the direction (out of page)

Motion of the hole in the hole-like Fermi surface

22



Fig.

Cross sectional view of the hole-like Fermi surface (in this case, spherical).
The shaded area is filled with electrons. The energy increases toward the
exterior. The group velocity is normal to the Fermi surface. In this case, the
velocity is directed in a direction from the Fermi surface to the center. When
the magnetic field is applied along the z axis, the motion of the lectron in the
k space is on a plane normal to the direction of B, and the orbit is defined by
the intersection of this plane with a surface of constant energy.
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0.2 p
Vi )

F=hdk/dt

]
0.0 |
-0.2 /
_04 ‘u.x_“\»— R
Hole—-like Fermi surface
—-0.4 -02 0.0 0.2 04

Fig.  Hole-like Fermi surface. The magnetic field B is out of the page.
11.  Bloch oscillations
The acceleration theorem. In the presence of a uniform electric field E the momentum

of the wave packet obeys

dk
7 =F=(-e)E.
o (—e)

The group velocity is

1
V=%V,{en(k).

For the tight binding approximation for the 1D system,
g, (k) =g, —2t,cos(ak),

where o is in the unites of energy. We use the relation

24



dr
vV=—.
dt

Then we get

MO—M@=—%?.

When &(0) = 0, we have

k=M0=—%?.

Since the group velocity is equal to dr/dz,

_dx _10e(k) _ %—Oasin(ak) __2a .n(eaEt

= st
dt h ok h h h

)

Then the location of the electron oscillates in time as

2t, eakt
x =—=cos(
ek h

).

In order to observe these oscillations, the period of one Bloch oscillation should be less
than the relaxation time; 7= 107" s at room temperature. For wz>1, the electric field E
should satisfies the condition that

E>i
Tea

Fora=1A, r=10"s,e=1.602176487 x 107° C, and 7 = 1.05457162853 x 103* J 5, E
should be larger than 6.6 x 10° V/cm. Thus it is very difficult to observe the Bloch

25



oscillation in metals. Note that the Bloch oscillations have been detected in a cesium atoms
trapped in an optical lattice.

12. Effect of relaxation time
We consider the effect of the relaxation time in the Bloch oscillation.

dt T
and
y= 22“ sin(ak) .

We define the dimensionless variables.

q =ak,

d eaEtr 2mt,a’ | .
73=— P hg sin(q) =—a — fsing,

where

_ 2mtya’

’ ﬁ_ hz

_eakEt
h

This equation can be further simplified as

dg p . .
—+ =-1-%sing=-1-ksing,
dt' a 1 1
where
. eakEt
l’: =
fi

11. Mathematica

26



We solve the differential equation

dg g . .
—=-1-%sing=-1-ksing.
dr' a 1 1

with the initial condition g(#'=0) = qo, by using the NDSolve of Mathematica. The choice of
the initial condition is almost independent of the time dependence of ¢(#') and velocity,

2ya sin[g(#")].

2t,a .
l" = k =
v(t") 5 sin(ak) 5

However, the time dependence of ¢(#') and v(¢') is strongly dependent on the choice of the
parameter k; k=-1.01 — 1.01 (in the present case).

(1) k£=1.01,0.99,0.87, and 0.95.

. , " Loy
40. 60. % 1[\0
—5[

—10f
—15}
—20}
—250
-30f k=0.95, 0.97, 0.99, 1.01

Lo} Ig=0.95, 0.97, 0.99, 1.01

0.5¢ (

| | d Lo
2 A ! 00

AN
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Fig. Time (#’) dependence of ¢(¢’) and v(¢’). k = 0.95 (red), 0.97 (blue), 0.99
(yellow), 1.01 (purple). When k is positive and k approaches 1 from the
small value of k, the period of the oscillation tends to increases. For £>1.0,
no oscillation in v(¢) occurs.

(2) k=08
q
20 40 60 éO 160 ‘
—10f
—20f
-30¢ k=0.8
—40f
_50,
—60k
Lol k=0.8
0.5- ” ” ” "
‘ ‘ oy
4 [§ 80) 100
i U U U U U
-1.0r U U U U \/
Fig. Time (#) dependence of g(¢’) and w(¢’). k= 0.8.
3 k=0
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20 40 60 80 100
—20}

k=0

—40}
—60

—80+

—100

1)

0.5~

-0.5
—IOU

Fig. Time (¢’) dependence of ¢(¢’) and v(¢’). £k = 0. g(¢’) is completely
proportional to #’. The oscillation of v(¢’) is ideally sinusoidal.

4 k=-08

20 40 60 80 100

—20 k=-0.8
300
_a0f
5ol

—60F
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NN
T

Fig. Time (¢#’) dependence of ¢(¢’) and v(¢’). k =-0.8. q(¢’) periodically undergoes
a step-like change with time #’. The oscillation of v(¢’) is distorted from the
sinusoidal oscillation.

(5) k=-0.95,-0.97,-0.99, and -1.01

20 40 60 80 100

k=-0.95, -0.97, —-0.99, —1.
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k=-0.95, —0.97, -0.99, —1.01

1L.OF

0.5+

-0.5

-1.0

Fig. Time (#’) dependence of ¢(¢’) and v(¢’). k£ = 0.95 (red), 0.97 (blue), 0.99
(yellow), 1.01 (purple). When £ is negative and |k| approaches 1 from the
small value of ||, the period tends to increases. For |k|>1.0, no oscillation in
v(¢’) occurs.

