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Abstract 

In the Senior Laboratory (Phys 427) in our Physics Department, we introduced an 
equipment of Mr. SQUID (superconducting quantum interference device) (Star 
Cryoelectronics, LLC, 25 Bisbee Court, Suite A, Santa Fe, NM 87508) in the Spring 
Semester, 2006. It is a DC SQUID magnetometer system incorporating a high-
temperature superconductor thin film SQUID sensor chip. This equipment allows one to 
observe unique features of superconductivity (using liquid nitrogen cooling) such as I-V 
curve and V- curves. This also allows one to learn about the operation of SQUID by 
following a series of experiments. This lecture note is intended as a substitute for 
textbook on Josephson junction, superconductivity, electronics, and related topics. We 
think that with this lecture note a great deal of background could be provided for 
undergraduate students who do not have enough knowledge on the Josephson junction. 
We use the Mathematica 5.2 for the simulation. All the programs we use are presented 
here. We think that the mathematica program given here is helpful for both graduate 
students and undergraduate students to want to understand the principle of the RSI model 
in the Josephson junctions and the DC SQUID model in spite of the complicated 
mathematics of nonlinear differential equations.  

For superconducting tunnel junctions with extremely thin insulating layers (10 – 15 Å) 
(weak link between the superconductors), the electron pair correlations extend through 
the insulating barrier. In this situation, it has been predicted by Josephson that paired 
electrons (Cooper pairs) can tunnel without dissipation from one superconductor to the 
other superconductor on the opposite side of the insulating layer [B.D. Josephson, Phys. 
Lett. 1, 251 (1962). The direct supercurrent of pairs, for currents less that Ic, flows with 
zero voltage drop across the junction (DC Josephson effect). The width of the insulating 
barrier of the junction limits the maximum that can flow across the junction, but 
introduce no resistance in the flow. Josephson also predicted that in the case a constant 
finite voltage V is established across the junction, an alternating supercurrent Ic 
sin(Jt+0) flows with frequency J = 2eV/ħ (AC Josephson effect). We solve a nonlinear 
differential equation for the phase  using the Mathematica 5.2. The calculations are 
made using ND (solving the differential equations numerically under appropriate initial 
conditions.). We think that the use of Mathematica 5.2 is significant in understanding the 
nonlinear behavior of the Josephson junction for students. 
 
1. Josephson junction1-10 

Tunneling if Cooper pairs form a superconductor through a layer of insulator into 
another superconductor. Such a junction is called a weak link. 
(i) DC Josephson effect 

A DC current flows across the junction in the absence of any electric or magnetic 
field. 

(ii) AC Josephson effect 
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A DC voltage applied across the junction causes rf (radio frequency) current 
oscillation across the junction. 

(iii) Macroscopic long range quantum interference 
A DC magnetic field applied through a superconducting circuit containing two 
junctions causes the maximum supercurrent to show interference effects as a 
function of magnetic field intensity. 

 

((Brian D. Josephson)) 

Josephson, Pippard’s graduate student at Cambridge, attending Philip  Anderson’s 

lectures there in 1961 to 1962, became fascinated by the concept of the pgase of the BCS-

GL order parameter as a manifestation of the quantum theory on a macroscopic scale. 

Playing with the theory of Giaver tunneling, Josephson found a phase-dependent term in 

the current; he then worked out all the consequences in a series of papers, private letters, 

and a privately circulated fellowship thesis. In particular, Jpsephson predicted that a 

direct current should flow, without any applied voltage, between two superconductors 

separated by a thin insulating layer. This current would come as a cones quence of the 

tunneling of electron pairs between the superconductors, and the current would be 

proportional to the sine of the phase difference between the superconductors. At a finite 

applied voltage V, an alternating supercurrent of frequency 2eV/h should flow between 

the superconductors. Josephson’s work established the phase as a fundamental variable 

in superconductivity.(Book edited by Hoddeson et al.12). 
 
1.1. DC Josephson junction3 

 

 
Fig.1 Schematic diagram for experiment of DC Josephson effect. Two superconductors 

SI and SII (the same metals) are separated by a very thin insulating layer (denoted 
by green). A DC Josphson supercurrent (up to a maximum value Ic) flows without 
dissipation through the insulating layer. 
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Let 1  be the probability amplitude of electron pairs on one side of a junction. Let 2  

be the probability amplitude of electron pairs on the other side. For simplicity, let both 
superconductors be identical. 
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where Tℏ  is the effect of the electron-pair coupling or (transfer interaction across the 
insulator). T(1/s) is the measure of the leakage of 1  into the region 2, and of 2  into the 

region 1. 
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______________________________________________________________________ 
((Mathematica5.2)) Program-1 
eq1=� — D[ψ1[t],t]�— T ψ2[t] 

 � — ψ1′@tD � T — ψ2@tD  
 eq2=� — D[ψ2[t],t]�— T ψ1[t] 

 � — ψ2′@tD � T — ψ1@tD  
 
rule1 = 9ψ1 → Jè!!!!!!!!!!!!!!

n1@#D Exp@� θ1@#DD &N=
 

 
9ψ1 → Iè!!!!!!!!!!!!!!!!

n1@#1D �� θ1@#1D
&M=

 

 
rule2 = 9ψ2 → Jè!!!!!!!!!!!!!!

n2@#D Exp@� θ2@#DD &N=
 

 
9ψ2 → Iè!!!!!!!!!!!!!!!!

n2@#1D �� θ2@#1D
&M=

 
 eq3=eq1/.rule1/.rule2//Simplify 

 

� �� θ1@tD
— Hn1′@tD + 2 � n1@tD θ1′@tDL

2
è!!!!!!!!!!!!!!
n1@tD � �� θ2@tD

T —
è!!!!!!!!!!!!!!
n2@tD

 
 eq4=eq2/.rule1/.rule2//Simplify 

 

� �� θ2@tD
— Hn2′@tD + 2 � n2@tD θ2′@tDL

2
è!!!!!!!!!!!!!!
n2@tD � �� θ1@tD

T —
è!!!!!!!!!!!!!!
n1@tD

 
______________________________________________________________________ 
 
Then we have 
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where 

12   . 

Now equate the real and imaginary parts of Eqs.(3) and (4), 
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If 21 nn   as for identical superconductors 1 and 2, we have 
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The current flow from the superconductor S1 and to the superconductor S2 is proportional 

to 
t

n


 2 . J is the current of superconductor pairs across the junction 

)sin( 120   JJ , 

where J0 is proportional to T (transfer interaction). 
sin0II  . (5) 

 
1.2 AC Josephson effect3 
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Fig.2 Schematic diagram for experiment of AC Josephson effect. A finite DC voltage is 
applied across both the ends. 

 
Let a dc voltage V be applied across the junction. An electron pair experiences a potential 
energy difference qV on passing across the junction (q = -2e). We can say that a pair on 
one side is at –eV and a pair on the other side is at eV. 
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This equation breaks up into the real part and imaginary part, 
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From these two equations with 21 nn  , 
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2)( 12 
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)](sin[0 tJJ  . 

with 

 Vdt
e

t
ℏ

2
)0()(  . 

When V = V0 = constant, we have 

tV
e

t 0

2
)0()(
ℏ
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2

)0(sin[ 00 tV
e
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The current oscillates with frequency 

V
e

ℏ

2
0  . (9) 
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A DC voltage of 1 V produces a frequency of 483.5935 MHz. 

V
e

ℏ

ɺ 2
 . (10) 

 
((Note)) 

Suppose that V = V0 = 1 V. The corresponding frequency 0 is estimated from the 
relation, 

0
0 2

2


ℏ

eV
, 

or 

MHz
eV

5935.483
1005459.12

10)1060219.1(2

2

2
27

612
0

0 



 






ℏ
. 

