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A part of The development of the band theory of solids. L. Hoddeson et al, Out of Crystal maze 

(Oxford University Press, 1992). 

 

The discovery of cyclotron resonance in metals opened up a new line of investigation of the 

Fermi surface of metals. Azbel remembers that when he first presented the idea at a seminar 

attended by Landau, the latter immediately raised a series of objections, and that only after two 

days of thrashing out the various possibilities was Landau convinced. Subsequently, Azbel and 

his younger Kharkov colleague E.A. Kaner showed how this technique could be used to 

determine Fermi surfaces. If the shape of the Fermi surface was known from other experimental 

methods, a study of the cyclotron resonance frequency could give the velocity of conduction 

electrons at every point on the Fermi surface, a quantity of fundamental importance in all 

problems involving electron transport, 

 

I. Introduction 

One of the important methods of observing the cyclotron resonance in a metal was proposed 

by Azbel and Kaner (1956). In the presence of a magnetic field B, the electron undergoes a 

cyclotron motion. When the electron passes through the skin depth (anomalous) just near the 

surface, it is accelerated by the rf (radio frequency) electric field. The Azbel-Kaner cyclotron 

resonance (AKCR) occurs when the period of cyclotron motion is the same as that of the rf field 

(in phase). Only when the electron passes through the skin depth, the electron can be accelerated 

by the rf electric field. The method of AKCR is a powerful tool in determining the structure of 

the Fermi surface, as well as the de Haas-van Alphen effect. 
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Fig.1 Azbel-Kaner type cyclotron resonance in metal. 

 

2. Skin depth 

If the frequency  is not too high, such a field will penetrate into the metal a distance c (the 

classical skin depth) given by 
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

2

2c
c  . 

 

The derivation of this depth assumes that the field in the metal varies little over a mean free path; 

c>>l. When c is comparable to l a much more complicated theory is required. First we evaluate 

the mean free path in Cu at 4 K. The conductivity and the relaxation time of Cu are given by 

 
22517 1029.5101029.5   (1/s) 

 

and 
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 2.47 x 10-9 (s)   

 

where n is the number density in Cu and 

 

n = 8.47 x 1022/cm3. 
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When vF = 1.57 x 108 cm/s for Cu, then the mean free path l at 4 K is evaluated as 

 

3.01047.21057.1 98  l  (cm). 

 

On the other hand, the classical skin depth in Cu can be calculated as 
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At 300 K, the conductivity of Cu is given by  
 

171029.5   s-1 

 
Then the skin depth is calculated as 
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On the other hand, at 4.2 K, 74.20c Å for f = 10 GHz, which is much smaller than the 

electron mean free path. When lc   one is in the extreme anomalous regime. The fact is 

that not all the electrons are participating in the absorption of the lectromagnetic wave. Only 

those that are running inside the skin depth for most of a mean free path l are capable of picking 

up much energy from the rf electric field. If the skin depth is ’, then only a fraction ’/l of 

electrons are effective in the conductivity. Then the conductivity ’ can be expressed by 
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where the number  is just a fudge factor, 
33

8
  . The skin depth ’ is given by 
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which leads to the expressions of ’ and as 
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Thus the effective conductivity s’ appears to behave as -1/3. Note that 
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3. Condition for AKCR 

In the presence of an external magnetic field along the surface of Cu, the radius of the orbit is 

evaluated by 
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where Fk  = 1.36 x 108 cm-1. This implies that rH is much larger than the anomalous skin depth. 

Since the field does not penetrate far into the metal, electrons can absorb energy only when they 

are within the skin depth of the surface. Because of the dimensions of the electron’s real space 

orbit at the Fermi surface are comparable to the mean free path, the skin depth will also be small 

compared with the size of orbit. 

Another important factor of the condition for the ACKR is that 
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or 

 

1c . 
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where c is the cyclotron angular frequency. The electron undergoes cyclotron roatation many 

times inside the metal within the relaxation time . 
 

 

 
 

Fig.2 The AKCR geometry. The rf electric field may be perpendicular or parallel to B, but both 

E and B are parallel to the surface of the specimen. The penetration depth (skin depth) of 

the rf field is indicated by the green shading. An electron orbit is shown. near the top of 

each turn the electron enters the skin depth and experiences the rf electric field, gaining 

energy from the rf field. 

 

((Note)) 

We note that in cyclotron resonance in semiconductors only the possibility n = 1 occurs 

because the rf field is assumed to penetrate the specimen uniformly. 

 

4. Principle of ACKR 

If the electron experiences a rf electric field of the same phase every time it enters the skin 

depth, then it can resonantly absorb energy from the rf electric field. This will be the case if the 

applied field has completed an integral number of periods, TE, each time the electron returns to 

the surface, 

 

EnTT  , 

 

where T is the period of the cyclotron motion and n is an integer. Since frequencies are inversely 

proportional to period, we get 

 

cn  , 

 

where 
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c is the cyclotron frequency and is given by 
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When  is fixed and the magnetic field is varied, the resonance condition can be expressed by 
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Thus, if the absorption is plotted as a function of 1/B, resonant peaks due to a given cyclotron 

period will be uniformly spaced. 

The magnetic field B lies in the plane of the sample. The rf electric field also lies in the plane 

of the surface may be either parallel (longitudinal) or at right angles (transverse) to B. If the 

relaxation time is sufficiently long, we may think of the carriers as spiraling about B, dipping 

once each cycle in and out of the rf field localized in the skin depth. Resonant absorption of 

energy will occur if a carrier sees an electric field in the same phase every time the carrier is in 

the skin depth.  

 

The penetration depth (skin depth) of the rf field is indicated by the shading. An electron orbit is 

shown. Near the top of each turn the electron enters the skin depth and experiences the rf electric 

field, gaining energy from the field. 

Stationary values of dA/d with respect to kz define the section of the Fermi surface which 

contribute to the central and resolved portions of the cyclotron lines. 

 

4. Cyclotron mass of electron 
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Fig.3 The area A enclosed between two adjacent orbits on a given slice-plane is given 

by  tndkkA . The magnetic field B is applied in a direction (out of the page, 

the z direction). ),( zkA   is the area of the orbit which is determined by the energy 

 and zk  (the component of k parallel to B.  

 

From the above equation, we get 

 

tBevkc nt ℏ , 

 

where tk  is measured around the orbit and nv  is the component of velocity vk normal to B. The 

component vn is defined as 
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where kn is measured normal to the orbit. Here we define the period Tc, which is the time taken 

for the electron to travel once around the orbit, 
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The area A enclosed between two adjacent orbits on a given slice-plane is given by 



8 
 

 

 tndkkA .  

 

or 
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The period T is also defined as 

 

c

T

2

 , 

 

using the cyclotron (angular) frequency c, defined by 
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The cyclotron  mass *

cm  is thus defined as 

 




 


 

),(

22

2
* z

n

t
c

kA

v

dk
m

ℏℏ
 

 

For the electron-like Fermi surface, *

cm >0 and for the hole-like Fermi surface, *

cm <0. 

 

5. Experimental results of AKCR in metals 
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Fig.4 AKCR in Cu. Comparison of calculation of the magnetic fiel dependence of the 

derivative of the surface resistivity with experimental results at 24GHz (After Kip, 

Langenberg, and Moore). (Kittel, ISSP,2005) 
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