APPENDIX
1. Quantum mechanics: probability current density
vt
’/ \‘ ’/ \¥
J (
>
\_ a,
\'\_/! \vf

First we consider the particles number flowing per unit area per unit time, J:

Jadt = |1//(r, t) 2 avdt

where v is the velocity of each particle and a is the area of cross section. The probability
density is

2
’

p(r,t) =y (r,1)
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where w(r,t) is the wavefunction. The integral

2
d’r,

[ ptrd’ = [l e

taken over some finite volume (2, is the probability of finding the particle in this volume.
Let us calculate the derivative of the probability with respect to time ¢.

0 2 3 al//* *al// 3
N0 dr = |y +yv" Z)d
8t-ﬂl/l(r> r=|( vy O

1 * * *
== [l —y (Hy)ld'r
Here the Schrodinger equation is given by

. OY
h—=Hy.
o TV

The complex conjugate of this equation is

*

al// * * *
—ih =H =Hy .
ot 4 4
Since
. h?
H =H=——V’+V(r)
2m
we get

(H'y Yy -y (Hy)=Hy )y -y (Hy)
S S 01 G SRR 00V
m 2m

or
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—[(Vy W -y (V).
m

(H'y -y (Hy) =—§l

Then we have

0 2 3 h ) s . 3
v of dr = [I(Viy -y (Vi)'

Note that

Vi Yy -y (Vy)=V-WVy -y Vy)

((Proof))

We use the formula of vector analysis.
V-(fa)=Vg-a+¢V-a
V-GV )=Vy -Vy +yViy’
The complex conjugate of the above equation
V- Vy)=Vy Vy+y'Viy
Thus

VW -y (Vy)=V-WVy —y'Vy)

Then

L fly e d'e =L [1y -y (s

h * *,
= [V-(Vy -y Vp)d'r
2mi
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We note that

Jgpdrz—_[V-Jdr =—_[J-da (Gauss’s theorem)

ot

or
0 . o
o p+V-J=0 (Equation of continuity)

Then the probability current density can be defined as
ho o« o 1
J=——(@'Vy-yVy')=—Re[(yply)]
2mi m
since

|
J —;RGKV/IPIV/)]
n

1 . he .
=—(W —Vy-y—-Vy)
2m i I

= =W Vy-yWy )=——W Vy-yVy)
2mi 2m
Suppose that the wavefunction is given by the Bloch wavefunction. Then

W'V =e ™ u (r)V[e* u,(r)]
=e ™" u, (r)e™ (V +ik)u, (r)

=u,” (r)(V +iK)u, (r)
YWy = mu (Ve ™ (r)]
=™ u, (r)e ™" (V —ik)u, (r)

= u, (r)(V - ik, (r)

The probability current density J is
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J= _;i[uk*(r)(v + ik)uk (r)- Uy (r)(v - ik)uk*(r)]
m

- _ﬂ[uk*(r)(v +iK)uy (1) — u, (0)(V = iK)u,, (1)]
2m
We note that

u, (1)(V + ik, (1) = z[uk (V) (Hy — &)V ity (1) =y, (0)(V 8, )4y ()]

—u, (r)(V — ik, (r)=- z[uk(rka EIVidty, () =1 (0)(V .50, (r)]
Then we get

u, (r)(V+zk)uk(r) u, (r(V- zk)uk (r)= [uk )(H, —&)V,u,(r)
+u, (r)(Hk —e )V, (1) =2(V,& ), (X (1)]
Using the relation
Hu, (r)=¢cu,(r)
v) = [ari(r)
(——)(——) [dr (v, z0m, @), (0)]

1
= Evkek-[druk )y, (r)= Ev,{gk

APPENDIX-II
Mathematica program for the Bloch oscillation with finite relaxation time
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Bloch oscillations

Clear["Global %"];

Blochv[qg0 , al_, tmax , opts ] :=
Module[ {numsol, numgraph},
numsol = NDSolve[{ g'[t] == -1 -al Sin[q[t]], 9[0] == g0}, q[t], {t, O, tmax}] // Flatten;
v[t_ ] :=8in[q[t]] /. numsol;
numgraph = Plot[Evaluate[v[t]], {t, O, tmax}, opts, DisplayFunction - Identity]]

Blochq[g0 , al , tmax , opts ] :=
Module[ {numsol, numgraph},
numsol = NDSolve[{ g'[t] == -1 -al Sin[q[t]], q[0] == g0}, gq[t], {t, O, tmax}] // Flatten;
numgraph = Plot[Evaluate[g[t] /. numsol], {t, 0, tmax}, opts, DisplayFunction - Identity]]
Gblochql =
Blochg[0.3, #, 100, PlotStyle -» {Thick, Hue[30 (-0.95-#)]}, AxesLabel - {"t'", "q"},

Background - LightGray, PlotRange -» All, DisplayFunction - Identity] & /@Range[-1.01, -0.95, 0.02];

gl = Graphics[{Text[Style["k=-0.95, -0.97, -0.99, -1.01", Black, 15], {60, -30}1}1;
Show[Gblochgl, gl, DisplayFunction -» $DisplayFunction]

q

20 20 & %0 00 ¢

_sl

10

_15f

—20f

_25L

-30f k=-0.95, —0.97, —0.99, —1.
Gblochvl =

Blochv[0.3, #, 100, PlotStyle -» {Thick, Hue[30 (-0.95-#)]}, AxesLabel » {"t'", "v"},

Background - LightGray, PlotRange -» All, DisplayFunction - Identity] & /@ Range[-1.01, -0.95, 0.02];

gl = Graphics|[{Text[Style["k=-0.95, -0.97, -0.99, -1.01", Black, 15], {60, 1.1}]}]1;
Show|[Gblochvl, gl, DisplayFunction - $DisplayFunction]

v

k=-0.95, —0.97, —0.99, —1.01

1.0+

0.5-

-0.5
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