 
1.3 I-V characteristic of Josephson tunneling junction5,7,8 

We now consider the I-V characteristic of the Josephson tunneling junction where a 
insulating layer is sandwiched between two superconducting layers (the same type). A 
capacitor is formed by these two superconductors. In this type of Josephson junctions, 
one can see the quasiparticle I-V curve which is different with increasing voltage and 
decreasing voltage (hysteresis). There are two voltage states, 0 V and 2/e, where  is an 
energy gap of each superconductor. The I-V curve is characterized by (i) maximum 
Josephson tunneling current of Cooper pairs at V = 0 and (ii) Quasi-particle tunneling 
current (V>2/e). 
 

 

 
Fig.3 Schematic diagram of quasiparticle I-V characteristic (usually observed in a S-I-S 

Josephson tunneling-type). Josephson current (up to a maximum value Ic) flowsat 
V = 0.  is an energy gap of the superconductor . The DC Josepson supercurrent 
flows under V = 0. For V>2/e the quasiparticle tunneling current is seen. 

 
The strong nonlinearity in the quasiparticle I-V curve of a tunneling junction is not an 

appropriate to the application to the SQUID element. This nonlineraity can be removed 
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by the use of thin normal film deposited across the electrodes. In this effective resistance 
is a parallel combination of the junction. The I-V characteristic has no hysteresis. Such 
behavior is often observed in the bridge-type Josephson junction where two 
superconducting thin films are bridged by a very narrow superconducting thin film. 
 

 
Fig.4 Schematic diagram of I-V characteristic of a Josephson junction (usually observed 

in bridge-type juntion), which is reversible on increasing and decreasing V. A 
Josephson supercurrent flows up to Ic at V = 0. A transition occurs from the V = 0 
state to a finite voltage state for I>Ic.. Above this voltage the I-V characteristic 
exhibits an Ohm’s law with a finite resistance of the Junction. The current has a 
oscillatory component of angular frequency  (= 2eV/ħ) (the AC Josephson 
effect). 

 
3. RSJ (Resistively shunted junction) model: Josephson junction circuit 

application7 

Here we discuss the I-V characteristics of a Josephson tunneling junction using an 
equivalent circuit shown below. This circuit includes the effect of various dissipative 
processes and the distributed capacity with so-called lumped circuit parameters 
(connection of R and C in parallel). 
 
3.1 Fundamental equation 
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Fig.5 Equivalent circuit of a real Josephson junction with a current noise source. (RSJ 

model). J.J. stands for the Josephson junction. 
 
We now consider an equivalent circuit for the Josephson junction, which is described 
above. J.J. stands for the Josephson junction. 

ItIVC
R

V
I Nc  )(sin ɺ , (11) 

where the first term is a Josephson current, the second term is an ohmic current, the third 
term is a displacement current, and IN(t) is the noise current source. Since 

V
e

ℏ

ɺ 2
 , 

we get a second-order differential equation for the phase  
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)(2

)(sin
22

tI
Ue

tIII
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C
NNc 









ℏ

ɺℏɺɺℏ
, (12) 

where U() is an equivalent potential and is defined by 

)cos()cos(
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




 





 J

c

cc E
I

I
I

c
II

c
U , 

with  = I/Ic, where 0 (=2ħc/2e = 2.06783372x10-7 Gauss cm2) is a magnetic quantum 
flux and )2/(0 cIE cJ   is the Josephson coupling constant. If  is regarded as the 

coordinate x, the above equation corresponds to the equation of motion of a mass with 
Ce 2)2/(ℏ  in the presence of the potential U(). The second term of the left-hand side is a 

friction proportional to the velocity. When IN(t) = 0 and the second term is neglected, the 
above equation can be rewritten as 

constEUC
e









)(

22

1 2

2

ɺ
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, (13) 

where E is the total energy and is constant. For >1 (or I>Ic), U() monotonically 
decreases with increasing : d/dt≠0 (finite voltage-state). For <1 (or I<Ic), U() has 
local minima. There are two solutions: d/dt = 0 (no voltage state) or d/dt≠0 (finite 
voltage-state) for large C. In this case, the I-V characteristic has a hysteresis. 
__________________________________________________________________ 
((Mathematica 5.2)) Program-2 
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U1=-( κ φ + 
Cos[φ]);Plot[Evaluate[Table[U1,{κ,0,1,0.05}]],{φ,0,6 π}, 
PlotStyle→Table[Hue[0.1 
i],{i,0,10}],Prolog→AbsoluteThickness[2],Background→GrayLev
el[0.7], AxesLabel→{{φ},{U(φ)}},PlotRange→{{0,6 π},{-20,1}}]  

2.5 5 7.5 10 12.5 15 17.5
8φ<

-20
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8Uφ<

 
   (
Graphics
) 
  Plot[Evaluate[Table[U1,{κ,1,3,0.2}]],{φ,0,6 π}, 
PlotStyle→Table[Hue[0.1 
i],{i,0,10}],Prolog→AbsoluteThickness[2],Background→GrayLevel[0.7], 
AxesLabel→{{φ},{U(φ)}},PlotRange→{{0,6 π},{-60,1}}]  

2.5 5 7.5 10 12.5 15 17.5
8φ<

-60

-50

-40
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-10

8Uφ<

 
   (
Graphics
) 
Fig.6 Equivalent potential energy U() with a parameter  = I/Ic. (a) 0<<1. U() has 

local maxima and local minima. (b) 1<<3. U() increases with increasing . 
 
Analogy: Simple rigid pendulum 
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Fig.7 Simple pendulum with an applied torque. 
 
We consider a simple rigid pendulum light stiff rod of length l with a bob of mass m. 
 

 
Fig.8 Free body diagram of the simple pendulum 
 

The oendulum can rotate freely about the pivot P. The equation of motion is given by 
 ɺɺɺ  sinmglTI , 

where T is an external torque, I is a moment of inertia around the pivot P and the third 
term of the right-hand side is a viscosity of air. There is an analogy between this 
pendulum and the Josephson junction, 
 

 sinmglIT  ɺɺɺ  (pendulum). (14) 

 sin
22 cI

eRe

C
I  ɺℏɺɺℏ

 (Josephson). (15) 
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Table 1 
________________________________________________________________________ 
Josephson junction pendulum 
 
phase difference  deflection 
total current across junction I applied torque T 
Capacitance C Moment of inertia 
normal tunneling conductance 1/R viscous damping  
Josephson current Icsin horizontal displacement of bob sinlx   

voltage across junction V angular velocity  ɺ  
________________________________________________________________________ 
 

(1) sinmglT  , 0
dt

d
 . 

When a small torque is applied, the pendulum finally settles down at a constant angle 
of deflection . No angular velocity ( = 0) corresponds to no voltage across a 
junction (V = 0). The junction is superconducting. x = l sin. 

(2) 
If the torque is gradually increased, the pendulum deflects to a greater but steady 
angle. We can pass more current through a junction without any voltage appearing. 

(3) 
Critical torque (Tc = mgl). This is the torque which deflects the pendulum through a 
right angle so that it is horizontal. 

(4) 
For T>Tc the pendulum cannot remain at rest but rotates continuously. As the 
pendulum rotates, the horizontal deflection x oscillates. The angular velocity is 
always in the same direction. This corresponds to the case of I>Ic and V≠0. A DC 
voltage will appear across the junction if the current passed through it exceeds a 
critical value.  

On the half-cycle during which the bob is rising the rotation decelerates because 
gravity opposes the applied torque, but on the following half-cycle the bob is 
accelerated by gravity as it falls. 

dcV
e

dt

d

ℏ





2

2

2

1
 . 

