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the Mind–Matter Unification Project in the Theory of Condensed Matter (TCM) research group. 
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1. DC Josephson junction 

 

 

 
Fig. Schematic diagram for experiment of DC Josephson effect. Two superconductors 

SI and SII (the same metals) are separated by a very thin insulating layer (denoted 
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by green). A DC Josphson supercurrent (up to a maximum value Ic) flows without 

dissipation through the insulating layer. 

 

Let 1  be the probability amplitude of electron pairs on one side of a junction. Let 2  

be the probability amplitude of electron pairs on the other side. For simplicity, let both 

superconductors be identical. 
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where Tℏ  is the effect of the electron-pair coupling or (transfer interaction across the 

insulator). T(1/s) is the measure of the leakage of 1  into the region 2, and of 2  into the 

region 1. 
Let 
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Then we have 
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where 

 

12   . 

 

Now equate the real and imaginary parts of Eqs.(3) and (4), 
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If 21 nn   as for identical superconductors 1 and 2, we have 
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The current flow from the superconductor S1 and to the superconductor S2 is proportional 

to 
t

n


 2 . J is the current of superconductor pairs across the junction 

 

)sin( 120   JJ , 

 

where J0 is proportional to T (transfer interaction). 

 

sin0II  . (5) 

 

2. AC Josephson effect 

 

 
Fig. Schematic diagram for experiment of AC Josephson effect. A finite DC voltage is 

applied across both the ends. 
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Let a dc voltage V be applied across the junction. An electron pair experiences a potential 
energy difference qV on passing across the junction (q = -2e). We can say that a pair on 

one side is at –eV and a pair on the other side is at eV. 
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This equation breaks up into the real part and imaginary part, 
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From these two equations with 21 nn  , 
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When V = V0 = constant, we have 
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The current oscillates with frequency 

 

V
e

ℏ

2
0  . 

 

A DC voltage of 1 eV produces a frequency of 483.5935 MHz. 
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Suppose that V = V0 = 1 V. The corresponding frequency is estimated from the relation, 
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3. I-V characteristic of Josephson tunneling junction 

We now consider the I-V characteristic of the Josephson tunneling junction where a 

insulating layer is sandwiched between two superconducting layers (the same type). A capacitor 
is formed by these two superconductors. In this type of Josephson junctions, one can see the 

quasiparticle I-V curve which is different with increasing voltage and decreasing voltage 

(hysteresis). There are two voltage states, 0 V and 2/e, where  is an energy gap of each 
superconductor. The I-V curve is characterized by (i) maximum Josephson tunneling current of 

Cooper pairs at V = 0 and (ii) Quasi-particle tunneling current (V>2/e). 
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Fig. Schematic diagram of quasiparticle I-V characteristic (usually observed in a S-I-S 

Josephson tunneling-type). Josephson current (up to a maximum value Ic) flows at V = 0. 

 is an energy gap of the superconductor . The DC Josepson supercurrent flows under V 

= 0. For V>2/e the quasiparticle tunneling current is seen. 

 

The strong nonlinearity in the quasiparticle I-V curve of a tunneling junction is not an 

appropriate to the application to the SQUID element. This nonlineraity can be removed by the 

use of thin normal film deposited across the electrodes. In this effective resistance is a parallel 

combination of the junction. The I-V characteristic has no hysteresis. Such behavior is often 

observed in the bridge-type Josephson junction where two superconducting thin films are 

bridged by a very narrow superconducting thin film. 

 

 
Fig. Schematic diagram of I-V characteristic of a Josephson junction (usually observed in 

bridge-type junction), which is reversible on increasing and decreasing V. A Josephson 

supercurrent flows up to Ic at V = 0. A transition occurs from the V = 0 state to a finite 
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voltage state for I>Ic.. Above this voltage the I-V characteristic exhibits an Ohm’s law 

with a finite resistance of the Junction. The current has an oscillatory component of 

angular frequency  (= 2eV/ħ) (the AC Josephson effect). Note that in order to avoid the 

hysteresis of I-V characteristic, the normal metal is used as a shunt resistance R. Two 

superconductors are connected in parallel with this resistance (resistively shunted 

junction (RSJ), see below). 

 

________________________________________________________________________ 

_________________________________________________________________________ 

4. RSJ (Resistively shunted junction) model: Josephson junction circuit application7 

Here we discuss the I-V characteristics of a Josephson tunneling junction using an equivalent 

circuit shown below. This circuit includes the effect of various dissipative processes and the 

distributed capacity with so-called lumped circuit parameters (connection of R and C in parallel). 

 

4.1 Fundamental equation 

 

 
 

Fig. Equivalent circuit of a real Josephson junction with a current noise source. (RSJ 

model). J.J. stands for the Josephson junction. IN(t) is the noise current source. 

