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In 1980, Klitzing et al. found a remarkable behavior in the Hall resistance in 2D electron 

systems in a Si (100) MOS inversion layer in strong magnetic field. They realized that the value 

of the Hall resistance is quantized into a universal quantity (h/e2) with a dramatic accuracy; Ryx 

=n (h/e2). This phenomenon has come to be known as the integral quantum Hall effect (IQHE); n 

is integer. Subsequently (Tsui et at al., 1982), it was discovered that there exist also some 

rational fraction values, around which the Hall plateau can be centered; Ryx = (h/e2) with  = 1/3, 

2/3, 2/5, 3/5, 4/5, 2/7, and so on. This phenomenon is called as fractional quantum Hall effect 

(FQHE). Klitzing was awarded the 1985 Nobel Prize in Physics for the discovery of IQHE.  

Tsui, Störmer, and Laughlin were awarded the 1998 Nobel Prize in Physics for the discovery of 

FQHE. 

Here we discuss only on the physics of IQHE. 

 

Klitzing constant;  

 

RK = h/e2 = 25,812.8074434  

 

http://physics.nist.gov/cgi-bin/cuu/Value?rk|search_for=elecmag_in! 

______________________________________________________________________________ 

Klaus von Klitzing (28 June 1943 in Schroda) is a German physicist known for discovery of the 

integer quantum Hall Effect, for which he was awarded the 1985 Nobel Prize in Physics. In 1962, 

von Klitzing passed the Abitur at Artland Gymnasium in Quakenbrück, Germany, before 

studying physics at the Braunschweig University of Technology, where he received his diploma 

in 1969. He continued his studies at the University of Würzburg, completing his PhD thesis 

Galvanomagnetic Properties of Tellurium in Strong Magnetic Fields in 1972, and habilitation in 

1978. This work was performed at the Clarendon Laboratory in Oxford and the Grenoble High 

Magnetic Field Laboratory in France, where he continued to work until becoming a professor at 

the Technical University of Munich in 1980. Von Klitzing has been a director of the Max Planck 

Institute for Solid State Research in Stuttgart since 1985. The von Klitzing constant, RK = h/e2 = 

25,812.807449(86) Ω, is named in honor of von Klitzing's discovery of the quantum Hall effect, 

and is listed in the National Institute of Standards and Technology Reference on Constants, Units, 

and Uncertainty. The inverse of the von Klitzing constant is equal to half that of the conductance 

quantum value.  
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http://en.wikipedia.org/wiki/Klaus_von_Klitzing 

______________________________________________________________________________ 

Daniel Chee Tsui (born February 28, 1939, Henan Province, China) is a Chinese-born American 

physicist whose areas of research included electrical properties of thin films and microstructures 

of semiconductors and solid-state physics. He was previously the Arthur LeGrand Doty 

Professor of Electrical Engineering at Princeton University and adjunct senior research scientist 

in the Department of Physics at Columbia University, where he was a visiting professor from 

2006 to 2008. Currently, he is a research professor at Boston University. In 1998, along with 

Horst L. Störmer of Columbia and Robert Laughlin of Stanford, Tsui was awarded the Nobel 

Prize in Physics for his contributions to the discovery of the fractional quantum Hall effect. 

http://en.wikipedia.org/wiki/Daniel_C._Tsui 

______________________________________________________________________________ 

Horst Ludwig Störmer (born April 6, 1949 in Frankfurt, Germany) is a German physicist who 

shared the 1998 Nobel Prize in Physics with Daniel Tsui and Robert Laughlin. The three shared 

the prize "for their discovery of a new form of quantum fluid with fractionally charged 

excitations" (the fractional quantum Hall effect). He and Tsui were working at Bell Labs at the 

time of the experiment cited by the Nobel committee, though the experiment itself was carried 

out in a laboratory at the Massachusetts Institute of Technology (Laughlin did not participate in 

the experiment but was later able to explain its results). 
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http://en.wikipedia.org/wiki/Horst_L._St%C3%B6rmer 

 