The phase is in one-to one correspondence with an angle of rotation of a damped 
pendulum, driven by a constant torque, in a constant gravitational field. The regime I<Ic 
corresponds to a situation in which the applied torque is less than a critical torque 
necessary to raise the pendulum to an angle /2. For I>Ic the pendulum rotates in a 
manner such that the average energy dissipated per rotation is equal to the average work 
per rotation. 
________________________________________________________________________ 
 

3.2 Differential equation for 
For the sake of simplicity, we use the dimensionless quantities. Here we assume that 
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where J is the Josephson plasma frequency and is defined by 
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The normalized voltage is described by 
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since 

V
e

ℏ
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We are interested in the DC current-voltage characteristic so we need to determine the 
time averaged voltage 





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Note that the McCumber parametrer c is sometimes used in stead of J, where c = 1/J
2. 

 
3.3. I-V characteristic for J » 1 

For the special case J»1 (small capacitance limit), the above equation is reduced to 
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where T is a period; 
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________________________________________________________________________ 
((Mathematica 5.2)) Program-3 

K1@x_D:= ‡
0

πikjj
1

x−Sin@φD +
1

x+Sin@φD y{zz 
φ;Y1 = K1@xD; Y2= Simplify@Y1,x> 1D
 

 

2πè!!!! !! !!!!!!!
−1+x2  

 
eq1= V1==

2 π IcR

Y2
; eq2 =Solve@eq1,xD

 

 
::x→ −$%%%%%%%%%% %%%%%% %%%1+

V12

Ic2 R2
>, :x → $%%%%% %% %%%% %% %%%% %%1+
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Ic2R2
>>

 

 
I1= $%%%%%%%%%%%%%%%%%%%%1+

V12

Ic2 R2
ê.8R→ 1, Ic→ 1<

 

 
"##### ###### ##
1+ V12  

   
Plot[{I1,V1},{V1,0,4},PlotStyle→{Hue[0],Hue[0.4]},Prolog→Ab
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soluteThickness[2],Background→GrayLevel[0.7], 
AxesLabel→{"V/IcR","I/Ic"},PlotRange→{{0,4},{0,4}}] 

0.5 1 1.5 2 2.5 3 3.5 4
VêIcR

0.5
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4

IêIc

 
 
Graphics
 

 
Fig.9 I/Ic vs V/(IcR) curve for J>>1 (red curve). The green curve shows the Ohm’s law: 

I/Ic = V/(IcR) 
 
4. Phase plane analysis4 

We now consider a equation 









 sin
2

2

d

d

d

d
J , (20) 

or 




sin


J
d

d
, (21) 

where 





d

d
 )( , (22) 

is proportional to voltage [




d

d
J ]. Then we have 

2

)( 2

2

2 




















d

d

d

d

d

d

d

d

d

d

d

d
. 

The above equation can be rewritten as 







sin
2

2

J
d

d
. (23) 

The state of the system is represented at any time by a particular point in the ),(   plane. 

As the time  varies, this point describes a trajectory. Each particular trajectory depends 
on the initial conditions. Thus for a fixed value of ),(   plane, the system is represented 

by a set of possible paths in the ),(   plane. Such a plot is often called a phase space 

diagram. 
We begin by discussing the orbits when  = 0 and J = 0. 
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0sin
2

2





d

d
. 

This equation can be integrated as 

consta 


cos
2

2

. (24) 

Open orbits require that a always be larger than 2. 
______________________________________________________________________ 
((Mathematica 5.2)) Program-4 

Graphics̀ ImplicitPlot̀ ; eq1=
1

2
Ω2−Cos@φD;

pt1=

ImplicitPlot@eq1� #, 8φ, −2 π, 2 π<, 8Ω, − 2 π,2 π<, PlotPoints→ 100,

Contours→ 50,PlotStyle→ 8Hue@0.7D, Thickness@0.006D<,
DisplayFunction→ Identity,PlotRange→ AllD&ê@ Range@0.1, 1.2,0.1D;

Show@pt1, DisplayFunction→ $DisplayFunctionD  

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

 
 
Graphics
 

Fig.10 The  vs  plane trajectories. a cos2/2  where a is changed as a 

parameter. The closed orbits for a<1 ( 22/)0(2   ) and the open orbits for 

a>1 ( 22/)0(2   ). 

 
5. Numerical calculation 

In the plane of the parameters J and  the situation can be summarized as follows.6.7 
(a) For >1 and arbitrary J value no equilibrium point exists; there is only a periodic 

solution of the second kind. Therefore the junction will be in the finite voltage 
state. 

(b) For <1, the situation is more complicated. The behavior depends on the 
particular value of J. 
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

 J

 
Fig.11 Critical line for kc(J) (denoted by red line) in the Jvs  plane. The blue line 

denotes the expression given by JJc 



4

)(  . The system undergoes stable 

oscillations when >c(J) for fixed J, in addition to the zero-voltage state. 
 

For J<0.2, the simple relation holds: JJc 



4

)(  . 

A curve can be identified, denoted by c(J), which divides the plane into two regions 
corresponding to one or two stable state solutions, respectively. 

We now solve the differential equation by using Mathematica 5.2 





d

d
 )( , 

and 








)(sin)(
)(

J
d

d
. 

Initial condition at  = 0 (or t = 0): 

0)0( v   and 0)0(   . 

We calculate the  dependence of )(  and )(  for max0    by using Mathematica 

5.2 [NDSolve], where J and  are changed as parameters. 
(i) Curve of )( vs )(  

(ii) The direction of the curves of )( vs )( , when  increases [field vector] 

(iii) The  dependence of )( and )( . 

(iv) The determination of the maximum and minimum values of )(  in the long -
region where )( is a well-defined oscillatory function of .  
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5.1 Numerical calculation 

((Mathematica 5.2)) Program-5 
Phase space  vs   with vector field 
J = 0.6 is fixed. The current ratio  is changed around the critical value c = 0.6965. We 
show the phase diagram of the voltage () vs )(  for various initial conditions. (0) = 

0. (0) = -10 – 10. We also show the vector field. 
 
Fig.12 The phase-plane trajectories in the  vs . J = 0.6.  is changes as a parameter,  

=0.5 – 0.7. 
 
(1) J = 0.6 and  = 0.5 
Clear["Global`*"] 
 <<Graphics`Graphics` 
 <<Graphics`PlotField` 
 (*Subroutine, ParametricPlot in the phase space*)  
 
phase[{φ0_,v0_},{βJ_,κ_},τmax_,opts__]:=Module[{numso1,numg
raph},numso1=NDSolve[{ Ω'[τ]+ βJ 
Ω[τ]+Sin[φ[τ]]�κ,φ'[τ]�Ω[τ],φ[0]�φ0,Ω[0]�v0},{Ω[τ],φ[τ]},{
τ,0,τmax}]//Flatten;numgraph=ParametricPlot[{φ[τ],Ω[τ]}/.nu
mso1,{τ,0,τmax},opts, 
DisplayFunction→Identity]];field[{βJ_,κ_},{xmin_,xmax_},{ym
in_,ymax_},opts__]:=PlotVectorField[{y,-βJ y-
Sin[x]+κ},{x,xmin,xmax},{y,ymin,ymax},opts]; 
 
 phlist=phase[{0,#},{0.6,0.5},100,  PlotStyle→Hue[0.1 
(#+6)], AxesLabel→{"φ","Ω"},Prolog→AbsoluteThickness[2], 
Background→GrayLevel[0.5],PlotRange→All,Ticks→{  π Range[-
10,10], Range[-6,6]}, DisplayFunction→Identity]&/@Range[-
10,10,1];f1=field[{0.6,0.5},{-8 π,12 π},{-
6,6},PlotPoints→20,ScaleFunction→(0.4#&),ScaleFactor→None,D
isplayFunction→Identity];Show[phlist,f1,DisplayFunction→$Di
splayFunction] 
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(2) J = 0.6 and  = 0.6 
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(3) J = 0.6 and  = 0.65 
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(4) J = 0.6 and  = 0.67 
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(5) J = 0.6 and  = 0.69 
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(6) J = 0.6 and  = 0.696 
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(7) J = 0.6 and  = 0.6962 
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(8) J = 0.6 and  = 0.6963 
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(9) J = 0.6 and  = 0.6965 
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A stable periodic solution appears. The states of zero and finite voltage are both possible. 
 
