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Sir Rudolf Ernst Peierls, CBE (June 5, 1907, Berlin – September 19, 1995, Oxford) was a 

German-born British physicist. Rudolf Peierls had a major role in Britain's nuclear program, 

but he also had a role in many modern sciences. His impact on physics can probably be best 

described by his obituary in Physics Today: "Rudolph Peierls...a major player in the drama of 

the eruption of nuclear physics into world affairs. 

 

 
 

http://en.wikipedia.org/wiki/Rudolf_Peierls 

 

((John Bardeen (1941))) 

Many ideas of CDWs were developed in early attemmpts to explain superconductivity. In 

1941, John Bardeen suggested that "in the superconducting state there is a small periodic 

distortion of the lattice" that produces energy gaps, and that these gaps would lead to 

enhanced diamagnetism. Bardeen abandoned this idea when he realized the difficulty of 

obtaining an appropriate arrangement of gaps on the three-dimensional Fermi surfaces of 

common superconductors. 

 

((J. Bardeen,  Phys. Rev. 59, 928 (1941))) 

Proceedings of the American Physical Society, Minutes of Washington DC, Meeting 

May 1-3, 1941. 

The energy discontinuities produced by the zone structure yield a decrease in the energy 

of the electrons at the expense of the increase in energy of the lattice resulting from the 

distortion. A rough estimate of the interaction between the electrons and the lattice obtained 

from the electrical conductivity in the normal state indicates that the superconducting state 

may be stable at low temperatures. The most favorable metals are those which have a high 
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density of valence electrons in a wide energy band and which have a large interaction 

between electrons and lattice (low conductivity). 

 

___________________________________________________________________________ 

1. One-dimensional energy band 

(1) Regular lattice 

Suppose that the system consists of N atoms, forming a linear chain along the x direction. 

They are periodically arranged such that the distance between the nearest neighbor atoms is a. 

The size of the system is L = Na.  

 

 
 

Fig. One dimensional chain of atoms where the nearest neighbor distance is a. 

 

The energy gap appears at the Brillouin zone boundary )(
a

k


 . The energy gap is fixed at 

this reciprocal lattice point. In this case there are 2N states for the first Brillouin zone 

)(
a

k


 . The factor 2 comes from the spin of electrons. When each atom has two electrons, 

there are 2N electrons in the system. Then the band is filled up to the Brillouin zone 

(insulator). When each atom has one electrons, there are N electrons in the system. Then the 

band is half-filled in the energy band (metal).  

 

 
Fig. Energy band for the system where there are two electrons per atom. All states are 

occupied up to the zone of the Brillouin zone (insulator) 
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Fig. Energy band for the system with one electron per atom. All states are occupied for 

|k|<kF (= /a) in the Brillouin zone (metal) 

 

(ii) Effect of lattice distortion  

We still assume that there is one electron per atom in the linear chain. Now let us displace 

every second atom by a small distance .  

 

 
 

Fig. Lattice constant changes from a to 2a due the lattice distortion. 

 

This reduces the symmetry to that of a chain with spacing 2a, and the potential acquires a 

Fourier component of wave number /a which in this case is equal to 2kF. This results in an 

energy gap at k = kF = /2a, in accordance with the change in the periodicity from a to 2a. In 

this case, all states raised by the change are empty, and all states lowered are occupied, so the 

system becomes insulator.  
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Fig. Energy band for the system with one electron per atom, after the lattice distortion. 

The energy gap appears at k=kF = ±/2a. The system changes from metal to insulator 

(Peierls instability). 

 

((Peierls, More surprise in theoretical physics, 1991)) 

This instability came to me as a complete surprise when I was tidying material for my 

book (Peierls 1955), and it took me a considerable time to convince myself that the argument 

was sound. It seemed of only academic significance, however, since there are no strictly one-

dimensional systems in nature (and if there were, they would become disordered at any finite 

temperature. I therefore did not think it worth publishing the argument, beyond a brief 

remark in the book, which did not even mention the logarithmic behavior. 