______________________________________________________________________________ 

Robert Betts Laughlin (born November 1, 1950) is the Anne T. and Robert M. Bass Professor 

of Physics] and Applied Physics at Stanford University. Along with Horst L. Störmer of 

Columbia University and Daniel C. Tsui of Princeton University, he was awarded a share of the 

1998 Nobel Prize in physics for their explanation of the fractional quantum Hall effect. Laughlin 

was born in Visalia, California. He earned a B.A. in Mathematics from UC Berkeley in 1972, 

and his Ph.D. in physics in 1979 at the Massachusetts Institute of Technology (MIT), Cambridge, 

Massachusetts, USA. Between 2004 and 2006 he served as the president of KAIST in Daejeon, 

South Korea. 

 

 
http://en.wikipedia.org/wiki/Robert_Laughlin 
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____________________________________________________________________________ 

1. Hall effect 

We consider an electron (mass m and charge –e, relaxation time ) inside the metal in the 

presence of the electric field E and magnetic field B. 

 

)0,,( yx EEE , (0,0, )BB . 

 

 
 

The equation of motion for the electron is 
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In the steady state (dv/dt = 0) , we get 
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and the conductivity tensor is given by 
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The Onsager reciprocal relation is satisfied. We also note that 
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where e>0. 

 

 

2. Experimental configuration 

(a) 3D case 

Experimentally we need the following expression 
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Fig. Experimental configuration for the measurement of Hall effect. 
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Then we have 
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The Hall coefficient RH is 
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where -e is the charge of electron. 

 

(b) 2D case 

 

 
 

Fig. Measurement of the Hall and diagonal resistivities. 
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The Hall voltage is defined by 
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where ns is the surface concentration, 
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t(→0) is a virtual thickness, and N is the total number of electrons in the system. Then we have 
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This means that yxR  is in the units of  and is independent of the geometry of the system. 

Next we consider Vx.. It is obtained as 

 

x

y

x

s

xxxxxxxxx I
L

L

en

m
LJLJLEV




2

0

1
  

 

This means that the voltage Vx depends on the geometry of the system through Lx and Ly. 
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3. Physical meaning of xy 

The conductivity tensor is given by 

 

22

0

0

1 





 yyxx ,  
22

0

00

1 





 yxxy . 

 

Note that 



10 

 

 
 

   

B

nec

xxxy



































0

0

22

00

0

22

00

2

00

22

00

0

22

0

00

0

11

11

1

 

 

or 

 

xxxy
B

nec





0

1
  

 

Suppose that the electric field is applied along the y direction. Then the current density along the 

x axis is given by 
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The first term is due to the drift motion of electrons along the x axis. The drift velocity along the 

x axis is given by 
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The drift current is 
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The second term is due to the scattering. 
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Then the current density along the x direction is 
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In the limit of c , we have 
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Experimentally we need the following general expression 
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The conductivity  can be expressed in terms of  as 
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Fig. The 2D motion of electron  under the strong magnetic field (the z direction). The electron 

undergoes a cyclotron motion. Due to the electric field along the y axis, the center of the 
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circle shifts to the x direction at the velocity of eEy/B. Each time the electrons collide 

with scatterer such as impurity, the center shift to the x-direction on the order of the 

radius of orbit, leading to the extra current along the x direction. 

 

4. Landau quantization 

 

 

Fig. Energy contour plot of the Landau levels n and n+1 in the k space. 

 

)(A  is an area enclosed by the adjacent Landau levels in the k-space, 
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The corresponding number of states is 
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Fig. Schematic diagram of Landau levels in the presence of magnetic field B. 