(10) J = 0.6 and  = 0.697 
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(11) J = 0.6 and  = 0.699 
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(12) J = 0.6 and  = 0.7 
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5.2. Numerical calculation 

((Mathematica 5.2)) Program-6 
J = 0.6 is fixed. The current ratio  is changed around the critical value c = 0.6965. 

We show the  dependence of the voltage )(  for various initial conditions. Note that 

the normalized DC voltage RIV c/  is defined by  J . For >c(J), )( is a 

sum of time-independent term )  and a periodically oscillating function of . The 

average voltage corresponds to  J , where   is the average of the maximum 

and minimum values of )(  in the long - region where )(  is a well-defined 

periodically oscillating function of . The related program to find the maximum and 
minimum values of )(  will be shown in Sec.5.5 for convenience. 

 
Fig.13  vs  for J = 0.6. The parameter  is varied as a parameter,  = 0.693 - .1.20. 
 
(1) J = 0.6 and  = 0.693 
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 phlist=phase[{0,#},{0.6,0.693},100,  PlotStyle→Hue[0.1 
(#+6)], AxesLabel→{"τ","Ω"},Prolog→AbsoluteThickness[2], 
Background→GrayLevel[0.5],PlotRange→{{0,30 π},{-
1,3}},Ticks→{  π Range[0,50,10], Range[-6,6]}, 
DisplayFunction→Identity]&/@Range[-
10,10,1];Show[phlist,DisplayFunction→$DisplayFunction] 
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(2) J = 0.6 and  = 0.694 
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τ
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(3) J = 0.6 and  = 0.695 
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(4) J = 0.6 and  = 0.6960 
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τ
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Ω

 

 
(5) J = 0.6 and  = 0.6962 

10 π 20 π 30 π
τ
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Ω
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The average voltage  (= )( J =V/RIc) is equal to 0, where J = 0.6 and   (= I/Ic) = 

0.6962, independent of the initial condition ( = 0). 
 
(6) J = 0.6 and  = 0.6965 

10 π 20 π 30 π
τ

-1

1

2
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Ω

 

 
The average voltage  (= )( J =V/RIc) is nearly equal to 0.6x0.95 = 0.57 where J = 

0.6 and   (= I/Ic) = 0.6965). 
 
(7) J = 0.6 and  = 0.6970 

10 π 20 π 30 π
τ
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(8) J = 0.6 and  = 0.698 
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(9) J = 0.6 and  = 0.70 
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(10) J = 0.6 and  = 0.80 
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The average voltage  (= )( J ) is equal to 0.6x1.22656 = 0.7359 and 0.6x0 =0 

where J = 0.6 and   (= I/Ic) = 0.8, depending on the initial condition ( = 0). 
 
(11) J = 0.6 and  = 0.90 

10 π 20 π 30 π
τ
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Ω

 

 
The average voltage  (= )( J ) is nearly equal to 0.6x1.429 = 0.8574 and 0.6x0 =0 

where J = 0.6 and   (= I/Ic) = 0.9, depending on the initial condition ( = 0). This 
implies the existence of the hysteresis behavior. The I-V curve with increasing V is 
different from that with decreasing V. 
 
(12) J = 0.6 and  = 1.0 

10 π 20 π 30 π
τ
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Ω

 
 
The average voltage  (= )( J ) is equal to 0.6x1.61579 = 0.9695, where J = 0.6 and 

  (= I/Ic) = 1.0, independent of the initial condition ( = 0). This implies no hysteresis 
behavior.  
 
(13) J = 0.6 and  = 1.2 
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τ
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The average voltage  (= )( J ) is equal to 0.6x1.97065 = 1.1824, where J = 0.6 and 

  (= I/Ic) = 1.2, independent of the initial condition ( = 0). This implies no hysteresis 
behavior.  
 
5.3. Simulation 

((Mathematica 5.2)) Preogram-7 
J = 0.2 is fixed. The current ratio  is changed around the critical value c = 0.253. 
We show the  dependence of the voltage )(  for various initial conditions. 

 
Fig.14  vs  for J = 0.2. The parameter  is varied as a parameter,  = 0.24 - .0.50. 
 
(1) J = 0.2 and  = 0.24 
 
Clear["Global`*"] 
 <<Graphics`Graphics` 
 <<Graphics`PlotField` 
 (*Subroutine, ParametricPlot in the phase space*)  
 
phase[{φ0_,v0_},{βJ_,κ_},τmax_,opts__]:=Module[{numso1,numg
raph},numso1=NDSolve[{ Ω'[τ]+ βJ 
Ω[τ]+Sin[φ[τ]]�κ,φ'[τ]�Ω[τ],φ[0]�φ0,Ω[0]�v0},{Ω[τ],φ[τ]},{
τ,0,τmax}]//Flatten;numgraph=Plot[Ω[τ]/.numso1,{τ,0,τmax},o
pts, DisplayFunction→Identity]] 
 
 phlist=phase[{0,#},{0.2,0.24},100,  PlotStyle→Hue[0.1 
(#+6)], AxesLabel→{"τ","Ω"},Prolog→AbsoluteThickness[2], 
Background→GrayLevel[0.5],PlotRange→{{0,30 π},{-
1,3}},Ticks→{  π Range[0,50,10], Range[-6,6]}, 
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DisplayFunction→Identity]&/@Range[-
10,10,1];Show[phlist,DisplayFunction→$DisplayFunction] 
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(2) J = 0.2 and  = 0.245 
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(3) J = 0.2 and  = 0.250 
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(4) J = 0.2 and  = 0.251 
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(5) J = 0.2 and  = 0.252 
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(6) J = 0.2 and  = 0.253 
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The average voltage  (= )( J =V/RIc) is equal to 0.2x1.0269 = 0.20538 and 0.2x0 = 

0, where J = 0.2 and   (= I/Ic) = 0.253, depending on the initial condition ( = 0). 
 
(6) J = 0.2 and  = 0.254 
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(7) J = 0.2 and  = 0.255 
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(9) J = 0.2 and  = 0.256 
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(10) J = 0.2 and  = 0.30 
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(11) J = 0.2 and  = 0.4 
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(12) J = 0.2 and  = 0.5 
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The average voltage  (= )( J =V/RIc) is nearly equal to 0.2x2.48381 = 0.49676 and 

0.2x0 = 0, where J = 0.2 and   (= I/Ic) = 0.5, depending on the initial condition ( = 0). 
This implies the existence of the hysteresis behavior. The I-V curve with increasing V is 
different from that with decreasing V. 
 
5.4 Simulation 

((Mathematica 5.2)) Preogram-8 
J = 0.9 is fixed. The current ratio  is changed around the critical value c = 0.9197. 

We show the  dependence of the voltage )(  for various initial conditions: (0) = 0. 

(0) = -10 – 10. 
 
Fig.15  vs  for J = 0.9. The parameter  is varied as a parameter,  = 0.90 - .2.0. 
 