It must also be remembered that the argument relies on the adiabatic approximation, in 

which the atomic nuclei are assumed fixed. If their zero-point motion were taken into 

account, the answer might change, but this would be a difficult problem to deal with, since it 

involves a strongly nonlinear many-body problem. 

 

2. Elastic energy due to the lattice distortion 

Then change of the total energy of the system consists of 

(i) the change of energy in electrons (Eelectronic<0) which decreases because of the 

appearance of energy gap. 

(ii) the change of energy associated with the lattice distortion (Eelastic>0) 

 

The total energy E is given by 

 

latticeelectronic EEE  . 

k
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If E <0, the lattice distortion occurs. This is predicted by Peierls for an ideal one 

dimensional conductor. 

The charge density wave has a periodic function of x with the periodicity . We consider 

the elastic strain 

 

)2cos()cos( xkQx F  , 

 

where 
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Note that kF is a general value and is not always equal to /2a. The spatial-average elastic 

energy per unit length is 
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where C is the force constant of the linear metal. We next calculate Eelectronic. Suppose that the 

ion contribution to the lattice potential seen by a conduction electron is proportional to the 

deformation, 

 
iQxiQx

F eVeVxkVxU
 000 )2cos(2)(  

 

where  AVUQ  0  (see Kittel, ISSP, p.422- 423). 

 

3. Bragg diffraction; Ewald sphere 

(a) Typical Bragg reflections: 
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Fig. Ewald sphere: kkq  ' ; k'=k. The Bragg reflection occurs when q = G. q is the 

scattering vector and G is the reciprocal lattice vector  

 

(b) The case for the charge density waves; 

 

 
 

Fig. Ewald sphere: kkq  ' ; k'=k. The Bragg reflection occurs when q = Q. q is the 

scattering vector and Q is equal to 2kF.  

 

Experimentally the Bragg reflection appear at 
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where 
a

a
2*   is the reciprocal lattice and a is the lattice constant in the absence of the 

lattice distortion. The Bragg intensity is proportional the square of the order parameter 

(energy gap). Note that 

 

FF k
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If this ratio is a rational number (= p/q; p and q are integers).  

 

q

p

a



. 

 

There are q CDW waves in the p lattice distances. This is called the commensurate CDW.  

If this ratio is irrational, this is called the incommensurate CDW. 

 

4. Calculation of the change of energy near the regions at k = kF 
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Now we consider the simplest case: mixing of only the two states: k  and Gk   (k≈kF), 

k - G ≈ - kF, G = 2kF). The wavefunction is approximated by 

 

GkCkC Gkk   . 

 

where only the coefficients Ck and Ck-G are dominant. The central equation (eigenvalue 

problems) is 
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From the condition that the determinant is equal to 0, we have 
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Note that the potential energy U(x) is described by 
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where we assume that UG is real: 
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Then we have 
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We retain the minus sign to get minimum energy. The reduction of the lower energy is 
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To get the reduction of the total energy per unit length, we have to integrate from -kF to kF, 

multiplied by (1/2), The main contribution comes from the neighborhood of k = kF. We 

assume that V0 is constant. Using the relation 
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we get 
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As is expected, the value of 
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The approximations are valid only in the neighborhood of k = kF. So we need to restrict the 

integration to a maximum value of k, k0, such that 
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Then we have 

 

 
1

0 0

2

0

222

0

22)1(
)(

1
)(

2

2








dVdkVE
Fk

k

electronic  

 

where the factor 2 comes from the spin degree of the electron. 