 

(i) The s-th Landau level crosses the Fermi energy when 
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the number of electrons per unit area is 
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where B is the external magnetic field, which is independent of s. 
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((Note)) B0 is defined as  
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5. Klitzing constant 

For TkBc ℏ , the Landau levels are completely filled or completely empty. The number 

of electrons per unit area is 
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where s is an integer. Here we use the notation  instead of ns since ns is constant but  is 

dependent on the magnetic field. Then the Hall voltage is 
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where s is an integer. Note that yxR is free of geometrical corrections and  
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where 25,813  is the value of h/e2 expressed in ohms. 
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More precisely we have 
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Then we have the von Klitzing constant, 
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((Note-1)) Klitzing constant RK: RK = 25,812.807449(86) Ω, 
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((Note-2)) What is the practical units of RK? 
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6. Total number of electrons 

The total number of electrons: 

 

Calculation of the Klitzing constant in SI Units and cgs units

Clear@"Global`∗"D;
SIrule1 = 9me → 9.1093821545× 10−31, eV → 1.602176487× 10−19,

qe → 1.602176487× 10−19, ge → 2.0023193043622,

c → 2.99792458× 108, h → 6.62606896× 10−34,

— → 1.05457162853× 10−34=;
CGSrule1 = 9c → 2.99792× 1010, — → 1.054571628 10−27,

h → 6.62606957 10−27, me → 9.10938215 10−28, qe → 4.8032068× 10−10,

eV → 1.602176487× 10−12=;

RKSI =
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qe2
ê. SIrule1

25812.8

RKCGS =
h

qe2
ê. CGSrule1

2.87206×10
−8

ratio =
RKSI

RKCGS

8.98756×10
11

Note that

1 s/cm  (cgs units) = 8.98752 x 1011 W  (SI units)



19 

 

00

2

222 











 ss

e

c
s

c

eBL
sBsN

ℏℏ
 

 

The total charge Q in all the Landau levels below F is given by 
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7. Simulation of the quantum Hall effect 
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Fig. Density of states in real 2D system, with impurities and other imperfections.  
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Fig. The integer quantum Hall effect which is illustrated schematically. Ryx/(e
2/h) and 

xx (arbitrary scale) as a function of B/B0. yxR  is the Hall resistance and xx is the 

longitudinal resistivity. The dashed line denotes the classical Hall resistance. (Ryx 

/(e2/h) = B/B0). The scale of the xx is arbitrary. h/e2 = 25.8128 k. B0 = chns/e. 

 

______________________________________________________________________________ 

8. Laughlin's thought experiment 

R.B. Laughlin, Phys. Rev. B23, 5632 (1981) 

 

The 2D electron system is wrapped around to form a cylinder. The magnetic field is applied 

normal to the cylinder surface. The current I circles the loop. The Hall voltage VH is produced 

between one edge of the cylinder and the other, perpendicular to both B and I. The circulating 

current I is accompanied by a small magnetic flux  that threads the current loop. 

 

BêB0

RyxêHhêe
2L

rxx

1

1ê2

1ê3

11ê21ê3

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0



22 

 

 



23 

 

 
Fig. Model of a 2D metallic loop used for the derivation of the quantum Hall effect. 

 

 

U: total electronic energy. The vector potential A has only the direction along the e  axis (along 

the loop). 

 

  ALddd   rAaBaA 0
. 

 

 is the total magnetic flux and B0 is the magnetic field due to the current I along the ribbon. 
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9. Gauge transformation 

In the presence of a magnetic field B, 
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Gauge transformation (I): 
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with 
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Then we get a new vector potential as 
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where 

 

A = -By. 
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The Gauge transformation (II): 
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with 
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Then we have 
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__________________________________________________________ 

In summary: vector potential and the wave function 

 

(a) First gauge 
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(b) Second gauge (Landau gauge) 
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(c) Third gauge 
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Then we have 
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At the fixed y, ' (x,y) should satisfies the boundary condition as " (x, y). 
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The magnetic flux   is given by 
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where 0  is the quantum fluxoid. In other words, the magnetic flux is quantized. When the 

magnetic flux discretely changes by20, correspondingly, the value of y changes as follows. 
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An increase A  that corresponds to the magnetic flux increases is equivalent to a displacement 

of an extended state by y
B

A



  in the y direction. Since yBLAL   , the change of   

causes a motion of the entire electron gas to the y direction.  