(1) J = 0.90 and  = 0.90 
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Clear["Global`*"] 
 <<Graphics`Graphics` 
 <<Graphics`PlotField` 
 (*Subroutine, ParametricPlot in the phase space*)  
 
phase[{φ0_,v0_},{βJ_,κ_},τmax_,opts__]:=Module[{numso1,numg
raph},numso1=NDSolve[{ Ω'[τ]+ βJ 
Ω[τ]+Sin[φ[τ]]�κ,φ'[τ]�Ω[τ],φ[0]�φ0,Ω[0]�v0},{Ω[τ],φ[τ]},{
τ,0,τmax}]//Flatten;numgraph=Plot[Ω[τ]/.numso1,{τ,0,τmax},o
pts, DisplayFunction→Identity]] 
 
 phlist=phase[{0,#},{0.9,0.90},100,  PlotStyle→Hue[0.1 
(#+6)], AxesLabel→{"τ","Ω"},Prolog→AbsoluteThickness[2], 
Background→GrayLevel[0.5],PlotRange→{{0,30 π},{-
1,3}},Ticks→{  π Range[0,50,10], Range[-6,6]}, 
DisplayFunction→Identity]&/@Range[-
10,10,1];Show[phlist,DisplayFunction→$DisplayFunction] 
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Graphics
 

 

(2) J = 0.90 and  = 0.91 
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(3) J = 0.90 and  = 0.915 
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(4) J = 0.90 and  = 0.918 
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 36

 
(5) J = 0.90 and  = 0.919 
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(6) J = 0.90 and  = 0.9195 
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(7) J = 0.90 and  = 0.9197 
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(8) J = 0.90 and  = 0.91975 
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(9) J = 0.90 and  = 0.9198 
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(10) J = 0.90 and  = 0.92 
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(11) J = 0.90 and  = 0.94 
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(12) J = 0.90 and  = 1 
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The average voltage < (= )( J ) is equal to 0.9x0.98318 = 0.8849 and 0.9x0 =0 

where J = 0.9 and   (= I/Ic) = 1.0, depending on the initial condition ( = 0). This 
implies the existence of hysteresis behavior.l 
 

(12) J = 0.90 and  = 1.1 
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The average voltage <> (= )( J ) is equal to 0.9 x 1.12581 = 1.0132, where J = 0.9 

and  (= I/Ic) = 1.1, independent of the initial condition ( = 0). This implies no 
hysteresis behavior.  
 

(13) J = 0.90 and  = 2.0 
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The average voltage <> (= )( J ) is equal to 0.9 x 2.2029 = 1.9826, where J = 0.9 

and   (= I/Ic) = 2, which is independent of the initial condition ( = 0). 
 

5.5 Simulation: the relation of  J  vs  
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Here we show how to determine the average voltage   as a function of the 

current , where J is changed as a parameter.  
(1) Using the following Mathematica 5.2 program, we find the maximum and 

minimum of () in the long- time region where () periodically oscillates with 
. 

(2) The average <> is calculated as (maximum+minimum)/2. The average voltage 
 J  is plotted as a function of  for each J (= 0.2 – 1.2). 

 
Fig.16  J  vs  for J = 0.2, 0.4, 0,6, 0.8, 1.0, and 1.2. The number denoted 

in each curve is the value of J. For J≤1,   takes two values with   = 0 

and finite value of  . Note that for J =1 and 1.2,   takes three values 

(multi-valued function) near  = 1. 
 
((Mathematica 5.2)) Preogram-9 
Clear["Global`*"] 
 <<Graphics`Graphics` 
 (*Subroutine, to find Maximum and minimum*)  
 
phase1[{φ0_,v0_},{βJ_,κ_},τmax_,opts__]:=Module[{numso1,num
graph},numso1=NDSolve[{ Ω'[τ]+ βJ 
Ω[τ]+Sin[φ[τ]]�κ,φ'[τ]�Ω[τ],φ[0]�φ0,Ω[0]�v0},{Ω[τ],φ[τ]},{
τ,0,τmax}]//Flatten;numgraph=Plot[ Ω[τ]/.numso1,{τ,0,τmax},
opts, 
DisplayFunction→Identity]];Max1[{φ0_,v0_},{βJ_,κ_},{τmin_,τ
max_}]:=Module[{numso1},numso1=NDSolve[{ Ω'[τ]+ βJ 
Ω[τ]+Sin[φ[τ]]�κ,φ'[τ]�Ω[τ],φ[0]�φ0,Ω[0]�v0},{Ω[τ],φ[τ]},{
τ,0,τmax}]//Flatten;maximum=FindMaximum[βJ  
Ω[τ]/.numso1,{τ,τmin,τmax}]];Min1[{φ0_,v0_},{βJ_,κ_},{τmin_
,τmax_}]:=Module[{numso1},numso1=NDSolve[{ Ω'[τ]+ βJ 
Ω[τ]+Sin[φ[τ]]�κ,φ'[τ]�Ω[τ],φ[0]�φ0,Ω[0]�v0},{Ω[τ],φ[τ]},{
τ,0,τmax}]//Flatten;minimum=FindMinimum[ βJ 
Ω[τ]/.numso1,{τ,τmin,τmax}]];Sei[βJ_,κ_]:=Module[{A1,B1, 
ave1,list1},A1=Max1[{0,#},{βJ,κ},{20 π,30π}]&/@Range[-
10,10,1];  B1=Min1[{0,#},{βJ,κ},{20 π,30π}]&/@Range[-
10,10,1];ave1=(A1+B1)/2;list1=Table[{κ,ave1[[k,1]]},{k,1,21
}]];Nat1[βJ_]:=Flatten[Table[Sei[βJ,κ],{κ,0,3,0.01}],1];Saw
1[βJ_]:=ListPlot[Nat1[βJ],PlotStyle→{Hue[0.7],PointSize[0.0
15]},AxesLabel→{"κ","<η>"},PlotLabel→NumberForm[βJ], 
PlotRange→{{0,3},{0,3}}] 
 Table[Saw1[βJ],{βJ,0.2,1.2,0.2}] 
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5.6 Result on  vs <> from the above simulation 

Figure 17 shows the <> vs  curve for J = 0.1 – 1.2. For J = 0.6, no voltage drop 
develops until the value of  reaches 1. At the point (<> = 0 and  = 1) there occurs a 
transition from the zero-votage state (<> = 0) to the finite-voltage state (<> ≠0). The 
<> vs  curve approaches the straight line denoted by <> =   with further increasing 
<>. With decreasing <> from the high <> side, in turn, the <> vs  curve starts to 
deviate from the straight line <> = . The transition occurs from the finite voltage state 
to the zero voltage state at  = 0.6965. Similar hysteresis behaviors are also seen for the 
cases of J = 0.12 - 0.9. 
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Fig.17 The I-V curve ( vs <>) for J = 0.1 – 1.2  
 

 
Fig.18 Schematic diagram of the I-V ( vs <>) trajectories as <. changes. J = 0.6. At 

< = 0,  changes from 0 to 1. At  =1, <> changes from 0 to a value above 1. 
With further increasing <>, the relation  = <> holds valid (reversible). With 
decreasing <>, in turn, the relation  = <> still holds valid. There is a 
transition from this state to the zero-voltage state(<> = 0) at  = c = 0.6965. 

 
 
6. SQUID (superconducting quantum interference device)3 
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6.1 Current density and flux quantization 

In quantum mechanics, the current density is defined as 

AJ
mc

q

mi

q
22

** ][
2


 

ℏ
, 

where q (=-2e, e>0) is a charge for electron pairs, m is a mass, A is a vector potential, and 
 is a wavefunction. When the wavefunction is given by the amplitude |(r)|and the 
phase (r) as 

)()( r
r

 ie , 

then J can be rewritten as 
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AJ
ℏ

ℏ

c

q

m

q
  . 