 

We now consider an equivalent circuit for the Josephson junction, which is described above. J.J. 

stands for the Josephson junction. 
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where the first term is a Josephson current, the second term is an ohmic current, the third term is 

a displacement current, and IN(t) is the noise current source. Here we neglect this term. Since 
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we get a second-order differential equation for the phase 
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with  = I/Ic, where 0 is a magnetic quantum flux. 
________________________________________________________________________ 

4.2 Differential equation for 
For the sake of simplicity, we use the dimensionless quantities. Here we assume that 
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The normalized voltage is described by 
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4.3. I-V characteristic for J >> 1 

For the special case J>>1 (small capacitance limit), the above equation is reduced to 
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where T is a period; 
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((Mathematica)) 
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Fig. I/Ic vs V/(IcR) curve for J>>1 (red curve). The blue curve shows the Ohm’s law: 

I/Ic = V/(IcR) 
 

5. Flux quantization 

We start with the current density 
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The path of integration can be taken inside the penetration depth where sJ =0. 
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where  is the magnetic flux. Then we find that 
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The flux is quantized. When |q*| = 2|e|, we have a magnetic quantum fluxoid; 
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The current flows along the ring. However, this current flows only on the surface boundary 

(region from the surface to the penetration depth ). Inside of the system (region far from the 

surface boundary), there is no current since c/4 JH   and H = 0. 

 

 

6. DC SQUID (double junctions): quantum mechanics 

DC SQUID consists of two points contacts in parallel, forming a ring. Each contact forms a 

Josephson junctions of superconductor 1, insulating layer, and superconductor 2 (S1-I-S2). 

Suppose that a magnetic flux  passes through the interior of the loop. 

 
Fig. Schematic diagram of superconducting quantum interference device. 1 and 2 

refer to two point-contact weak links. The rest of the circuit is strongly 

superconducting. 

 

Here we have 
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where )( 111 ab    is the phase difference between the superconductors a and b through the 

junction 1 and )( 222 ab    are is the phase difference between the superconductors a and b 

through the junction 2.  
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When B = 0 (or  = 0), we have 021  . In general, we put the form 

 


c

e

ℏ
01  ,  

c

e

ℏ
02  . 

 

The total current is given by 
 

)cos()sin(2

)]sin()[sin(

)]sin()[sin(

0

00

2121







c

e
I

c

e

c

e
I

IIII

c

c

c

ℏ

ℏℏ







 

 
or 

 

)cos()sin(2
0

0 


 cII . 

 

since 
 

c

e

ℏ








0

 . 

 

The current varies with   and has a maximum of 2Ic when s
c

e


ℏ
 (s: integers), 

or 

 

ss
e

hc
s

e

c
0

2


ℏ
. 

 
The simple two point contact device corresponds to a two-slit interference pattern, for which the 

physically interesting quantity is the modulus of the amplitude rather than the square modulus, as 
it is for optical interference patterns. 

 
7. Critical current 

The maximum of I (called as the critical current) is given by 
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when   = 0. This means that the critical current is a periodic function of the magnetic flux  . 

 

 
 

Fig. Ideal case for the IB/Ic vs ext/0 curve in the DC SQUID, where IB is the maximum 

supercurrent. IB = 2 Ic when  ext/0 = n (integer) and IB = 0 for ext/0 = n +1/2. 

 

_________________________________________________________________________ 

8. Analogy of the diffraction with double slits and single slit 

 

 
Fig. Diffraction effect of Josephson junction. A magnetic field B along the z direction, which 

is penetrated into the junction (in the normal phase). 

 

We consider a junction (1) of rectangular cross section with magnetic field B applied in the plane 

of the junction, normal to an edge of width w, 
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with q = -2e. We use the vector potential A given by 
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Here we introduce the total magnetic flux passing through the area Wt ( BWtW  ), 
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The short period variation is produced by interference from the two Josephson junctions, while 

the long period variation is a diffraction effect and arises from the finite dimensions of each 
junction. The interference pattern of |I|2 is very similar to the intensity of the Young’s double 

slits experiment. If the slits have finite width, the intensity must be multiplied by the diffraction 
pattern of a single slit, and for large angles the oscillations die out. 

 
((Example)) 

The pattern of |I|2 vs 0/ is very similar to the pattern of the Young's double slit experiments. 
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Fig. Plot of 2

0

]
)sin(2

[
cI

I
 vs 

0


, where A/(Wt) = 10. The envelope arises from 

2

00

2 /)(sin 












 WW 

 and the oscillation with short period arises from 

)(cos
0

2




  

 

_____________________________________________________________________________ 

9. Young’s double slit experiment 

We consider the Young’s double slits (the slits are separated by d). Each slit has a finite 

width a. 