 

10. The expression of U (Landau gauge) 
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Then the Schrödinger equation can be rewritten as 
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where 
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which depends on the coordinate y. We put 

 

2)(
2

1
)

2

1
(

B

cE
myeEnU

y

yc  ℏ  

 

When y increases, the energy U increases. Note that 
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10. Quantum Hall effect 

In summary we have 
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and 

 

nBLyAL 02  (1) 

 

When  is constant (quantized), 0y . 

 

Ix = 0. 

 

Each Landau level contributes an energy change yeEU y . When  discretely changes by 

02 , we have 
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for each Landau level. For s Landau levels, we have the total current given by 
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where 
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((Note)) 

See the animation in the following URL 

https://en.wikipedia.org/wiki/Quantum_Hall_effect 

(Quantum Hall effect, Wikipedia) 

 

11. Another method 

The above expression for RH can be also derived as follows. 
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Fig. Drift velocity in the y direction. 

 

 

For s full Landau levels, the electron density is  
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The drift velocity is given by 
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Then the current along the x axis is 
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11. Localized state and extended state 

 

 
 

Fig. Landau level with localized state and extended state. The disorder produces 

localization of the states in the wings of each broadened level. Only the un-shaded 

states near the center of the level remain extended and capable of carrying a 

current. The localized states act as a kind of reservoir 
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Fig. Model for the broadened density of states in a magnetic field. Mobility edges 

close to the center of the Landau levels separate extended states from the 

localized states. (from K. von Klitzing, Nobel Le3cture (12/9/1985); The 

Quantized Hall effect). 

 

(a) Extended states: continuous around the loop 

 

 Extended state
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The extended state encloses  and their-energy may be changed. 

 

(b) Localized states,  which are not continuous around the loop 

 

 
 

The localized states are unaffected to the first order because they do not enclose any significant 

part of . 

 

12. Contribution of the extended state and the localized state to xx and Vyx 

In the measurement of quantum Hall effect, it is observed that 
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Klitzing has found that the plateau part of Vyx takes a universal constant which is independent of 

the systems used in the measurements. We note that 
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When 0xx , the system is in the localized state.  
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When 0xx  the system is in the extended state; xx  shows a delta-function line peak, when 

the Landau level crosses the Fermi level. The effect of   is equivalent to a translation in the y 

direction. In the ideal case, all the wave functions of the electrons are translated by 
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when the solenoid flux changes by   of  
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in which case the gauge transformation is possible, corresponds to a shift of the wave functions 

by a distance equal to the separation between the center co-ordinates. 

 

((Note))  

The quantization of the real magnetic flux passing through the area yL  along the z direction.  

 
 

When 
LB

y 02
 , the total magnetic flux passing through the cylinder surface (along the z axis, 

the direction of the magnetic field B) is 02 . Note that total surface area of the cylinder is 

 

yLS  . 
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The total magnetic flux (which is not the same as the magnetic flux ) is given by 

 

SB02 . 

 

This means that the real magnetic flux passing through the area yL along the z direction is also 

quantized. 

 

______________________________________________________________________ 

13. Systems for the experiments of Quantum Hall effect 

(a) MOSFET (metal oxide semiconductor field electric transitor) 

Al-SiO2 (insulator) –Si (semiconductor) 

The inversion layers are formed at the interface between a semiconductor and insulator, or 

between two semiconductors, with one of them acting as a insulator. 
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The source S and drain D contacts are heavily doped n+ regions with Al caps. 
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S 

 

Fig. Metal-Oxide Field Effect Transistor (MOSFET). The inset I is a schematic view 

of a MOSFET. (a) Energy level structure. In the metallic part, the band states are 

occupied up to the Fermi level F. The oxide is an insulating film. The Fermi level 

in the semiconductor falls in the gap between the valence band and the conduction 

band. There are acceptor states doped close to the valence band, but above the 

Fermi level F. (b)The chemical potential in the metal is controlled by a gate bias 

VG. The introduction of holes results in a band bending in the semiconducting part 

and (c) when the gate bias exceeds a certain value, the conduction band is filled 

close to the insulating interface, and a 2D electron gas is formed. The confining 

potential has a triangular profile with electric sub-bands which are represented in 

the inset II. 