Note that this current density is invariant under the gauge transformation.  AA'  

and ℏcq /'   , 
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where ]/)([/ )()()(' ℏℏ cqiciq ee    r
rrr .  

If we consider now a cylinder which may become superconductor in an external magnetic 
field and if we take a path from a surface at a distance which is larger than the penetration 
depth , then J = 0. When q = -2e, we have 
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where  is the magnetic flux inside the ring and )2/(20 ecℏ  (=2.06783372 x 10-7 

Gauss cm2) is a quantum fluxoid. In the last equation we apply the Stoke’s theorem.  
 
((Note)) 

The current flows along the ring. However, this current flows only on the surface 
boundary (region from the surface to the penetration depth ). Inside of the system 
(region far from the surface boundary), there is no current since c/4 JH   and H = 
0. 
 

 

6.2 DC SQUID (double junctions): quantum mechanics 

DC SQUID consists of two points contacts in parallel, forming a ring. Each contact 
forms a Josephson junctions of superconductor 1, insulating layer, and superconductor 2 
(S1-I-S2). Suppose that a magnetic flux  passes through the interior of the loop. 
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Fig.19 Schematic diagram of superconducting quantum interference device. 1 and 2 

refer to two point-contact weak links. The rest of the circuit is strongly 
superconducting. 

 

Here we have 

bbaad 2112   l . 
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where )( 111 ab    is the phase difference between the superconductors a and b 

through the junction 1 and )( 222 ab    are is the phase difference between the 

superconductors a and b through the junction 2.  
 
When B = 0 (or  = 0), we have 021  . In general, we put the form 
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The total current is given by 
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or 

)cos()sin(2
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The current varies with   and has a maximum of 2Ic when s
c

e


ℏ
 (s: integers), 
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or 

ss
e
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s

e

c
02


ℏ

. (31) 

The simple two point contact device corresponds to a two-slit interference pattern, for 
which the physically interesting quantity is the modulus of the amplitude rather than the 
square modulus, as it is for optical interference patterns. 
 
6.3 Analogy of the diffraction with double slits and single slit 

 

 
Fig.20 Diffraction effect of Josephson junction. A magnetic field B along the z direction, 

which is penetrated into the junction (in the normal phase). 
 
We consider a junction (1) of rectangular cross section with magnetic field B applied in 
the plane of the junction, normal to an edge of width w. 
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weith q = -2e. We use the vector potential A given by 
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Here we introduce the total magnetic flux passing through the area Wt ( BWtW  ), 
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The total current is given by 
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The short period variation is produced by interference from the two Josephson junctions, 
while the long period variation is a diffraction effect and arises from the finite dimensions 
of each junction. The interference pattern of |I|2 is very similar to the intensity of the 
Young’s double slits experiment. If the slits have finite width, the intensity must be 
multiplied by the diffraction pattern of a single slit, and for large angles the oscillations 
die out. 
 
((Young’s double slit experiment)) 

We consider the Young’s double slits (the slits are separated by d). Each slit has a 
finite width a. 
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Fig.21 Geometric construction for describing the Young’s double-slit experiment (not to 

scale). 
 
((double slits)) 

E is the electric field of a light with the wavelength . d is the separation distance 
between the centers of the slits. 
 

 
Fig.22 A reconstruction of the resultant phasor ER which is the combination of two 

phasors (E0). 
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where the phase difference  is given by  





 sin
2 d

 

 
((single slit)) 

We assume that each slit has a finite width a. 
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Fig.23 Phaser diagram for a large number of coherent sources. All the ends of phasors lie 

on the circular arc of radius R. The resultant electric field magnitude ER equals the 
length of the chord. 
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where the phase difference  is given by 

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 . Then the resultant intensity I for 

the double slits (the distance d) (each slit has a finite width a) is given by 
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_______________________________________________________________________ 
((Mathematica 5.2)) Program-9 

f@α_, β_D := H1 + Cos@αDL SinA β

2
E2

I β

2
M2

 
 Plot[Evaluate[Table[f[α,N α],{N,20,20}],{α,-15 π,15 π}], 
PlotPoints→200, PlotStyle→Table[Hue[0.3 
i],{i,0,10}],PlotRange→{{- 6 π,6 π},{0,0.002}}, 
Prolog→AbsoluteThickness[1.2],Background→GrayLevel[0.5]] 
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Fig.24 The combined effects of two-slit and single-slit interference. The pattern consists 

of a diffraction envelope and interference fringes. 
 
6.3 DC SQUID Juntion based on th RSJ model 

6.3.1 Formulation 

The DC SQUID consists of two Josephson junctions connected in parallel on a 
superconducting loop of inductance L. 
 
 

 
Fig.25 Simple notation for the DC SQUID consisting of two Josephson junctions (J.J.) in 

parallel. 
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Fig.26 Equivalent circuit of the DC SQUID. 
 
As shown in Fig.26, the total current is given by 

21 IIIB  . 

The total magnetic flux is given by sext LI , where L is the total self-inductance (L 

= L1 + L2 and L1 = L2 = L/2 in this case) 
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where Is is the loop (circulating) current. 
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and the total voltage V is given by the simple form, 
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since 0/ dtdIB  (or IB is independent of t). 

For the sake of simplicity, we use the dimensionless quantities. Here we assume that 
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Similarly we have 
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The phases are related to the external magnetic flux by 
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The normalized voltage  is given by 
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6.2 Two-dimesnional (2D) SQUID potential 

Equations (33) and (34) describing the DC SQUID dynamics can be regarded as an 
equation of motion of a point mass in a field of force with a 2D SQUID potential 

),( 21 U . 
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Thus the normalized 2D SQUID potential ),(
~

21 U  [= )2/(),( 21 JEU  ] is obtained as 
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where )2/(0 cIE cJ   is the Josephson coupling constant. It is convenient to introduce 

new variable 
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The loop current s is related to y as 
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Then the 2D SQUID potential ),(
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We make a contour plot of ),(
~

yxU  in the x-y plane, as , ext/0, and B are changed as 

parameters. To this end, we use the Mathematica 5.2. 
 
 
 
 
6.3 Simple case: J »1 and  = 0 

For simplicity we assume that J »1. This assumption is appropriate for the operation 
of DC SQUID. 

First we consider the critical current at V = 0. We also assume that  = 0. 
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Then we have 
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The maximum of IB is 

)cos(2
0

max 


 ext
cII  . (40) 

The critical current is a periodic function of the external magnetic flux. 
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Fig.27 Ideal case for the IB/Ic vs ext/0 curve in the DC SQUID, where IB is the 

maximum supercurrent. IB = 2 Ic when  ext/0 = n (integer) and IB = 0 for ext/0 
= n +1/2. 

 
We consider the general case (but still L = 0 and J »1) 
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From the addition of Eqs.(41) and (42) with the help of the relation Eq.(43), we have 
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When we introduce a new parameter 
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We are interested in the DC current-voltage characteristic so we need to determine the 
time averaged voltage 
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When this equation for the voltage is compared with that for one Josephson junction with 
J»1 
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22
cIIRV  . 

We find that the critical current is )cos(2
0

ext
cI  . This means that the critical 

current is 2Ic for next  0/  (integer) and zero for next  0/ +1/2. In other words, 

the critical current is a periodic function of   with a period 
0 . However, the actual 

critical current does not oscillate between 0 and 2Ic because of the finite self-inductance L. 
In the above model, L (or  = 0) is assumed to be zero. The critical current varies 
between 2Ic and finite value depending on the value of  (see the detail in Sec.7.1). 