 

01 kkF   

 

5. Calculation of change of energy in the regions near k = -kF. 

Here we show that the contribution from the regions near k = -kF is the same as that from 

the regions near k = kF as shown in the above. give equal contributions  
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We consider the case when k ≈-kF (<0), k+G = kF with FkG 2 . Since 
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Noting that 
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we get 
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where the factor 2 comes from the spin degree of the electron. 
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So it is found that 
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6. The change in the total energy due to the lattice distortion 

The total energy is given by 

 



14 

 

]
2

ln2
4

1
1[

2

)
4

2(ln

ln)
8

1

2

1
(

ln11ln)11(

)ln()(

)(
2

2
2

0

1
2

1

2

2

0

2

0

2

1

2

2

0

2

0

1

0

2

0

2

1

2

2

0

2

0

1

0

2

0
2

1

2

2

0

2

0
2

1

2

2

0

2

1

0

2

1

22

01

2

02

1

22

01
1

0

2

0

22

)1()1(

1

























































V

VV

VV

VVVV

VVVVV

V

VV
V

dV

EEE electronicelectronicelectronic























 

 

or 

 

]
2

ln2
4

1
1[

2 0

1

2

1

2

2

0

2

0











V

VV
Eelectronic




 

 

The important feature of this result is that it behaves for small V0 as  
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For small displacement, V0 is proportional to the displacement . 

 

AV 0 , 

 

where A is constant (see Kittel, ISSP, p.422- 423). The behaviors of the reduction in 

electronic energy for small displacement is  
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This is interesting because there may be other effects favoring the regular spacing,  = 0, 

such as the repulsion between the atomic cores, but these will have an energy varying 2. 

Thus the electronic energy must dominate for small displacement. This suggests that the 

periodic chain must always be unstable. 

 

The change in the total energy E  is given by 
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In order to find the minimum value of E, we take a derivative of E with respect to . 
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Then we get 
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This expression is almost the same as that derived by Kittel, 
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7. Electronic density )(x  

 
 

At finite temperatures, there is a finite probability that a part of electrons is excited from the 
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where f is the Fermi-Dirac distribution function. When Qkk   , 
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8. Calculation of )0,( TQ  

We now calculate the susceptibility 
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where we take into account of the degree of spin (the factor 2). We make a plot of the 

function defined by 
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where x = Q/(2kF), and 
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The susceptibility is found to diverge at Q = 2kF.  
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9. The density of state at the Fermi energy for the 1D system 
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Fig. Peierls instability. Electrons with wave number k near k = kF have their energy 

lowered by a lattice deformation. When the length of the system is L, the allowed 

value of k is k = l (2/L), where l is 0, ±1, ±2,.... In this figure (T = 0 K), the states in 

the lower energy band is fully  occupied, while the states in the upper energy band are 

empty.  

 

The lattice distortion with wavelength  gives rise to an energy gap at 

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Then the system changes from conductor to insulator. All the states ,k  (spin-up state) and 

,k  (spin-down state) with |k|≤kF are occupied in the lower band. Then we have 
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where the factor 2 comes from the spin degree, and N is the total number of electrons in the 

system (L). Note that N is not the number of unit cell in this case. The number density n is 

defined by 
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Using the above relation, we get 
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This means that here are two electrons per wavelength .  

 

 
 

The density of states is defined by 
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where we take into account of (i) the spin factor (2) and (ii) the even function of k for the 

energy dispersion. The energy dispersion of the free electron is 
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Using the relation 
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we have the density of states as 
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Then we have 
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k0 is the lower limit of k (which was discussed above). The magnitude of 0 is not essential in 

our discussion. 

 

11. The critical temperature Tc 



29 

 

The energy gap is equal to zero at T = Tc. The critical temperature Tc is derived from the 

energy gap equation. The derivation of Tc is almost the same as that derived for the BCS 

model of the superconductivity.  We start with the energy gap equation with zero energy gap, 
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where  = 0.577216 is the Euler's constant. Then we get 
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12. The energy difference at finite temperatures 
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The total energy of both electron and lattice is given by 
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where AVUQ  0 . When Q → 2kF and T →0, ),( TQ  shows a logarithmic divergence. 