From 

P. Lederer and M.O. Goerbig, Introduction to the Quantum Hall Effects (lecture 

notes, 2006). http://staff.science.uva.nl/~jcaux/DITP_QHE_files/LedererQHE.pdf 
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From 

A.J. Leggett,  The quantum Hall effect: general considerations. 

http://online.physics.uiuc.edu/courses/phys598PTD/fall09/L16.pdf 

 

(b) GaAs (semicionductor) – AlxGa1-xAs
It is arranged that an electric field perpendicular to the interface attracts electrons from the 

semiconductor to it. These electrons sit in a quantum well created by this field and the interface. 

The motion perpendicular to the interface is quantized and thus has a fundamental rigidity which 

freezes out motional degrees of freedom in this direction.  

 

 
 

Fig. Semiconducting (GaAs/AlGaAs) heterostructure. (a) A layer of (receptor) dopants 

lies on the AlGaAs side, at a certain distance from the interface. The Fermi energy 

is locked to the dopant levels. The bottom of the GaAs conduction band lies lower 
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than those levels so electron close to the interface migrate to the GaAs conduction 

band. (b) This polarization leads to a band bending close to the interface, and a 

2D electron gas forms, on the GaAs side. 

From  

P. Lederer and M.O. Goerbig, Introduction to the Quantum Hall Effects (lecture 

notes, 2006). http://staff.science.uva.nl/~jcaux/DITP_QHE_files/LedererQHE.pdf 

 

(c) Graphene. 

In a single atomic layer of carbon (grapheme), the quantum Hall effect can be measured 

reliably even at room temperature, which makes possible QHE resistance standards becoming 

available to a broader community, outside a few national institutions. 

 

(see Novoselov et al, Science 9 Vol. 315 no. 5817 p. 1379, “Room-temperature quantum Hall 

effect in grapheme.”) 
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Fig. Quantized magnetoresistance and Hall resistance of a graphene device where n = 

1012 cm2 and T = 1.6 K. Z. Jiang et al. Solid State Commun. 143, 14-19 (2007). 

 

 

14. Kittel Chapter 17 Problem 17-3 

Consider a two-dimensional electron gas with spin 1/2. 

(a) Show that the number of orbitals per unit energy is given by 
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where L2 is the area of the system. 

 

(b) Show that the sheet density is related to the Fermi wavevector by 
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by taking into account of the spin freedom. 

 

(c) Show that, in the Drude model, the sheet resistance, i.e., the resistance of a square segment of 

the 2D electron gas, can be written as 
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where l = vF  is the mean free path. 
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since  
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Then we have the density of state for the 2D system with the area L2, 
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(b) The sheet density ns is defined by 
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where N is the total number of electrons below the Fermi energy F, 
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(c) The sheet resistance is defined by 

 

2en

m
R

s

s   

 

Using the mean free path l = vF , we get 
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since 
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15. de Broglie relation 

Using the above expression of Rs with the de Broglie relation, we may derive the quantum 

Hall effect. We introduce the wavelength F  as 
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Then we get 
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Suppose that  
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where s is an integer. This relation corresponds to the de Broglie relation. Then we have 
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16. Minimum metallic conductivity 

The conductivity is expressed by 

 

lk
h

e

R
F
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21
 . 

 

When lkF =1, this conductivity is called the minimum metallic conductivity, 

 

h

e2

min  . 

 

This idea was proposed by Mott. However, this idea is found to be wrong from the scaling theory 

(E. Abrahams, P.W. Anderson, D.C. Licciardello, and T.V. Ramakrishnan, Phys. Rev. Lett. 42, 

673 (1979)). 
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APPENDIX 

Experimental results of fractional quantum Hall effect 

 

 
 

Fig. Quantum Hall effect which are detected by plateau developed by the Hall 

resistivity or dips in the diagonal resistivity. The numbers indicate the Landau 

level filling factors at which various features occur,  
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