When the total current IB is constant, the voltage across the DC SQUID periodically 
changes with the external magnetic flux. This is the phenomenon one exploit to create the 
most sensitive magnetic field detection. 
 
 
This figure is obtained from the Instruction manual of Mr. SQUID.9 

 
 
Fig.28 Detected voltage vs the magnetic flux . The current IB is kept at fixed value 

which is a little larger than 2Ic. The detected voltage shows a maximum for  = 
(n+1/2)0, and a minimum for  = n0. The detected voltage is a periodic 
function of  with a period of 0. (This figure is copied from the User Guide of 
Mr SQUID9). 

 
 
6.4 More general case: J »1 and finite  

In order to avoid hysteresis in the I-V curve one usually choose overdamped junction. 
Here we start with the differential equations given by 
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where the initial conditions [(0) and 2(0)] are chosen appropriately  
 
 
7. Simulation 

The differential equations for () and 2() are numerically solved by using the 
Mathematica 5.2. We show our calculation on the  dependence of .  The parameters B, 
J,  and 0/ext  are appropriately changed for our calculations.  

 
7.1 Relation of <> vs B with 0/ext  as a parameter 

We calculate the relation <> vs B where 0/ext  = 0, 0.05,0.1, 0.15, 0.20, 0.25, 

0.30, 0.35, 0.40, 0.45, and 0.5. We choose J = 10 for the overdamped case. So that no 
hysteresis is seen in the I-V curve. The parameter  is changed as a parameter:  = 0.02 - 
3. The voltage <> suddenly increases from zero to a finite value at the critical current 
which is dependent on the magnetic flux 0/ext  and . 

 
(i) Using the following Mathematica 5.2 program, we find the maximum and 

minimum of () in the long time region where () periodically oscillates with . 
(ii) The average <> is calculated as (maximum+minimum)/2. The average voltage 

 J  is plotted as a function of  for the fixed J (= 10) and , where 

the magnetic flux 0/ext  is changed as a parameter. 

(iii) The voltage is equal to zero for <(B)c. It suddenly increase with increasing  
above (B)c. We determine the critical current (B)c as a function of the magnetic 
flux where  is changed as a parameter. 

 
Fig.29  J  vs  (J = 10) and ( = 1 and 0.3) for 0/ext =0 – 0.5. The 

number denoted in each curve is the value of 0/ext . Note that   takes 

several values at the same  around 0/ext  = 0.4. All solutions are plotted in the 
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figures. Some values are unphysical. We do not understand why so many values 
appears. Some solutions corresponds to metastable states. 

 
(a)  = 1 and J = 10 
 
Clear["Global`*"] 
 <<Graphics`Graphics` 
 (*Subroutine, DC SQUID beta=1 betaJ=10 voltage vs magnetic 
flux*)  

 

DCSQ@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, τmax_,opts__D:=

ModuleA8numso1,numgraph<,
numso1=

NDSolveA9 βJφ1'@τD +Sin@φ1@τDD �
κB

2
−
2

β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD +Sin@φ2@τDD�
κB

2
+
2

β
J φ1@τD − φ2@τD

2 π
− N0N, φ1@0D � φ01,

φ2@0D � φ02=, 8φ1@τD, φ2@τD<, 8τ, 0, τmax<E êê Flatten;
numgraph= PlotAJ κB−Sin@φ1@τDD −Sin@φ2@τDD

2
N ê.numso1, 8τ, 0, τmax<,

opts, DisplayFunction→ IdentityEE;
Max1@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, 8τmin_, τmax__<D:=

ModuleA8numso1<,
numso1=

NDSolveA9 βJφ1'@τD +Sin@φ1@τDD �
κB

2
−
2

β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD +Sin@φ2@τDD�
κB

2
+
2

β
J φ1@τD − φ2@τD

2 π
− N0N, φ1@0D � φ01,

φ2@0D � φ02=, 8φ1@τD, φ2@τD<, 8τ, 0, τmax<E êê Flatten;
maximum = FindMaximumAJ κB−Sin@φ1@τDD −Sin@φ2@τDD

2
N ê.numso1,

8τ, τmin, τmax<EE;
Min1@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, 8τmin_, τmax__<D:=

ModuleA8numso1<,
numso1=

NDSolveA9 βJφ1'@τD +Sin@φ1@τDD �
κB

2
−
2

β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD +Sin@φ2@τDD�
κB

2
+
2

β
J φ1@τD − φ2@τD

2 π
− N0N, φ1@0D � φ01,

φ2@0D � φ02=, 8φ1@τD, φ2@τD<, 8τ, 0, τmax<E êê Flatten;
maximum = FindMinimumAJ κB−Sin@φ1@τDD −Sin@φ2@τDD

2
N ê.numso1, 8τ, τmin, τmax<EE

 
 
Sei[βJ_,β_,N0_]:=Module[{A1,B1,list1,ave1},A1=Max1[{0,0},{β
J,#,β,N0},{400 π,800π}]&/@Range[0,3,0.01];  
B1=Min1[{0,0},{βJ,#,β,N0},{400 
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π,800π}]&/@Range[0,3,0.01] ;ave1=(A1+B1)/2; 
list1=Table[{0.01 (k-1),ave1[[k,1]]},{k,1,301}]] 
 h[n0_]:=ListPlot[Evaluate[Sei[10,1,n0]],PlotStyle→{Hue[2  
n0],PointSize[0.01]},AxesLabel→{"κB","η"},PlotLabel→NumberF
orm[n0]] 
 f1=Table[h[p],{p,0,0.5,0.05}] 
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(b)  = 0.3 and J = 10 
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((Mathematica 5.2))  
 
7.2 Critical current vs 0/ext  with  as a parameter 

In Fig.30, we show the plot of <> vs B. The zero-voltage state (<> = 0) is stable 
for B≤(B)c, where (B)c is the critical current. We find that (B)c decreases with 
increasing themagnetic flux ext/0. With increasing the magnetic flux, there occurs a 
transition at B = (B)c from the zero-voltage state (<> = 0)to a finite-voltage state (<> 
≈ B). In Fig.31 we show the plot of (B)c as a function of ext/0, 
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Fig.31 The critical current (B)c as a function of ext/0, where  is changed as a 

parameter.  
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Fig.32 The critical current (B)c at ext/0 = 1/2 as a function of . The solid line denotes 

the expression given by )1/(2)(  cB . The data points fall well on the solid 

line. 
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From the above simulation we find that the critical current (B)c decreases with 
increasing the magnetic flux from 2 at 0/ext  = 0 to some finite value (but not zero) at 

0/ext  = 0.5 because of the finite value of  (finite inductance). 

First we estimate the critical current analytically based on an approximation 
 /2sin   for ||</2 (one can easily prove this using the Mathematica 5.2). We use 

the following ap;proximations, 
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From this relation we have 
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The value of 1 has a maximum at 0/ext  = 1/2. The condition for the critical current is 

that the maximum of 1 should be equal to 1. 
As 0/ext  changes from zero to 1/2, the value of 1 changes from 1 = B/2 to  

1
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Since the critical current of 1 is equal to 1, the critical current of B should be equal to 
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Note that the change in the SQUID voltage is approximated by 
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cNcN
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where )1/(11   : 2/1 B   at 0/ext  = 0 and )1/(1)2/(1   B . We 

assume that the normal-state resistance of the DC SQUID is RN/2: the slope of I-V curve 
is given by RN/2, but not by RN. So the resistance of each Josephson junction is RN since 
the parallel configuration. 
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In our Mr. SQUID, we have RN/2 = 1.44  and  2Ic = 66mA.  
 