AêHWtL=10
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Fig. Geometric construction for describing the Young’s double-slit experiment (not to scale). 

 

((double slits)) 

E is the electric field of a light with the wavelength . d is the separation distance between the 

centers of the slits. 

 

 
Fig. A reconstruction of the resultant phasor ER which is the combination of two phasors (E0). 

 

2
cos2 0


EER  . 

 

The intensity: 

 

)cos1(2
2

cos4
2

0

22

0

2 


 EEEI R .], 

 

where the phase difference  is given by 

 





 sin
2 d

 

 

((single slit)) 

We assume that each slit has a finite width a. 
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Fig. Phaser diagram for a large number of coherent sources. All the ends of phasors lie on the 

circular arc of radius R. The resultant electric field magnitude ER equals the length of the 

chord. 

 

RE 0 , 

2

2
sin

2
sin2

2
sin2 0

0









E
E

RER  . 

where the phase difference  is given by 



 sin
2 a

 . Then the resultant intensity I for the 

double slits (the distance d) (each slit has a finite width a) is given by 

 

222
)

2

2
sin

)(cos1(
2

)

2

2
sin

(
2

cos










 m
m

I
II . 

 

 

10. Principle of DC SQUID 

 

For the special case J>>1 (small capacitance limit), we have 

 





  sin
d

d
J , 

 

for the RSJ model. In the DC SQUID, the two Josephson junctions (junctions 1 and 2) are 

connected in parallel.  
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B
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
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1 , for the Josephson junction-1 

s
B

J
d
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







 
2

sin 2
2 , for the Josephson junction 

 

where 

 

0

12 2



 ext . (3) 

 

From these three equations, we have 
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When we introduce a new parameter 

 

1
0

1 


 ext , 

 

we have the final form 

 

2
sin)cos( 1

0

1 Bext
J

d

d 





 


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We are interested in the DC current-voltage characteristic so we need to determine the time 

averaged voltage 

 


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Here 
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where 
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Then we have 
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)(cos4
2 0

222




 ext
cB II

R
V  . (45) 

 

When this equation for the voltage is compared with that for one Josephson junction with J»1 

 

22

cIIRV  . 

 

We find that the critical current is )cos(2
0

ext
cI  . This means that the critical current is 2Ic for 

next  0/  (integer) and zero for next  0/ +1/2. In other words, the critical current is a 

periodic function of   with a period 
0 . However, the actual critical current does not oscillate 

between 0 and 2Ic because of the finite self-inductance L. In the above model, L (or  = 0) is 

assumed to be zero. The critical current varies between 2Ic and finite value depending on the 

value of  (see the detail in Sec.7.1). 

When the total current IB is constant, the voltage across the DC SQUID periodically changes 

with the external magnetic flux. This is the phenomenon one exploit to create the most sensitive 

magnetic field detection. 

 

 
 

Fig. The critical current of the I-V characteristic changes periodically with the 

magnetic flux , with the period of the quantum fluxoid 0. Note that here we 

neglect the effect of the penetration of magnetic field into the insulation layers. 

Suppose that the current in the circuit is fixed. Then the voltage across the DC 

SQUID periodically changes with increasing  with the period of the quantum 

fluxoid 0. 

 

 

11. Experimental procedure for Mr. SQUID 

 

V

FêF00 1 2 3

0.5 1.0 1.5 2.0
IêH2IcL

0.2

0.4

0.6

0.8

1.0

VêHRê2L



23 

 

This figure is obtained from the Instruction manual of Mr. SQUID.9 

 
 

Fig. Detected voltage vs the magnetic flux . The current IB is kept at fixed value which is 

a little larger than 2Ic. The detected voltage shows a maximum for  = (n+1/2)0, and a 

minimum for  = n0. The detected voltage is a periodic function of  with a period of 

0. (This figure is copied from the User Guide of Mr SQUID9). 

 

 
 

12. Experimental result from Mr. SQUID (Advanced Lab. Binghamton 

University) 

 

We use Mr SQUID for the measurement on the properties of the Josephson effect. 
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APPENDIX-1 

Current density for the superconductors 

We consider the current density for the superconductor.  is the order parameter of the 

superconductor and m* and q* are the mass and charge of the Cooper pairs. The current density 

is invariant under the gauge transformation. 

 

]ˆRe[
*

*

*

 ApJ
c

q

m

q
s  , 

 

This can be rewritten as 
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The density is also gauge independent. 
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Now we assume that 
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We note that 
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The last term is pure imaginary. Then the current density is obtained as 
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we have 
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Note that Js (or vs) is gauge-invariant. Under the gauge transformation, the wave function is 

transformed as 
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So the current density is invariant under the gauge transformation. 

 