Therefore, below a characteristic temperature Tp, E becomes negative, leading to the Peierls 

instability. Using the expression for ),2( TkF , 
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where 0 is a dimensionless electron-lattice interaction parameter, 
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13. Kohn anomaly 

At temperature which is sufficiently higher than the Peierls transition temperature, the 

angular frequency (k = 2 kF) of the phonon dispersion curve drastically decreases, showing 

the softening of the phonon mode. This behavior is called the Kohn anomaly. This behavior 

can be explained qualitatively as follows. The electrons are influenced through the potential 

UQ. due to the lattice distortion. The electronic charge is newly generated in the form of 

 

QQ UTQ ),(  . 
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The force exerted on the phonon is weakened by the electron-phonon interaction. This leads 

to the decrease in the restoring force of the lattice distortion. The angular frequency of 

phonon at Q becomes softening and is reduced to zero at the critical temperature. In summary, 

the lattice wave with Q gives rise to the electric potential with Q, which works for the electric 

charge Q, turns back to the lattice wave with Q as a positive feedback. This leads to the 

restoring force of the lattice. 

We discuss the time dependence of the displacement Q of the phonon mode with Q and 

Q . Noting that 
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we get the equation of motion for Q as  
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where vQ is the strength of the electron-phonon interaction, and AUQ   in thermal 

equilibrium. Then we have the characteristic angular frequency 
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at Q = 2kF. Using 
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which is obtained in the previous section. 

 

 
 

Fig. Schematic diagram of acoustic phonon dispersion relation of a one dimensional metal 

at various temperatures above Tc. 
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14. Order parameter 

The Peierls instability occurs in a one-dimensional metal. This instability gives rise to the 

combination of the electronic density wave and lattice wave with the same wave number 2kF. 

This combined waves are called the charge density wave (CDW). The appearance of the 

CDW state can be experimentally found by x-ray and neutron scattering.  

In the CDW state, the order parameter is the energy gap. This gap is equal to zero at T = 

Tc and increases with decreasing temperature. We consider the temperature dependence of 

the energy gap below the critical temperature. We start with  
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14. Calculation of order parameter 
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From this we get the expression for  as, 
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((Mathematical note)) 
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In the vicinity of T = Tc (but T<Tc), we have a good approximation, 
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16. Critical behavior of the order parameter (energy gap) 

The energy gap is obtained as 
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The energy gap at T = 0 K can be evaluated from the energy gap equation at T = 0 
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Together with the relation 
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we get the universal relation 
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The energy gap is the order parameter. Since this order parameter continuously changes with 

T and reduces to zero. The phase transition is of the second order with the critical exponent  

= 1/2. 
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Fig. Plot of the energy gap /0 as a function of a reduced temperature t = T/Tc. 
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APPENDIX Typical quasi-one dimensional metal 

1. TTF-TCNQ 
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The tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) is not a simple metal. 

Above 58 K, there is an energy gap at gℏ  = 0.14 eV and an extremely narrow conductivity 

mode centered at zero frequency. Near 53 K, TTF-TCNQ undergoes a metal-insulator 

transition to a high-dielectric constant semiconductor in which the oscillator strength is 

shifted from zero frequency and pinned in the far infrared. In an earlier work. 

 

 
 

2. Blue bronze K0.3MoO3 

The quasi-one-dimensional (1D) conductor K0.3MoO3 undergoes a Peierls transition at T 

=183 K. Using cold-neutron scattering, Pouget have succeeded in resolving in frequency and 

for wave vectors parallel to the chain direction the pre-transitional dynamics and the 

collective excitations of the phase and of the amplitude of the charge-density-wave (CDW) 

modulation below T. The pre-transitional dynamics consists of the softening of a Kohn 

anomaly at the wave vector 2kF together with the critical growth of a central peak in the 

vicinity of T, . In addition we observed just above T, the beginning of a decoupling between 

the fluctuations of the phase and of the amplitude of the CDW.  
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