 
7.3 Relation of <> vs 0/ext  with B as a parameter 

We calculate the magnetric flux ( 0/ext ) dependence on the average voltage, where 

B is changed as a parameter. When B is fixed, the average voltage <> periodically 
changes with 0/ext  with the periodicity 1)/( 0  ext . In Fig.33, we show our 

calculation for B = 1.5 – 2.9. We find that <> is a multivalued function of 0/ext . 

We think that the lowest curve may be a stable solution. This curve has a maximum at 

0/ext  = 1/2 and 0 near 0/ext  = 0 and 1. Note that we do not take into account of 

the effect of Johnson noise. This is a principle of the DC SQUID. The element plays a 
role of the transformation between the voltage and the magnetic flux. 
 
Fig.33 <> vs /0, where B is changed as a parameter. J = 10 and  = 1.5. The value 

denoted on each figure is the value of B: B = 1.5, 1.7, 1.9, 2.2, 2.4, and 2.9. 
 
 ((Mathematica 5.2)) 
Clear["Global`*"] 
 <<Graphics`Graphics` 
 (*Subroutine, DC SQUID beta=1 betaJ=10 voltage vs magnetic 
flux*)  
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DCSQ@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, τmax_,opts__D:=

ModuleA8numso1, numgraph<,
numso1=

NDSolveA
9 βJφ1'@τD +Sin@φ1@τDD�

κB

2
−
2

β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD +Sin@φ2@τDD�
κB

2
+
2

β
J φ1@τD − φ2@τD

2 π
− N0N,

φ1@0D� φ01, φ2@0D� φ02=, 8φ1@τD, φ2@τD<, 8τ, 0, τmax<E êê
Flatten;

numgraph= PlotAJ κB−Sin@φ1@τDD −Sin@φ2@τDD
2

N ê.numso1,
8τ,0, τmax<, opts, DisplayFunction→ IdentityEE;

Max1@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, 8τmin_, τmax__<D:=

ModuleA8numso1<,
numso1=

NDSolveA
9 βJφ1'@τD +Sin@φ1@τDD�

κB

2
−
2

β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD +Sin@φ2@τDD�
κB

2
+
2

β
J φ1@τD − φ2@τD

2 π
− N0N,

φ1@0D� φ01, φ2@0D� φ02=, 8φ1@τD, φ2@τD<, 8τ, 0, τmax<E êê
Flatten;

maximum =

FindMaximumAJ κB−Sin@φ1@τDD −Sin@φ2@τDD
2

N ê.numso1,
8τ, τmin, τmax<EE;

Min1@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, 8τmin_, τmax__<D:=

ModuleA8numso1<,
numso1=

NDSolveA
9 βJφ1'@τD +Sin@φ1@τDD�

κB

2
−
2

β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD +Sin@φ2@τDD�
κB

2
+
2

β
J φ1@τD − φ2@τD

2 π
− N0N,

φ1@0D� φ01, φ2@0D� φ02=, 8φ1@τD, φ2@τD<, 8τ, 0, τmax<E êê
Flatten;

maximum =

FindMinimumAJ κB−Sin@φ1@τDD −Sin@φ2@τDD
2

N ê.numso1,
8τ, τmin, τmax<EE  

 
Sawako[βJ_,β_,κB_]:=Module[{A1,B1,list1,ave1},A1=Max1[{0,0}
,{βJ,κB,β,#},{400 π,800π}]&/@Range[0,1,0.005];  
B1=Min1[{0,0},{βJ,κB,β,#},{400 
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π,800π}]&/@Range[0,1,0.005] ;ave1=(A1+B1)/2; 
list1=Table[{0.005 (k-1),ave1[[k,1]]},{k,1,201}]] 
 
g[κB_]:=ListPlot[Evaluate[Sawako[10,1.5,κB]],PlotStyle→{Hue
[0.7],PointSize[0.015]},AxesLabel→{"Φ/Φ0","<η>"},PlotLabel→
NumberForm[κB], PlotRange→{{0,1},{0,1.3}}] 
 f1=Table[g[κB],{κB,0.5,3,0.1}] 
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7.4 Loop current 

Here we discuss how the loop current changes with the time , depending on the total 
current B and the external magnetic flux ext. The loop current is given by 

)
2

(
2

0

21







 ext
s 




  

To this end, we consider one typical case: J = 10,  = 1, and 0/ext  being changed as 

a parameter. We choose the initial condition that 1(0) = 2(0) = 0.  
 
Clear["Global`*"] 
 <<Graphics`Graphics` 
 (*Subroutine, DC SQUID Magnetic flux dependence of loop 
current*)  
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DCSQ@8φ01_, φ02_<, 8βJ_, κB_, β_, N0_<, τmax_,opts__D:=

ModuleA8numso1, numgraph<,
numso1=

NDSolveA9 βJφ1'@τD +Sin@φ1@τDD�
κB

2
−
2

β
J φ1@τD − φ2@τD

2 π
− N0N,

βJφ2'@τD +Sin@φ2@τDD�
κB

2
+
2

β
J φ1@τD − φ2@τD

2 π
− N0N, φ1@0D � φ01,

φ2@0D� φ02=, 8φ1@τD, φ2@τD<, 8τ,0, τmax<E êê Flatten;
numgraph= PlotA2

β
 J Hφ1@τD − φ2@τDL

2 π
− N0N ê.numso1, 8τ, 0, τmax<,

opts, DisplayFunction→ IdentityEE;  
 phlist=DCSQ[{0,0},{10,1,1,#},3000,  PlotStyle→Hue[1.4 
(#+5)], AxesLabel→{"τ","<κs>"},Prolog→AbsoluteThickness[2], 
Background→GrayLevel[0.5],PlotRange→{{0,800},{-
1,1}},Ticks→{  π Range[0,200,100], Range[-1,2]}, 
DisplayFunction→Identity]&/@Range[0,0.5,0.1 ];Show[phlist,D
isplayFunction→$DisplayFunction] 
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(2) B = 1.1 and 0/ext  = 0, 0,1, 0,2, 0,3, 0.4, and 0.5. 

100 π 200 π
τ

-1

1

<κs>

 
 
Graphics
 

(3) B = 1.4 and 0/ext  = 0, 0,1, 0,2, 0,3, 0.4, and 0.5. 

The loop current starts to oscillate with time only for 0/ext  = 0.4 and 0.5. 
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(5) B = 1.6 and 0/ext  = 0, 0,1, 0,2, 0,3, 0.4, and 0.5. 

The loop current starts to oscillate with time only for 0/ext  = 0.1, 0.2, 0.3, 0.4 and 0.5. 
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(5) B = 2.0 and 0/ext  = 0, 0,1, 0,2, 0,3, 0.4, and 0.5. 

100 π 200 π
τ

-1

1
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Graphics
 

 
 
8.  CONCLUSION 

We have discussed the physics of the Josephson junction and the principle of the DC 
SQUID. We do not discuss the rf SQUID (consisting of only one Josephson junction) the 
principle of the SQUID magnetometer. The SQUID magnetometer is the most sensitive 
measurement device. It can measure magnetic flux on the order of one flux quantum. The 
magnetic properties of magnetic systems including spin glass, superspin glass, and 
superparamagnet are studied using the SQUID magnetometer (MPMS XT-5, Quantum 
Design) in our Laboratory. 
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APPENDIX 

Mathematica 5.2 programs 
(1) Program-5 Phase space  vs   with vector field. J = 0.60.  is changed as a 

parameter. 
(2) Program-6  vs  for J = 0.60.  is changed as a parameter. 
 

(1)  = 1 and 0/ext  = 0, 0,1, 0,2, 0,3, 0.4, and 0.5. 

 


